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Abstract-An analytical solution is obtained for a fully developed, forced convection in a gap between two 
concentric cylinders. The inner is exposed to a constant heat flux and the outer is thermally insulated. A 
porous layer is attached to the inner cylinder. The effects of the permeability, thermal conductivity and the 
thickness of the porous material are investigated using a Brinkman+xtended Darcy model. It is shown 
that there exists a critical thickness of the porous layer at which heat transfer is minimum in the case of 
low thermal conductivity materials, while this does not show for highly conducting materials. The obtained 
results show that increasing either the permeability or the thermal conductivity improves the heat transfer. 
Further, for highly permeable and conducting porous media, it may not be necessary to fill the gap 

completely to attain the maximum heat transfer. 

1. INTRODUCTION 

Heat transfer in porous media has received con- 
siderable attention and has been the field of a number 
of investigations during the last decade. The need for 
a better understanding of heat transport in these 
media is motivated by the numerous engineering 
applications encountered, in which a porous medium 
is present, such as geothermal systems, solid matrix 
heat exchangers, thermal insulation, oil extraction, 
storage of nuclear waste materials, etc. 

A review of the related literature shows that most 
of the previous studies dealt with natural convection in 
cavities [l-6]. However, several authors [7-151 treated 
the annular geometry completely filled with a porous 
material and studied the natural convection heat 
transfer mode. Different numerical methods were used 
and the effects of parameters such as Rayleigh number 
and aspect ratio were discussed. Prasad et al. [16] 
performed an experimental work in steady state con- 
ditions and studied the effects of the same parameters. 

Forced convection in porous filled ducts received 
less attention. Cheng and Hsu [17] treated the wall 
effects in a fully developed, forced convection in an 
annular duct with variable porosity, using a Brinkman 
model and a matched asymptotic expansion based 
method. A numerical work showing the channeling 
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effect was done by Vafai [ 181. Poulikakos and Renken 
[19] considered two geometries, parallel plate channel 
and a cylinder, totally filled with a porous medium 
with prescribed temperatures at boundaries. Taking 
in account the porosity variation, inertial effects and 
the Brinkman term, they showed that the heat transfer 
rate was increased in comparison with Darcy model. 
A similar work applied to chemical reactors was done 
by Hunt and Tien [20]. Chou et al. [21] did an exper- 
imental-numerical comparison of the dispersion and 
channeling effects on heat transfer for a non-Darcian 
regime in a square channel completely filled with a 
porous medium. Wang and Du [22] studied and pro- 
posed a thermal dispersion model for forced con- 
vection in an annulus totally filled with a porous 
material. 

Most of the reported work is either numerical or 
experimental. However, analytical solutions are pre- 
sented for few specific cases. Vortmeyer and Schuster 
[23] used a variational method to solve the Brinkman 
equation. Vafai and Thiyagaraja [24] treated ana- 
lytically the porous-fluid interface problems. Forced 
convection in a plane channel or a cylinder partially 
filled with a porous medium was the topic of the paper 
presented by Poulikakos and Kazmierczak [25]. An 
exact solution was proposed for the constant heat flux 
case, while a numerical solution was derived for a 
constant temperature case, for a thermally fully 
developed flow and a Brinkman model. Results were 
obtained for small values of effective thermal con- 
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NOMENCLATURE 

A constant in N(r) expression T temperature 
B integration constant in up(r) u dimensionless axial velocity 
C integration constant in up(r) s axial position 

C, integration constant in ur(r) Z transformed radial variable 

C, integration constant in ur(r) (Z = r/J%). 
Da Darcy number (Da = K/H’) 

Dh hydraulic diameter (Dh = 2H) Greek symbols 

r dimensionless porous layer thickness constant in temperature expression 

(e = e*/H) ii dimensionless temperature 

E constant in N(r) expression (0 = (T:, - 7-*)lq,,lh,) 

F constant in N(r) expression 1 binary parameter 

H gap width (H = r,* - r:) A thermal conductivity ratio (A = ,4,/k,) 

4 heat transfer coefficient /J dynamic viscosity 

k thermal conductivity Q, function of r* in temperature 

K permeability expression. 

