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ABSTRACT

In this paper we present a closed form, exact solution for
the forced flow past a sphere which is embedded in a porous
medium using the Brinkman model. The theory shows that
there is no flow separation for this flow configuration. How-
ever, for typical materials that occur in practice there is a
velocity overshoot in the vicinity of the sphere and a mathe-
matical explanation of this phenoma is presented.

Introduction

The general subject of the flow in a porous medium has received a great deal interest dur-
ing the past three decades and the vast amount of literature that has been devoted to this

subject has been recently reviewed by Nield and Bejan [1].
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The objective of this paper is to report a theoretical investigation of the problem of forced
convection flow past a sphere which is immersed in a porous medium based on the Brinkman
model [2]. A closed form exact analytical solution of the governing equations is obtained
and this leads to an expression for the separation parameter, similar to the one reported
by Pop and Cheng [3] for the corresponding problem of a circular cylinder. The variation
of the separation parameter and the velocity profile tangential to the surface of the sphere
for different particle/sphere diameter ratios are investigated. 1t is found that in practical
situations the flow does not separate from the sphere and a velocity overshoot occurs near
to the surface of the sphere. The method of matched asymptotic expansions is employed in

order to explain this velocity overshoot.

Basic Equations

Consider the steady, incompressible flow (with a constant frec stream velocity U, ) past
a sphere of radius a, which is embedded in a porous medium of uniform porosity ®. We use
a spherical polar coordinate system (7,6, ¢), with the origin at the centre of the sphere and
the axis # = 0 along the direction of the undisturbed flow as shown in Fig.1. Due to the
symmetry of the problem we have d/0¢ = 0. It is now convenient to non-dimensionalise all

variables by writing
r=r7/a, u=ufU,, v=u/lU,, p=pp/lakl) (1)

where % and » are the velocity components along the » and # directions, respectively, p is
the pressure, g is the viscosity and A is the permeability of the porous medium, which 1s
related to the porosity ® by the relation [1]
) 125 ‘

K= m (2)
where A is the Ergun [4] constant and d is the mean particle diameter. Using [1], the
governing equations for the problem under consideration can be written in dimensionless
form as

5 .
‘ (rzu,.sinﬁ) + %(7'1).8i110) =0 (3)

p
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and o is a dimensionless parameter defined as

1K @
TV T —eyar

where v = d/a. Typically, in a porous medium ¢ = 0.4 and A = 180 and hence

o = 0.0497y

In most physical problems of interest 4 is small and hence ¢ is a very small parameter.

el

U

FIG. 1
Physical model and coordinate system

If we make use of the stream function 1, defined such that

1 oy 1 oY

U= —————— V= ———
r2sin 06’ rsinf or
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and eliminate the pressure between Eqs (4) and (5), we obtain

ot ANy — Aty =0 (10)
where
. 0* sinf o RG]
A= — | — 1
dr? r? 0 (.sin.() (')()) (1)
Equation (10) has now to be solved subject to the boundary conditions
0 . .
P = w_ 0 at r=1 for all values of ¢ (12)
or
L/, 1N,
P~ 3 (r - —> sin“f for all > 1 and all values of ¢ (13)
”

Method of solution

From the boundary conditions (12) and (13) it is obvious that one should look for a

solution of Eq (10) in the form
(. 0) = f(r)sin’0 (14)

which on substitution into Eq (10) we obtain

Ty 2 -1 8 ai 8 - [ 1 2 g
e = (- ) =0 (15)
and the boundary conditions (12) and (13) become
f(1) = (1) =0 (16)
(17)

. 1.
flry ~ ;r}‘ as r— oo

y4

respectively, where primes denote differentiation with respect to r. We further denote

2 .
=f=(r)"g(r)

r2

j'l/ .

where ¢ is given by the equation
3\? -\ 2

g [(_) +(5) }g_o
2 o

The solution of this equation can be expressed in terms of the modified Bessel functions as

(20)

(19)

g(r) = BRyp(r/o) + Clyp(r/o)
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where B and C are two unknown constants. On imposing the boundary condition (17) we

obtain C = 0. Thus, we find that
. 2 B 1/2 1
f(r)y=Dr —|—7+B(r) Ks5(r/o) (21)

where D and E are two unknown constants. In order to determine the constants, B, D and
E, we impose the boundary conditions (16) and (17) to give

1(3/2(1/0)] 1 3o
Kip(l/jo)]| v 2Kip(l/o)

flr)= %ﬁ - % [1 + 30

(1) 2 Kapa(r/o) (22)

Results and Discussion

To investigate whether the flow separates from the surface of the sphere, we calculate the

dimensionless vorticity on the surface of the sphere, which is given hy

02 4 11 .
8% = f"(1)sin*0 (23)

r=1

According to Underwood [5], the separation parameter can be defined as
SEP = f"(1) (24)

which on substituting Eq (22) into Eq (24) gives

31\73/2(1/”)

