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A B S T R A C T  
In this paper we present a closed form, exact solution for 
the forced flow past a sphere which is embedded in a porous 
medium using the Brinkman model. The theory shows that 
there is no flow separation for this flow configuration. How- 
ever, for typical materials that occur in practice there is a 
velocity overshoot in the vicinity of the sphere and a mathe- 
matical explanation of this phenoma is presented. 

Introduct ion 

The general subject of the flow in a porous medium },as received a great deal interest dur- 

ing the past three decades and the vast amount of literature that has been devoted to this 

subject has been recently reviewed by Nield and Bejan [i]. 
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The object ive of this paper is to report  a theoretical investigation of tile problem of forced 

convection flow past  a sphere which is immersed in a porous lnediuu3 based on the Brinkman 

model [2]. A closed form exact analytical  solution of the governing equations is obtained 

and this leads to an expression for the separation parameter ,  similar to the one reported 

by Pop and Cheng [3] for the corresponding i)roblem of a circular cylinder. The variation 

of the separation parameter  and th(? velocity profile tangential  to the surface of the sphere 

for different par t ic le /sphere  diameter  ratios are investigated. 11 is fOlllld that  in practical 

s i tuations the flow does not separate from the sphere and a velocity overshoot occurs near 

to the surface of the sphere. The method of matched asymptot ic  expansions is employed in 

order to explain this velocity overshoot. 

Basic Equations  

Consider the steady, incompressible flow (with a constant fre(" stream velocity U~o) past  

a sphere of radius a, which is embedded in a porous medium of uniform porosity (1i). We use 

a spherical polar coordinate system (r, 0, e), with the origin at the centre of the sphere and 

tile axis 0 = 0 along the direction of the undisturbed flow as shown in Fig. 1. Due to the 

symmet ry  of the problem we have 0/0~ = 0. It is now convenient to non-dimensionalise all 

variables by writing 

, =  , / ~ ,  . - , 4 ( :  . . . .  L, = . / t : ~ , ,  p -  # ~ , / ( . J . ( ' ~ )  (1) 

where iz and v are the velocity components along tile 7' and 0 directions, respectively, p is 

the pressure, # is the viscosity and K is tile t)erme~bility of the porous medium, which is 

related to the porosity ~5 by the relation [1] 

d2d):~ 
h" - (2) 

A(1 - , )2  

where A is the Ergun [4] constant and d is the mean particle diameter.  Using [1], the 

governing equations for the problem under consideration can be writ ten in dimensionless 

form as 
i) ~ /) ~(,-  ~.~i,,o) + ~(,.,~..~,0) 0 (3) 
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w h e r e  

_OR = 2 ( 2~ 2 0,., 2vcotO'~ 
Or U - -  V2U r2 /,2 00 r '2 J 

l o p  or2( 2 Ou, ,, ) 
r 00 - v - V~t '  r '~ O0 r'2.~T~0 

0 2 2 0 1 0 2 cotO 0 
v~ = ~ + 7 ~  + ~-g-g + T T - T  

a n d  ~r is a d i m e n s i o n l e s s  p a r a m e t e r  de f i ned  as 

w h e r e  3' = d/a. T y p i c a l l y ,  in a p o r o u s  m e d i u m  q~ 0.4 and  ,4 = 180 a n d  h e n c e  

rr = 0 .04977 

In m o s t  p h y s i c a l  p r o b l e m s  of  i n t e r e s t  9' is sma l l  a n d  h e n c e  ¢ is a v e r y  s m a l l  p a r a m e t e r .  

u 

(4) 

(5) 

(6) 

(7) 

(8) 

FIG. 1 
Physical model and coordinate system 

If we  m a k e  use  of  t h e  s t r e a m  f u n c t i o n  ~b, de f i ned  such  t h a t  

rL~inO O0 ' 
i O~/) 

v - r.sinO Or 
u --  (9) 
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and el iminate the pressure between Eqs (1) and (5), we oh ta i .  

where 

~2A4~, A~], = 0 (10) 

~ =  0 ~ .~.o~ ( i ~)) 

Equation (10) has now to be solved subject  to the boun(tarv conditions 

?)~/, 
~ " =  O ~  = 0  at  r = l for all values of 0 (12) 