N(r) expression in 0 (0 = Nu, N(r)) 

NW Nusselt number at the inner wall 
Subscripts 

e effective 
(Nu, = h,D,lk,) f fluid 

NU Nusselt number at the inner wall with i inner 
respect to kc (Nu = h, D,,/kJ 0 outer 

4w wall heat flux 
dimensionless radial position 

P porous. 
r 

s dimensionless radial position of the Superscript 
porous-fluid interface * dimensional quantities, 

ductivity. Lauriat and Vafai [26] analyzed a forced r* 
convection in a parallel plate channel partially filled 
with a porous medium with a small effective thermal 
conductivity. An analytical solution was given for the 
Brinkman regime and approximate solutions were I+ 

Z==== 

proposed when the Forchheimer term was taken in 
account. Vafai and Kim [27] worked out analytically -------.-~-._.-_-__.-_-.___. + 
a forced convection problem in a porous filled parallel “* 
plane channel using the Brinkman-Forchheimer- 

‘X 

extended Darcy model. + 

In the nresent uaner. an analvtical solution for -_) 

forced convection in’an’annular duct partially filled 
with a porous medium is derived. A porous layer is 

3 

attached to the inner cylinder on which a constant v, a$iabatic 

heat flux is prescribed while the outer one is thermally Fig. I. Schematic of the physical domain. 
insulated. The Brinkman-extended Darcy model is 
used for flow regime. Analytical solutions are pre- 
sented for a hydrodynamically and thermally 
developed flow. It is shown that the porous material /1:= /lf* = /lL* 
may be used for insulation or enhancement of heat 
transfer according to its physical properties, which are 
permeability and thermal conductivity. Thus, effects 

(gi,= ($)r= (g). 

of parameters such as Darcy number, thermal con- 
ductivity ratio and porous layer thickness are Momentum equations for the porous and fluid regions 

considered. are written as : 

(i) in the porous medium : 
2. HYDRODYNAMIC ANALYSIS 

A fully developed flow, using the Brinkman- 
extended Darcy model is analyzed for the domain 

O= -($J+,u*$-&(r*S)-$uz (1) 

shown in Fig. 1. Under the following assumptions (ii) in the fluid layer : 
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O= -(g)+p*-$&(r*$j) (2) 
where Z, and K, are the modified Bessel functions of 
zeroth order of first and second kind, respectively. 

The constants Cr , Cp, B and Care determined using 
with the following boundary conditions : the boundary conditions and making use of the fol- 

at r* = r: u* = 0 lowing properties of Bessel functions : 
P 

at r* = r* u:= 0 G(z) = 1, (4 0 

at the porous-fluid interface and 

r* = r,*+e* u* = u: P K:(z) = -K,(z). (10) 

dup* _ duf” I, and K, are the modified Bessel functions of first 

dr* - dr*’ (3) order of first and second kind, respectively. After some 

Introducing the dimensionless variables defined as : 
algebraic calculation the constants are obtained as : 

r* 
H 

where D, r=- H = r*-r* = - 0 I 2 

and D, is the hydraulic diameter 
* 

r, =‘I rX r:+e* 
H 

r, = - 
H 

s = ___ 
H 

l4* 
ll= Da =$ 

-__ 
0 

B= 

bin t K,,Da 

I,, Km - L, Km - 

equations (1) and (2) become : 

(i) in the porous medium : r, < r < s 

(4) 

c, =p &~I,,-CK,,)-; 

C, = -C, In (rJ- G. 

(11) 

(12) 

(13) 

(14) 

(ii) in the fluid region : s < r < rO 
The modified Bessel functions K,,, I,,, K,,, KLs, I,, and 

The associated boundary conditions are : 

(5) 
I,, introduced in equations (ll)-(14) stand for the 
values of the functions at the positions r,/& and 
s/JIG, respectively. 

at r = r, UP = 0 

at r = r, Uf = 0 

at r=s UP = Uf 
du, _ dur 
dr -du’ (6) 

2.1. Analytical solution 
Equation (5) is easily integrated to yield the velocity 

distribution in the fluid, which is of the form 

r’ 
UC(r) = 4 +C, lnr+C,. 

