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Abstract—We consider the two-dimensional free convection flow in a rectangular porous container where
the impermeable bounding walls are held at a temperature which is a linearly decreasing function of height.
Attention is focused on the case where the local temperature drop across the container is zero. Two cases
are considered, namely, containers of finite aspect ratio and those of asymptotically large aspect ratio. For
both cases it is found that modes bifurcate in pairs as the linear stability equations admit an infinite set of
double eigenvalues. The weakly nonlinear evolution of the primary pair of eigenmodes is analysed, and it
is found that the resulting steady-state flow is nonunique as the realized steady flow is dependent on the
precise form of the initial disturbance. For asymptotically tall boxes the weakly nonlinear evolution of the
pair of modes is governed by coupled pair of Burger-like equations. These are analyzed both numerically
and using asymptotic methods. No evidence of persistently unsteady flow is found. Copyright © 1996
Elsevier Science Ltd.

1. INTRODUCTION

Natural convection in porous media is of practical
interest in several science and engineering areas. For
instance, the problem of heat and mass transport
through fibrous insulation is not only of interest to
the biologist studying the energy balance of mammals
(1, 2], but also to the design engineer working on
building insulation [3]. Other important application
areas are those of geothermal energy systems [4-6] and
geophysics (e.g. thawing subsea permafrost—Gosink
and Baker [7] and magma chambers—Lowell [8]).

The simplest geometrical configuration of a fully
saturated porous medium is that of a rectangular
enclosure. The majority of existing archival pub-
lications consider steady and uniform boundary con-
ditions. Some more complex conditions have been
studied recently: spatially periodic heating [9-11],
time periodic boundary conditions [12, 13], inclined
thermal gradients [14, 15], and layering [16~18].

A classical thermal configuration which is relevant
to the study of geothermal activities, underground
transport of pollutants, paper processing, crystal
growth, building insulation, and gas reservoirs, is that
of heating from horizontal surfaces; this particular
configuration is frequently treated as a stability prob-
lem. The determination of stability criteria is impor-
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tant because the transition from one mode of con-
vection to another is accompanied by changes in the
rates of heat and mass transport. The characterization
of the subsequent supercritical regime is then fun-
damental for the control of thermal processes. The
classical example of such a supercritical regime is the
Horton—Rodgers-Lapwood natural convection flow
within a horizontal fluid saturated porous medium
layer heated from below or cooled from above [19,
20]. This is the porous medium analogue of Bénard
convection in clear fluid systems, and it assumes a
long enough horizontal layer such that the bounding
vertical sidewalls do not affect the transport or stab-
ility phenomena.

It is worth mentioning that, for low permeability
porous media, where the permeability is sufficiently
low that Darcy’s law is valid, the supercritical Hor-
ton—Rogers—Lapwood regime near but above criti-
cality is characterized by a cellular flow. The con-
vection regime can be simulated for different
wavenumbers considering a finite horizontal layer
with impermeable and adiabatic conditions imposed
at the vertical boundaries. A review of linear stability
analysis, weakly nonlinear theory, and numerical and
experimental studies is presented in Chap. 6 of Nield
and Bejan [20].

Finite enclosures heated from the horizontal and
vertical surfaces are very important in thermal insu-
lation design. Kassoy and Cotte [21] and Wang et al.
[22] studied the convection effect of side-wall heat loss
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A, B weakly nonlinear amplitudes of modes
A and B, respectively

b square root of the critical Rayleigh
number

¢y, G2, €3, ¢, Landau constants in equation
(17a)

d\, dy, dy,d; Landau constants in equation
(17b)

d half the dimensional channel width

f y-dependent part of the
streamfunction perturbation

g y-dependent part of the temperature
perturbation

g gravitational acceleration

G dimensional temperature gradient

H nondimensional height of the
channel

k wavenumber

K permeability of the porous medium

m,n integers associated with different linear
modes

P pressure

R Darcy—Rayleigh number

t time

T dimensional temperature

u, v Darcy velocities in the vertical and

horizontal directions, respectively
vertical and horizontal co-ordinates,
respectively