~2 ~ 7~ r 2 - .siTt20 for all r >  1 and all values of 0 (13) 

M e t h o d  of  s o l u t i o n  

From the boundary conditions (12) and (13) il, is ohvious that  one should look for a 

sohltion of Eq (10) in the form 

~.,(,., 0) : .I(,0.~i,,~0 (14) 

which on subst i tut ion into Eq (10) we ohtain 

+ ,.:,.l .r" : 0 

and the boundary  conditions (12) and (13) become 

,f(1) = ]"(L) 0 (16) 

. i ( , .)  ~ ,~,-~ ,~.~ ,.-~ ~ (17) 

respectively, where primes denote differ(mtiation with respect to r. We further denote 

f,, i f  - , . ~  = (,.)'/~q(,.) ( i s )  

where 9 is given by the equation 

The solution of this equation can he expressed in t e r m s  Of tile modified Besse] functions as 

.q(,') = BK:, /~( , /c , )  + C1:~/~(,'/~,) (20) 
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where B and C are two unknown constants. ()n imposing the boundary condition (17) we 

obtain C = 0. Thus, we find that  

f(, .) = D, 2 + Z_ + B(,.),/~i<3/2(~./~,) (21) 
F 

where D and E are two unknown constants. In order to determine the constants,  B, D and 

E, we impose the boundary  conditions (16) and (17) to give 

217"2 21 [ '~ 1(3/2(1/°-)] rl ~{o • . 
. . . .  ,~0- ~ ~ , .  , , 2 i q / 2 ( 1 / ~ , )  ( , ) ~ / 2 I , ~ / ~ ( , / ~ )  f(,-) 1 + f,,/2(1/0-)] + (22) 

R e s u l t s  and  D i s c u s s i o n  

To investigate whether the flow separates from the surface of the sphere, we calculate the 

dimensionless vort ici ty on the surface of the sphere, which is given by 

0h/'~),,~ ,-=~ = f,,(l).~i,_~ 0 (23) 

According to Underwood [5], tire separation parameter  can be defined as 

S E P  = f"(1)  (24) 

which on subst i tu t ing Eq (22) into Eq (24) gives 

s E p  - ~ A3 /~ ( l / 0 - /  (25) 
o- Ifa/2(1/cT) 

In order to simplify the expressions (22) and (25) we use the fact that  

K,/2(z) = e (26) 

see Abramowitz  and Stegun [6]. Thus the expression for SEP. as given in expression (25) 

becomes 
:3 1 

.S'EP = ~ ( ~  + 1) (28) 

which is always positive for all physical values of the parameter  0-. We therefore conclude 

that  there is no flow separation occurring for the flow past a sphere which is embedded in a 

constant  porosi ty medium based on the Brinkmau model. Further,  the smaller the value of 

0., the larger is the value of SEP and hence the larger is tire skin friction on the surface of 
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the sphere. 

The tangential velocity profile can be calculated from Eqs (9), (14) and (22) as 

J "! ( 7 ~ ) 
t • 

where 

(29) 

1 [ 3 f%~(1/.)/,.1/~(1/.). ,.3l a . l'(,),. _ 1 + 1 + 2iq/~(11.)b.lx/~t,,/X~.l~) 
- ~ ,  , , (,.)3/2 t<3/~(,.l~,) (30) 
~xl/2Ul(r) 

On using the expressions (26) and (27) for the modified Bessel functions, expression (30) can 

be simplified to 

f'(,.) - 1 +  1 I1+3-(1+ /11 3 1 1] r ~ 7 :~,~ o 7+--+,,~, 7 (31) 

The function f ' ( r ) / r  is presented in Fig.2 as a function of r for (7 = 0.01,0.1, and 1. In all 

cases the tangential  velocity increases from zero at the surface of the sphere (r = 1) and 

asymptotes  to unity far away from the sphere. It is observed that  for cr = 0.01 and 0.1 there 

is a substant ia l  velocity overshoot whereas when ~ = 1, this overshoot is small. As has been 

observed earlier, in practice cr is usually very small and hence irl such circumstances there is 

always a velocity overshoot. 