Introducing a new variable z = r/a, equation (4) 
may be written as 

which is a modified Bessel equation of zeroth order, 
with a non-zero right hand side. The solution of equa- 
tion (8) is of the form 

up(z) = Bl,,(z) + CK,,(z) -Da (9) 

3. THERMAL ANALYSIS 

The analysis is carried out for a thermally fully 
developed flow. The governing energy equation is 
written as : 

(i) in the porous medium : 

aT; ia a7-; 
P*cxpy* = k j% q ,A! r* c?v* (15) ,_ 

(ii) in the fluid layer : 
^I 

p*czu:$ = kif -& (16) 

Introducing a binary parameter 2, which takes values 
of 1 in the porous medium and 0 in the fluid, the two 
previous equations may be combined into a single 
form as follows : 

p*c;u*g = {I(k,-k,)+k,}Jli; 
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The boundary conditions are : 

at r* = r,* 
I* = r,’ 

at r* = r* 0 4 0 W” = 

at r* = r,*+e* T,* = T: 

(18) 

A dimensionless temperature 0, a thermal con- 
ductivity ratio A and Nusselt number Nu, are defined 
as : 

Fully developed conditions implies that iYT*/?s* is 
constant. Therefore equation (17) may be written as 

(19) 

where T,*, and h, are the wall temperature of the inner 
cylinder and the heat transfer coefficient, respectively. 
a is the mean velocity over the whole cross section 
given by the relationship 

2 
ii=--- 

ri - rf 

-Br,&I,,+Cr,$%K,, 

+Dag+g+c g+c g 
2 16 ‘4 22 

(Nr3 - 4(r*)) (24) 

0 = Nu,N(r). (25) 

N(r) is a function of r given by the expression between 
brackets in equation (24). Making use of the dimen- 
sionless temperature. equation (21) is also modified 
and written as 

O(r,) = 0 or N(r,) = 0. 

Energy equation ( 19) is then transformed to 

(26) 

with the boundary conditions 

dN 
N(r,) = 0 and dY = 0 (28) 

r -1,’ 

or in another form of equation (27) 

(29) 

which is of the form of the Euler or Cauchy equation. 

3.1. Anuiyticul solutim 
Equation (29) is of the classical form 

where L( = I and h = 0. 
Let s = exp (t). then equation (30) becomes 

(20) 

The corresponding boundary conditions reduce to 
d’_r 
2 +((I- l)$ +hr = S(exp(t)) (31) 

at r=r, Nu,=?; 
I = I, 

(21) 

and its solution is given by 

tS(r’)dt. (32) 
J J 

At this point, Nu, being unknown and function of the The solution of equation (29) is then deduced and 

temperature profile, a non-linearity is introduced in written as 

equation (19) and, implicitly, in the boundary con- 
dition (21). A modification is then necessary and thus, N(r) = E+Flnr+lnr 
since the regime is thermally fully developed, we can 

T*(x*, r*) = y-x* +$(r*) 

y being a constant, and 

H= 
yx* +d(r:) -yx* -c$(r*) 

qJh, 

or 

(22) 
where A = - rJ(r, + ro) and u given by equation (9) in 
the porous region and A = - r,A/(r, + r,,) and IA given 
by equation (7) in the fluid. 

(23) The constants E and F for both regions are deter- 
mined using the boundary conditions, equations (18). 
expressed in terms of N(r). 
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After tough analytical integrations and employing 
recurrence formulas of the Bessel functions, we get 

N,(r) = E,+F,ln(r)- y, 
(6 + r&j 

x {SDOr, (-jL)+CDu& (-jL)- $ri} 

and 

(34) 

r,A 
Nr(r) = &+F,ln(r)- ~ 

(r, + r&J 

X &+C,Gln(r)-(C,-Cz)G 
i 1 

(35) 

where the subscripts p and f indicate porous and fluid 
regions, respectively. The expressions of the constants 
&,, Fp, Ef and Ff are given in the Appendix. 

3.2. Determination of Nusselt number 
Employing the relationship 0 = Nu, N(r), we may 

write 

or 

s 
r” Ou2nr dr = Nu, 

s 

5 
N(r)u2nr dr (36) 

‘8 ‘i 

s ‘<> 
0ur dr 

NM, = r<,r’ 

s 

(37) 
N(r)ur dr 

‘1 

Defining the bulk temperature and introducing the 
dimensionless temperature, we obtain 

[Ourdr = a(q) 

and, hence, 

Nu, = 
ii 

s 
‘O 

(39) 
N(r)ur dr 

r, 

Tough analytical calculations of different integrals 
(see Appendix) yield the Nusselt number. 

