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SUMMARY 

A method to examine and classify the chromatograms of urinary proteins, 
separated on a fast protein liquid chromatography system, is presented. For the 
analyses a measure of similarity between chromatogram profiles is defined and this 
is used to implement a statistical cluster analysis technique for the identification of 
a system of classification. The resulting classification can be related to a clinical 
assessment of the proteinuria of the sample urines, which are from patients with 
various renal disorders. 

INTRODUCTION 

Recent advances in the high-performance liquid chromatographic (HPLC) sep- 
aration of proteins have opened up new possibilities for the application of this tech- 
nique to the analysis of complex protein mixtures in body fluids of patients. Pre- 
liminary studies of the chromatography of urine proteins on a novel mono-disperse 
anion exchanger in the past protein liquid chromatographic (FPLC) system has 
shown that the profiles can often distinguish between glomerular and tubular pro- 
teinurial. This suggested that the automated recognition of patterns of the traces of 
the HPLC separation of proteins in body fluids was a reasonable study to run in 
parallel with research on the ways to improve the resolution of the chromatographic 
separation of these proteins. This paper describes the preliminary results from an 
analytical system designed to examine and classify the chromatograms of urine pro- 
teins, separated by FPLC, through the use of statistical cluster analysis techniques. 

MATERIALS AND METHODS 

Urine samples 
Urine samples were obtained from a series of patients with clinically well de- 

fined disorders which either affect the filtration and reabsorption of proteins by the 
kidney or exudation of proteins in the urine by the lower urinary tract. The classi- 
fication of these samples into the types of proteinuria, as defined by sodium dodecyl 
sulphate (SDS)polyacrylamide gel electrophoresis and by the immunochemical mea- 
surement of certain key proteins, is shown in Table I. 
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TABLE I 

CLASSIFICATION BASED ON SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS AND IM- 
MUNOCHEMICAL MEASUREMENT OF SEVEN KEY PROTEINS 

Proteinuria Diagnosis 

Glomerular Nephrotic syndrome 
Mixed glomerular and tubular Renal failure, bums (early), acute pyelonephritis, renal transplants 
Tubular Acute pyelonephritis, bums (early and late), renal transplants, cis-plati- 

num nephrotoxicity, chronic liver disease 
Post-renal 
Other 

Acute cystitis 
Fever 

Chromatography 
A OS-ml sample of urine was desalted on a Sephadex G-25 column (300 x 16 

mm I.D.) and the protein fraction chromatographed on a Mono Q anion exchanger 
HR 5/5 column in the FPLC system (Pharmacia, Uppsala, Sweden), using a bis Tris 
propane buffer with a NaCl O-O.35 M and pH 7.5-9.5 gradient to elute the proteins; 
this procedure has been described previously’J. 

Data base construction 
In anticipation of the accumulation of data as the work advances we have set 

up a system of data storage and retrieval using the Leeds University AMDAHL 
47OV/7 computer. In this preliminary study chromatograms were transferred to this 
computer after manual digitisation on an ICL PERQ digitising tablet giving 20&300 
data points per trace. This procedure has been used for 71 urinary protein profiles 
of the diseases listed in Table I. Eventually, it is planned to replace this manual 
procedure by introducing a microprocessor to capture and filter the signal as it is 
generated, and to feed it directly to the AMDAHL. Digitised FPLC chromatograms 
are stored on disk, from which specific chart can be selected by direct access. 

MATHEMATICAL METHODS 

Cluster analysis 
Cluster analysis3v4 is a general term to describe various statistical approaches 

to the classification of objects. Broadly, these methods can be divided in hierarchical 
and optimal partitioning methods. Usually data is assumed to be of the form of a 
multivariate vector rather than as an analogue signal, such as a chromatogram. How- 
ever, once a matrix of similarity measures between all pairs of objects is computed, 
many of the methods can be implemented in terms only of this similarity matrix, 
which we shall denote by D. To apply cluster analysis to chromatogram profile clas- 
sification it is therefore necessary to consider measures of similarity between pairs of 
profiles. For electrophoretic profiles a measure based on the number of coincident 
peak positions has been suggested5. An alternative approach, which is adopted here, 
is to measure the separation between chromatograms. 

Similarity measures 
Suppose that X,(t) and X,(t) represent two chromatogram signals, where t 
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denotes elution time or volume. A measure of the distance or separation of Xr and 
Xz is as follows 

b 

KG, X2) = 

[S 

1x1 [t + h,(f)1 - X2 [t + hz(W2 w(t) dt 1 
112 

(1) 
a 

Here the integration limits, a and b, represent the end points of the section of the 
chromatogram of interest and the functions h,(t) and h2(t) are introduced to allow 
for possible non-alignment of the peaks of X1 and X2 corresponding to the same 
constituent protein. They can be obtained by a method which is outlined below. A 
weighting function w(t) is also incorporated in eqn. 1 to enable more weight to be 
given to the separation of X1 and X2 at sections of the chromatograms which are of 
particular interest than to sections where, for instance, peaks are not expected. 