X,y

NOMENCLATURE

X slow x-scale in weakly nonlinear
analysis.
Greek symbols
f coefficient of thermal expansion
0 weakly nonlinear expansion parameter
£ weakly nonlinear expansion parameter
2 complex growth rate
0 temperature
(] temperature perturbation
W streamfunction
¥ streamfunction perturbation
K thermal diffusivity of the saturated
medium
a heat capacity ratio of the medium to
that of the fluid
u viscosity of fluid
p density of fluid
T slow timescale
& boundary layer x-coordinate.
Subscripts
0 reference value
t derivative with respect to ¢
X derivative with respect to x
v derivative with respect to y.
Superscript
~ dimensional variable.

and of a conducting boundary in a small aspect ratio
porous enclosure or vertical slot. Kimura and Bejan
[23] studied the case of heating from the top and from
the side. Their results showed that the convection
driven by the horizontal temperature gradient persists,
even when the vertical stabilizing gradient is larger
than the horizontal gradient. More recently, Vadasz et
al. [24] investigated the effect of perfectly conducting
vertical surfaces (uniform and steady temperatures)
on the natural convection in porous medium enclosure
isothermally heated from below or from above. The
conservation equations were solved numerically using
a finite differences method for a fixed aspect ratio
(length/height) equal to 2. They demonstrated that
for this boundary configuration the system is con-
ductively unstable, for a motionless solution is not
possible, regardless of the magnitude and direction of
the vertical temperature gradient.

The present work extends that of ref. [24] by con-
sidering the stability of a thermally-stratified fully
saturated porous medium enclosure. The constant
temperature of the vertical surfaces decreases linearly
with the height of the enclosure from the temperature
of the bottom surface to the temperature of the top
surface. The linear stability analysis of the analogous

clear fluid problem was investigated by Banks and
Zaturska [25]. This model is an appropriate approxi-
mation of a system where the heat capacity of the
solid vertical surfaces is much higher than that of the
saturated medium. A thorough theoretical analysis
is presented considering enclosures with finite aspect
ratio and with asymptotically large aspect ratio (ver-
tical slots).

2. FORMULATION OF THE PROBLEM

We consider the free convection flow in a rec-
tangular porous container where the vertical sidewalls
have identical linearly decreasing temperature
profiles. The top and bottom surfaces are held at a
constant temperature, respectively, equal to that of
the adjoining sidewalls ; these conditions ensure that
the basic state consists of a linearly stratified tem-
perature field and no flow. All four walls are assumed
to be impermeable. The configuration is sketched in
Fig. 1 and the detailed dimensional boundary con-
ditions are given there.

The Darcy-Boussinesq equations governing two-
dimensional free convection flow in an isotropic
porous medium are given by
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where K is the permeability of the porous medium,
u is the dynamic viscosity, # gravity, f the isobaric
coefficient of volumetric thermal expansion, T, a ref-
erence temperature, k the thermal diffusivity of the
saturated medium, and o the ratio of the heat capacity
of the saturated medium to that of the fluid. The
dependent variables, 4, &, p and T are the Darcy seep-
age velocities, pressure (static and dynamic, but not
hydrostatic) and temperature, respectively. The coor-
dinate, £, is measured in the upward vertical direction,
while 7 is the horizontal coordinate. Note also that for
systems with small Darcy number and large Prandtl
number, the Darcy model is expected to be reasonably
accurate within the Rayleigh number range inves-
tigated here, as far as inertial effects are concerned
[26].

The temperature of both bounding walls is set at
T = T,— Gx*, where the constant G is a dimensional
temperature gradient ; we assume that G is positive in
order to obtain an unstable thermal stratification of
the fluid.

All the above variables are nondimensionalized by
setting

t= d2 [ () = —(u 7) (2a,b)
() =d @) p=—p  Qed)
X ¥) = XYy p= K,up >
T—T,
0= Cd (2e)
Equations (la—d) become
du v
nt ey (3a)
u=—L o (3b)
__9o
v = 3y (3¢)
00 a6 86 7*0 %6
U — (3d)

at 0x 617 ox?

which are to be solved subject to the boundary con-
ditions,

v=0 6=—-x ony=+1 (3e)
u=0 0=0 onx =0 3f)
u=0 0= —-H onx=H, 3g)

where H is the nondimensional height of the box con-
taining the porous medium, d is the half-width of the
box, and R is the Darcy—Rayleigh number based on
the temperature gradient, G

pEBKGd*
px

R= )

Note that Hd is the dimensional height of the box.
We can eliminate the pressure in the usual way by
introducing a streamfunction, ¥, according to

oy W

"_E; v= - (5a,b)

Hence equations (3a—d) reduce to
V3 = R9,, (6a)
6,+y,6,—y.0, =V, (6b)

the boundary conditions for s are simply that =0
on all four boundaries, while the temperature con-
ditions are given in equations (3e-g).