4. RESULTS AND DISCUSSION 

Results of flow field and heat transfer are presented 
in terms of velocity profiles and Nusselt numbers. The 
effects of parameters based on physical properties of 
the porous material such as Darcy number (Da) and 
the thermal conductivity ratio (A = k,/kr) are 
discussed. The effect of the porous layer thickness, 
varying from 0% to 100% of the gap, is also 
considered. All the results are presented for a radius 
ratio kept at a constant value (ri/rO = 0.5). Quali- 
tatively, the effects of the parameters considered are 

2.0 

1.6 

1.6 

r 

1.4 

1.2 

-rr 

i 

1.0 

Fig. 2. Velocity profiles for different Du, r = 0.2 

Da 

Fig. 3. Mean velocity as a function of Da for different thick- 
nesses. 

the same for any other value of the radius ratio. In 
order to compare heat transfer results to the case 
where no porous medium is present, the Nusselt num- 
ber is redefined with respect to the thermal con- 
ductivity of the fluid. Figure 2 shows the velocity 
distribution for different values of Da when the porous 
layer occupies 20% of the channel. For small Da, i.e. 

low permeability, the porous material presents a high 
resistance to the flow; hence the velocity profile is 
flattened in that region, which basically corresponds 
to a Darcian regime for Da less than 10e4. As the 
permeability increases (higher Da), this resistance to 
the flow decreases and the Brinkman-extended Darcy 
regime is obtained for 10e4 < Da < 10 as shown in 
Fig. 3 in which the average velocity is plotted against 
Da. The same effect is observed in Fig. 4, when 80% 
of the channel is filled with the porous medium. As in 
Fig. 2, it can be seen that, at higher Da, the resistance 
due to the porous matrix has no effect and a fluid 
velocity profile is recovered. The velocity profiles are 
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1.6 

r 

1.4 

Fig. 4. Velocity profiles for different Da, e = 0.8. 

1.6 

r 

1.4 

1.2 

1.0 

O.8o.m 
IUI 

6 

Fig. 6. Velocity profiles for different porous layer thicknesses. 
Da = IO--‘. 

1.8 

1.6 

1.4 

1.2 

NU 

IUI 

Fig. 5. Velocity profiles for different porous layer thicknesses. 
Da = 10ms. 

presented in Figs. 5 and 6 for various porous layer 
thicknesses. It is shown that filling the annulus reduces 
the flow rate whether the permeability of the porous 
material is low or high. 

Heat transfer results are presented in the remaining 
figures. Variations of Nusselt number as a function of 
the porous layer thickness, for different values of Da, 
are shown in Fig. 7 for a low thermal conductivity 
material (k,/kr = 1) which may be used for insulation. 
For a given permeability, the Nusselt number 
decreases when the porous layer thickness increases, 
up to a critical value beyond which, Nu increases to 
end up at almost the same value as in the case of the 
completely porous channel. The physical explanation 
is that, when the porous layer thickness increases, the 
flow rate is reduced and hence the prescribed heat flux 
makes the wall temperature increase more than the 
mean temperature of the fluid. The Nusselt number, 
being inversely proportional to the temperature 
difference, decreases until the critical thickness is 
reached. Over this value, the inverse effect is produced, 

6.0 

i 
2.0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,~,,,.,,,,,,,,,,,,,,,,~ 

0.0 0.2 0.4 0.6 0.8 1 .o 

8 
Fig. 7. Nusselt number as a function of porous layer thickness 

for different Da. kc/k, = I. 

that is the fluid mean temperature increases more than 
the wall temperature and thus NM is augmented. Simi- 
lar results were shown by Poulikakos and Kazmierczak 
[25] for a partially filled cylinder, by Lauriat and Vafai 
[26] for a parallel plate channel, by Campos rt al. [5] 
and by others [ 1,6]. It is worth noting that the limiting 
case of no porous medium (Nu = 6.18 101) agrees with 
results given in the literature [28]. The effect of per- 
meability is also seen in this figure through the differ- 
ent values of Da. The more permeable is the medium, 
the higher is heat transfer and the lower is the critical 
thickness. One can deduce that there is no need to fill 
up the channel with the porous material to obtain the 
minimum heat transfer. 