Eqn. 1 is termed a dissimilarity measure, since it increases with increasing 
dissimilarity (distance), and it is a measure of the separation of X1 and X2 in absolute 
terms. It may not, for instance, capture the closeness of profiles which are similar in 
shape but which differ in order of magnitude. An alternative measure, which will 
discriminate profile shape, can be obtained by standardising X1 and X2 so that the 
area under each is equal to one, that is, by putting 

xl(t) = b 
X1(t) 

; x2(t) = b 
X2(t) 

(2) 

s 

Xl[u + h,(u)1 du 
s 

X2B4 + M41 du 
a a 

and substituting xl(t) and x2(t) for X,(t) and X,(t) in eqn. 1. Henceforth, X,(t) and 
X,(t) are referred to as raw chromatograms and xl(t), x2(t) as standardised chro- 
matograms. Analyses based on both are discussed below. 

Profile timing adjustment 
The timing adjustment functions h,(t) and h2(t) can be obtained in a manner 

which is a generalisation of other reported methods6T7. Suppose that T,, T2, . .., TM 
is a set of reference elution times of M usually well defined and well separated peaks. 
A profile adjustment function h(t) can be obtained by aligning the corresponding 
observed peaks with these reference positions as follows: define for Tl, T2, . . . . TM 
a set of non-overlapping intervals II, Z2, . . . , ZM. The interval width must be judged, 
by experience, from the variability in the time of the peak identified with the reference 
point Ti. If, for an observed chromatogram, a significant peak occurs in Zi then it is 
assumed to be identified with Ti and is aligned with it. This is done for each i = 1, 
. . ., A4 and h(t) is determined by piecewise linear transformations of the time scale as 
is illustrated in Fig. 1 for M = 5. 

Typically, it4 will be small; we took it4 = 3 in our analyses to correspond to 
three well-identified peaks, representing the proteins fi2-microglobulin (P2-m), acid 
glycoprotein (AGP) with oli-microglobulin (al-m), and albumin. These peaks are 
eluted characteristically in the intervals (4.5 f 2), (14.5 f 1.5) and (19 f 3) min, 
so defining the intervals Z1, I2 and Z3 with the midpoints defining T,, T2 and T3. 
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Fig. 1. The profile timing adjustment function for M = 5. The appropriate observed peak positions 
aligned with the reference set, and h(t) is comprised of a set of linear transformations. 

are 

The weighting function 
The function w(t) was chosen in this study to give most weight to four regions 

of peak activity of the chromatogram. These correspond to the three intervals II, Zz 
and Z,, mentioned above, and a fourth region representing the section of the chro- 
matogram between Z1 and Zz where retinol binding protein and transferrin, if pre- 
sented are eluted. The weight function was defined as a series of Gaussian curves 
centred on II, Z2 and, for the fourth region, centred at the 10 min elution mark. The 
Gaussian curves were each given a standard deviation value of 1.0 except for the Zz 
region where a smaller value, 0.75, was used in an attempt to increase the contribution 
of the Bz-m peak which, although of equal importance is typically narrow and sharper 
than other peaks. This system of weightings highlights the dissimilarities between 
chromatograms in terms of peak behaviour, and it is found to be superior to using 
no weighting at all. It is possible that there is scope for improvement on our choice 
of w(t). 

Computation 
The integrals in eqns. 1 and 2 must be computed numerically. For a digitised 

chromatogram in the form of a set of X(t) values at irregularly spaced time points 
the integrals in eqn. 2 can be computed using the trapezoidal rule after making the 
appropriate timing transformation. The evaluation of eqn. 1 presents a little more 
difficulty since digitised time points X,(t) and X,(t) will not normally coincide, at 
least in manual digitisation at irregular intervals. However, these time points can be 
interspersed so that at each digit&d point of X1 the corresponding Xz value, allowing 
for the profile timing adjustment, can be estimated by linear interpolation and vice 
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versa. The integration can then be carried out using the trapezoidal rule on the in- 
terspersed points. 

Using these methods the dissimilarity matrix, D, can be computed by calcu- 
lating the dissimilarities between each of the N (N - 1)/2 profile pairs in a sample 
of size N. All computations were carried out on the AMDAHL computer using 
programs written in FORTRAN. 