SEP = —— 25
a [\1/2(1/0) ( )
In order to simplify the expressions (22) and (25) we use the fact that
T
Kyp(e)=/—e™™
‘1/2(“6) 217( (26)

Kapa(a) = E (1 + l) (27)

see Abramowitz and Stegun [6]. Thus the expression for SEP. as given in expression (25)
becomes
SEP = 3(l+l) (28)
o T 20
which is always positive for all physical values of the parameter . We therefore conclude
that there is no flow separation occurring for the flow past a sphere which is embedded in a

constant porosity medium based on the Brinkman model. Further, the smaller the value of

o, the larger is the value of SEP and hence the larger is the skin friction on the surface of
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the sphere.
The tangential velocity profile can be calculated from Eqgs (9}, (14) and (22) as

= f/f,r)sin(i (29)
where
fi(r) 1 o Rap(l/)) L3
o 2[1“01&'1/2(1/0)} B T AR ey /o)
3o 2
3Rty ) et l) (30)

On using the expressions (26) and (27) for the modified Bessel functions, expression (30) can
be simplified to
f'(r)

1 . 1 ! L, 1 1

o re 1l

The function f'(r)/r is presented in Fig.2 as a function of r for ¢ = 0.01,0.1, and 1. In all
cases the tangential velocity increases from zero at the surface of the sphere (r = 1) and
asymptotes to unity far away from the sphere. It is observed that for ¢ = 0.01 and 0.1 there
is a substantial velocity overshoot whereas when o = 1, this overshoot is small. As has been
observed earlier, in practice o is usually very small and hence in such circumstances there is
always a velocity overshoot.

The velocity overshoot behaviour, as shown in Fig. 2, will now be examined further. Since
the dimensionless particle diameter is much less than unity then Eq. (8) shows that, in

general, o is small. Thus Eq (10) can be approximated by
A%p~ 0 (32)

in a large region of the solution domain. Hence, the solution of the outer flow problem is

that of potential flow past a sphere, i.e.

1 /. 1 L
Y = 5 (rz — ;) sin’f (33)

The tangential velocity is then given by

v =

L oy 1
O ying (34)

rsinf Or 2r3

1
and the function (1 + —2-3) 1s also shown in Fig. 2. From expression (34) it is seen that
r

v~ (3/2)sinf near the surface of the sphere, where » = 1. On a detailed investigation of
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expression (31), see Fig. 2, it is seen that as r — 1 then f'(r)/r — 3/2 as ¢ — 0.

f'(r)/r
1.4
120\
| memzoooo oo oo
1.0"‘:, //
" /
i /
v/
0.8“;,
£ |
!I """ 0"—’0.01
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! 1+1/2r)
0.4—:
|
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FIG. 2
Variation of f’(r)/r as a function of r

We now obtain an approximate solution of Eq (10) by the method of matched asymptotic

expansions for ¢ << 1. In the inner solution (viscous sublayer), we have

fR) = S1+omrp- %[1 +30(1 + o)|/(1 + o)

+ ~oe P (l4+0/(1+0R)) (35)

N W —

where R = (r — 1)/o, whilst in the outer flow region, we have

1 1 3 1.
f(r)=§7“2—§[1+30(1+0)]/r +§0€;(1_7)(1+0/(1+0/”)) (36)
Substituting Eq. (35) into (24) yields
19 3.1
P== = —(—
SE -2 OR? 2(U+1) (37)

R=0
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which agrees exactly with Eq (28).

In order to illustrate the nature of the fluid flow. Fig 3 shows the streamlines for various
values of o. The values of ¥ = 0.02,0.4,0.6,0.8,1.0 and 1.2 for o = 0.01,0.1 and 1 are
presented. It is observed that

(1) the smaller the value of ¢ the closer together are the streamlines and this illustrates that
as o tends to zero that there is a thinner boundary-layer being developed on the surface of
the sphere. This confirms the need for the asymptotic analysis when o is very small.

(ii) the flow is symmetrical both before and after the sphere. This is clear from the assumed
form of the stream function given in Eq. (14).

(iit) no separation occurs near the rear stagnation point. This is confirmed in expression

(28) where SEP is always greater than zero.

Nomenclature

a radius of the sphere
A Ergun constant
B,C,D,E integration constants
d particle diameter
fe functions of r
I3/ modified Bessel functions
K2, K32 modified Bessel functions
K permeability of the porous medium
p pressure
r radial coordinate
R transformed radial coordinate
SEP separation parameter
0,0 velocity components along 7 and 8 directions, respectively
Greek symbols
y dimensionless particle diameter
o small dimensionless parameter
It viscosity

porosity
¢ polar angle
c azimuthal angle
0 stream function
subscript

0o condition far from the sphere
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superscript
dimensional variables

differentiation with respect to r
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FIG. 3
Streamlines: (a) 0 = 0.01; (b) 6 =0.1; (c) o= 1.0
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FIG. 3
Streamlines: (a) 6 =0.01; (b6 =0.1;(c)0=1.0
(continued)
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