The critical thickness disappears as the porous 
material becomes more conducting, for any per- 
meability, as shown in Fig. 8 (Da = 1O-4 and IO-‘). 
Beyond a certain thermal conductivity value, which 
varies with the permeability, the presence of the 
porous medium enhances heat transfer. The Nusselt 
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Nu 

14.0 

12.0 

10.0 

8.0 

Nu 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 8. Nusselt number as a function of porous layer thickness 
for different k,/kf, Da = 10m4 and lo-*. 

e 

Fig. 9. Nusselt number vs porous layer thickness for different 
Da, kc/k, = 100. 

number increases substantially, notably for a highly 
conducting material (k,/kr = loo), up to nearly a con- 
stant value which is reached when approximately 85% 
of the annulus gap is filled (for Da = 10-l). 

If the medium is more permeable, a higher Nu is 
obtained and the constant value is reached for smaller 
thicknesses. Thus, even with a highly conducting 
material, it is sufficient to fill the channel just to a 
critical thickness (about 85% for Da = 10-l) to reach 
the maximum heat transfer rate as shown in Fig. 9. 
Figure 10 shows both the effects of permeability and 
thermal conductivity of a porous layer which occupies 
20% of the duct. It is clear that increasing either 
Da or thermal conductivity ratio improves the heat 
transfer. 

In Fig. 11, the role played by the porous layer with 
respect to heat transfer is shown. For a relatively 
low permeability (Da = 10P4), the porous medium 
presents a resistance to heat transfer, unless the 
material is nearly twice as much conducting as the 

:_~ 1 , , ,,,, ----1’- 

10 -' 10 _a 10 -¶ 10 -' 
4 
1 

Da 

Fig. 10. Nusselt number vs Darcy number for different ther- 
mal conductivity ratios, e = 0.2. 

12.0 y"-"-rTT----T--Trr A 

-1 
10.0 - 

e=0.2. Da=lO-' 

Nu 6.0 1 

6.0 :/ e=O. 

7 

4.0 ; 100 

ke/kf 

Fig. 1 I. Nusselt number vs thermal conductivity ratio, 
e = 0.2. Da = low4 and lo-‘. 

fluid (kJkr = 2), beyond which point the medium 
enhances heat transfer. For a higher permeability 
material, it happens even at lower thermal con- 
ductivity ratio (about 1.6 for Da = 10m2). 

5. CONCLUSION 

Forced convection analysis is done in an annular 
duct partially filled with a porous medium. The pres- 
ence of a porous layer is shown to present a resistance 
to the flow and heat transfer for low permeability 
materials. However, for highly conducting porous 
media, heat transfer is systematically augmented 
whatever the Da value is. It is also shown that, whether 
the porous material is used for insulation or for 
enhancement of heat transfer, there is no need to fill 
the gap completely, especially if the medium is highly 
permeable. 
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APPENDIX 

E.upressions a/‘constunts E,,, F,,, E, and F, 
The constants E,. Fp, E1 and Fr used in equations (34) and 

(35) are determined usmg the boundary conditions equations 
(18). Their expressions are given below : 

r,A 

x 
7 

r, E,, = - F,, In r, + ________ 
(r,+r,,)u 

x BDa I,(r,/J%) + CDs K,(r,/j%) - 

r, E, = E,,+(F,-F,)ln.s- ~ 
(r, + r,,)u 

x I ( s4 .sl $ 

-A 64 +C, qlns-(C, -CZ)4 
1 i 

Calculation of Nu 
The intermediate analytical calculations of the different 

integrals used in evaluating the Nusselt number in equation 
(39) are given in the following : 

c 
xl,(x) dx = xl, (r) 

c 

7 
.xI,(x)K,(.u)d.x =~{I~(I)K”(x)+I,(~)K,(x)~ 
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s 
xK,(x) dx = - xK, (.x) 

i‘ 
x’K,(x) dx = -.x’Kj (x) -2x’KJx) -4xK, (x) 

xl:(x)dx = ;{I:(x)-I:(x)} 
s 

xlnxl,(x)dx = xlnxl,(x)-I,(x) 

s 3 

xK:(x) dx = 5 (K:(x)- K:(x)} 

c 
x’l,(x) dx = s’l, (x-2.x21<,(x) +4x1, (x) 

s 
xlnxK,(x)dx= -xln.~K,(u)-K,,(r). 