Once D is computed, the CLUSTAN suite of cluster analysis programs’ can 
conveniently carry out hierarchical cluster analysis using the CLUSTAN option 
which allows a user-specified dissimilarity matrix. However, the CLUSTAN proce- 
dures for optimal partitioning methods cannot be utilised, given only D, since they 
require multivariate data as input. Nevertheless, partitioning methods can also be 
specified in terms of D, and we have made use of a useful algorithm for this purpose 
described by Spath4. For a fixed number of clusters this method allocates objects to 
clusters in such a way that the total within cluster variability (TWCV) is minimum. 
If this algorithm is run 1, 2, 3 etc. clusters it may be possible to estimate how many 
clusters provide the best partition of the data by inspecting the reduction in the 
TWCV for each run. A significantly large reduction indicates a possible natural set 
of clusters. 

Chromatogram variability 
In comparing a number of chromatograms it is useful to be able to plot a 

region which encapsulates the average chromatogram shape and its variability. One 
such region can be specified in terms of percentiles. At an elution time, t, the upper 
and lower pth percentiles of a set of chromatogram values can be estimated by stan- 
dard statistical methods. If these values are X,(t) and X1 -Jt) the region between 
X,(t) and X1 -Jt) taken over a < t < b defines a band which outlines the shape and 
variability of chromatograms, and can be termed a 100 x (1 - 2p)% band. This 
concept is illustrated below. 

RESULTS AND DISCUSSION 

The dissimilarity matrices of 71 urinary chromatogram profiles were calculat- 
ed, by the methods outlined, for both the standardised and raw chromatograms. We 
shall use D1 and D2, respectively, to distinguish the matrices for ‘rese two cases, and 
we consider firstly the cluster analyses on D1. 

Fig. 2 shows a dendrogram obtained by the method of single-linkage hier- 
archical clustering. No particularly well-defined grouping emerge from this plot 
which is typical of single linkage dendrograms on data in which clusters may exist, 
but in which the clusters are connected by intermediate objects: an effect known as 
chaining. Chaining is probably occurring here, since demarcation between chro- 
matogram classifications will probably not be precise. Other hierarchical clustering 
methods are available to reduce the chaining effect. One of these, Ward’s methods, 
produces the dendrogram in Fig. 3, when applied to DI. This diagram suggests a 
partition of the chromatograms into six clusters, and the 80% bands of the standar- 
dised chromatograms for each of these clusters are shown in Fig. 4. Table II shows 
how the samples are distributed among the six clusters by disease. 

The allocation in Table II and the interpretation of patterns in Fig. 4 are 
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Fig. 2. The dendrogram of standard&d chromatogram profiles using single linkage hierarchical classifi- 
cation. 

._--- __- L 
- ---r- 

Fig. 3. The dendrogram of standardised chromatogram profiles using Ward’s method. Six main clusters 

can be identified. 
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TABLE II 

THE ALLOCATION BY DISEASE OF CHROMATOGRAMS AMONG THE SIX CLUSTERS 
IDENTIFIED IN FIG. 3 

The disease codes are: FV = fever; PY = acute pyelonephritis; EB = early burns; DB = late bums; CI 
= k-platinum nephrotoxicity; LI = liver disease; RT = renal graft; RF = chronic renal failure; NP 
= nephrotic syndrome; AC = acute cystitis. 

Cluster Disease group Cluster totals Mean total 
protein (ingil) 

FV PY EB DB CI LI RT RF NP AC 

1 42-___- __--6 430 
2 - 1 4 5 5 - 1 - - - 16 730 
3 - 5 2 1 - 2 3 7 - - 20 1187 
4 - 33-- 2 1 l- 5 15 2278 
5 - - l---4--27 1424 
6 - - - - - - - - 7- 7 14900 

Disease 4 11 10 6 5 4 9 8 7 7 
totals 
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Fig. 4. The characteristic standardised chromatogram patterns of each of the clusters identified in Fig. 3. 
The 80% bands are shown. 
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interesting from a clinical point of view, since the classification can be identified, to 
some extent, with clinical assessment of the proteinuria in the disease categories. 
Cluster 1, for example, contains chromatograms dominated by a single peak, rep- 
resenting acid glycoprotein (AGP), and its comprises all the fever patients with only 
two other cases. Excessive AGP proteinuria in fever is due to its high concentration 
in the blood, causing an overload. The chromatogram pattern in cluster 2 is typical 
of tubular proteinuria, in which albumin and other high molecular weight proteins 
do not contribute significantly. The disease cases assigned to this cluster are also, 
classically, tubular in origin. Cluster 3 can also be identified with tubular type pro- 
teinuria but now with a significant albumin content suggesting some degree of glom- 
erular dysfunction. There are close similarities between clusters 4 and 5, except that 
the albumin peak in cluster 5 is more pronounced. These two clusters can also be 
identified with mixed glomerular and tubular proteinuria. However, as the albumin 
content in both clusters is significantly larger than it is in cluster 3, the proteinuria 
is probably more glomerular in origin. Note that cluster 4 also contains most of the 
acute cystitis group, with post-renal proteinuria dominated by the exudation of al- 
bumin into the urine. Finally, cluster 6 contains only the cases of nephrotic syndrome. 
Their chromatogram patterns are characterised by a dominant albumin peak and the 
absence of a p2-rn peak. 