The velocity overshoot behaviour, as shown in Fig. 2, will now be examined further. Since 

the dimensionless part icle diameter  is much less than unitv then Eq. (8) shows that ,  in 

general, ~ is small. Thus Eq (10) can be approximated by 

~x~,;, ~ 0 (32) 

in a large region of the solution domain, ttence, the solution of the outer flow problem is 

that  of potent ia l  flow past  a sphere, i.e. 

1 

The tangential  velocity is then given by 

I 
(1 + ~ ) . s i n O  (34) 

v -- r.sir~O Or 

and the function (1 + 1 _ )  is also shown in Fig. 9 From expression (34) it is seen that  
2 F  3 ~"  

v ~ (3 /2 ) s inO near the surface of the sphere, where r = 1. On a detailed investigation of 
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expression (31), see Fig. 2, it is seen that  as r --+ 1 then f ' ( r ) / r  --+ 3/2 as cr ---+ 0. 

f ' ( r ) / r  

1 . 4 -  

1.2- " "x.k\ 

1 . 0 -  ,. 
/ 

li ,' 

| i /  

1!, °-41: 
0"2~I 

o . o !  t 

. . . . .  tr=0.01 

. . . . .  tr=0.1 
- - -  17"=1.0 

- -  l + l / ( 2 r  ~') 

r 
I I I t L I I I 

1 2 3 4 5 6 7 8 9 10 

FIG. 2 
Variation o f f ' ( r ) / r  as a function of  r 

We now obtain  an approximate  solution of Eq (10) by the method  of matched asympto t i c  

expansions for 0. < <  1. In the inner solution (viscous sublayer), we have 

1 1 
I ( R )  = ~ ( I + ~ R )  2 -  9 7 1 1 ÷ 3 0 . ( 1 + 0 . ) ] / ( 1 + c r R )  

3 -R 
+ -0.e (1 + 0./(1 + 0.R)) (35) 

2 

where /~  = (r - 1)/0., whilst in the outer flow region, we have 

l r2 1 f ( r ) = {  - ~ [ i + 3 ~ ( l + 0 . ) ] / r  + 0 . e ~ ( ' - " ) ( l + 0 . / ( l + 0 . / r ) )  (36) 

Subs t i tu t ing  Eq. (35) into (24) yields 

1 0 2 3  , 3 (1  
S E P  -- 0 .2 cOR 2 R=o = ~ ~ + 1) (37) 
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which agrees exact ly with Eq (28). 

In order to i l lustrate the nature of the fluid flow. Fig 3 shows the strealnlines for various 

values of c7. The values of f = 0.02, 0.4, 0.6, 0.8.1.0 and 1.2 for ~ - 0.01,0.1 and 1 are 

presented. It is observed that  

(i) the smaller the value of cr the closer together are the streamlines and this i l lustrates that  

as cr tends to zero that  there is a thinner boundary-layer being developed on the surface of 

the sphere. This confirms the need for the asymptot ic  analysis when cr is very small. 

(ii) the flow is symmetr ical  both before and after lhe sphere. This is clear from the assumed 

form of the s t ream function given in Eq. (14). 

(iii) no separat ion occurs near the rear stagnation point. This is confirmed in expression 

(28) where SEP is always greater than zero. 

N o m e n c l a t u r e  

A 

B,C,D,E 

d 

f,g 

13/2 
/(1/2, A'3/2 

R 

SEP 

fi, i) 

radius of the sphere 

Ergun constant 

integration constants 

part icle diameter  

functions of r 

modified Bessel flmctions 

modified Bessel flmctions 

permeabi l i ty  of the porous medium 

pressure 

radial coordinate 

t ransformed radial (oordinate  

separation parameter  

velocity components along # and 0 directions, respectively 

G r e e k  s y m b o l s  

(9- 

tt 

0 

s u b s c r i p t  

dimensionless particle diameter  

small dimensiordess parameter  

viscosity 

porosity 

polar angle 

azimuthal  angle 

s tream function 

condition far from the sphere 
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s u p e r s c r i p t  

dimensional variables 

differentiation with respect to 7" 
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FIG. 3 
Streamlines: (a) o = 0.01; (b) o = 0.1; (c) o = 1.0 
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FIG. 3 
Streamlines: (a) o = 0.01; (b) o = 0.1; (c) o = 1.0 
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