An alternative analysis, also based on D1 but using Spath’s4 optimal parti- 
tioning algorithm, has also been carried out to provide a comparison with the above 
system of classification. When specifying 6 clusters, the allocations in Table III are 
obtained, and these are in broad agreement with Table II. The algorithm was also 
run with 1, 2, . . . 10 clusters, but at no point was there a significant reduction in the 
TWCV, rather a gradual decay occurs, supporting the assertion that demarcation 
between clusters is not clearly defined. 

It is also instructive to repeat these analyses using the dissimilarity matrix D1, 
which is based on raw chromatogram profiles. The dendrogram for this matrix, using 
Ward’s method, is shown in Fig. 5. Three clusters can be discerned and the distri- 
bution of cases in each of these is given in Table IV. Cluster C in Fig. 5 is widely 

TABLE III 

THE ALLOCATiONS OF CASES AMONG SIX CLUSTERS BY OPTIMAL PARTITIONING 

See Table II For disease codes. 

Cluster Disease group Cluster totals 

FV PY EB DB CI LI RT RF NP AC 

1 41__-___--5 

2 -4565-25--27 
3 - 3 3 - - 2 3 2 1 - 14 
4 - 3 l-- 2- l- 5 12 
5 - - l---4--22 
6 - - - - - - - - 6- 6 

Disease 4 11 10 6 5 4 9 8 7 7 
totals 



CLUSTER ANALYSIS OF CHROMATOGRAPHIC PROFILES 

0.826 --------------- ~lllll,llllllillllllllli ’ I-lTlTrrr I III n-l I1 I I I I 
T--‘-+--i’ 

l-lnllrlI. a-lTl 

243 
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Fig. 5. The dendrogram of raw chromatograms using Ward’s method. The clusters A, B and C can be 
identified. 

separated from the other two and it comprises all the nephrotic syndrome patients 
and a case of renal failure. This separation is not unexpected, since the total protein 
of these cases is about ten fold that of all others. That the nephrotic cases are clustered 
both in Fig. 5 and in Fig. 3 reflects the homogeneity of chromatograms for this 
group, both in shape and in intensity. The isolated renal failure case in cluster C is, 
however, different in character and is assigned to cluster 3 in Fig. 4. The separation 
between clusters A and B in Fig. 5 is less marked. Broadly, however, A comprises 
the pure tubular and mixed proteinuria cases with moderate amounts of total protein, 
whilst B contains mixed proteinuria cases with larger quantities of albumin and 

TABLE IV 

THE ALLOCATION OF CASES BY DISEASE, TO THE THREE CLUSTERS A, B AND C IDEN- 
TIFIED IN FIG. 5 

See Table II for disease codes. 

Cluster Disease group Cluster total Mean total 
protein (mg/l) 

FV PY EB DB CI LI RT RF i?P AC 

A 3 8 5 5 5 4 45 - 4 43 685 
B 135 l-- 52 - 3 20 1472 
C ____--__I 7-8 13738 

Disease 41110 6 5 4 98 7 7 
totals 
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greater total protein content. The mean total protein in each of these clusters is shown 
in Table IV. 

It is interesting to note that when clusters 1, 2 and 3 of Fig. 3 are combined, 
the cases correspond quite closely to those of cluster A in Fig. 5. Similarly clusters 
4 and 5, when combined, correspond to cluster B. This can be checked by combining 
the appropriate rows of Table II and comparing with Table IV. Thus the classifica- 
tions that are derived using the matrix Dr appear to account not only by shape but 
also for total protein content; that is, there is evidently an inherent association be- 
tween chromatogram shape and chromatogram intensity. This assertion is supported 
by a comparison of the mean total protein content, in each of the clusters in Fig. 3. 
These values are shown in Table II. 

In summary, it has been shown how it is possible to sort urinary protein chro- 
matograms from an anion exchanger into groups which are clinically meaningful. 
That this can be done, provides a basis for the use of the patterns of protein or 
peptide chromatograms to aid clinical assessment in certain diseases. This work nat- 
urally extends to the development of a system to automatically assign individual 
chromatograms to pattern classes, that is, to implement a pattern recognition system. 
The distance measure, eqn. 1, may be suitable for this purpose by assigning an in- 
dividual to the reference pattern to which it is closest. 
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