It is easily verified that

y=0 0= —x, (7a,b)

is a solution of (6a) and (6b) for all values of R and
H. The remainder of this paper is concerned with
the linear stability of this conduction solution and its
subsequent weakly nonlinear development.
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3. LINEAR STABILITY ANALYSIS

We begin by considering the fate of small dis-
turbances to the conduction profile. On setting = ¥
and § = ® —xinequations (1) and (2), and linearizing
the resulting equations, we obtain

V¥ = RO, (8a)

0, =VO+V, (8b)

As both ¥ and © are zero on the top and bottom
boundaries we can Fourier-decompose the dis-
turbances in the x-direction by setting

YN (DN
<®)_<g(y)>8 sin kx, ©)

where 4 is a complex growth rate, and the waven-
umber, ., takes only those values which will enable
the modes to satisfy the endwall boundary conditions,
i.e. kK = nn/H for integer values of n. The functions f
and g introduced in equation (9) satisfy the equations

f"=kf=Rg
lg=g"—k’g+f".

subject to f(+1) = g(+1) = 0. It is straightforward
to show that the principle of exchange of stabilities
holds and therefore that neutral stability is given by
setting 4 = 0. The resulting eigenvalue problem for R
is satisfied by the pair of solutions,

J1 = 2cos(ny/2) cos(by/2)

(10a)
(10b)

g1 = —(2/b) cos(my/2) sin(by/2) (11a)
J2 = —(2/b) cos(my/2) sin(by/2)
g2 = —(2/b%) cos(my/2) cos(by/2),  (11b)

where b = R'?and R = n? + 4k* for both modes. These
modes shall be referred to as modes A and B, respec-
tively, and they have been normalized such that
g1(—1) and f3(—1) are both equal to 1 in the limit
k — 0. It may also be shown that higher modes exist
for which R = m’n’+4k> where both m and n are
integers and where k = nn/H again ; these are similar
in profile to those given explicitly in equation (11),
and each ordered pair (m, n) has an associated pair of
modes.

It is easily seen that R is minimized when m = 1
and we shall concentrate on this case, since m = 1
corresponds to the first pair modes to be destabilized
as R increases. R is further minimized in the limit of
an asymptotically tall container, that is as H — oo or
k — 0. In this regard the present flow is similar to the
analogous clear fluid problem [25] and to the hori-
zontal porous Bénard problem with insulated hori-
zontal surfaces (cf. Nield and Bejan [20] p. 147). How-
ever, K is not a parameter which can be varied
continuously, for it is related to the height of the
container. Indeed, for a given height, H, we shall con-
sider only the n =1 value of k given above (i.e.
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k = n/H), for this provides the minimum value of R
for any given container.

4. WEAKLY NONLINEAR ANALYSIS FOR FINITE
CONTAINERS

Given a container of finite aspect ratio, that is, one
for which H is neither asymptotically small nor large,
we consider weakly nonlinear convection by expand-
ing ¥ and € in the form,

R 78 2 20 (12a)
0= —x+el +e0,+e0,+ - (12b)
R=Ry+&* R+ -, (13)

where Ry = n?+4k” is the critical Rayleigh number,
and equation (13) defines the small parameter, e,
where R, = O(1) as ¢ » 0. It is appropriate to define
a slow timescale, T, where 1 = &*t.

At O(e) in the expansion the equations governing
¥, and 0, are identical in form to equation (6). Hence,
we take

v\ L. L0
(91 ) = A7) (gx (y)>sm kx+ B(1) (gl (y)>s1n kx,

(14)

where (£}, g,) and (f5, g,) are given by equations (11a)
and (11b), respectively.
At O(£%) we obtain

V2‘//2 = Roez_w (15a)
Vz02 +l//2_v = l/jlyelx_l//hcelw (15b)
for which the solution is
s = g(A2+Bl) sinmysin2kx,  (16a)
0, = —;(4%+ B*)(1+ cosmy) sin 2kx. (16b)

At O(¢’) we obtain a pair of equations for ; and
85 in which the inhomogeneous terms contain com-
ponents proportional to one or the other of the O(¢)
eigensolutions given in equations (1la,b). On fol-
lowing the usual solvability condition procedure these
equations have solutions only if the following pair of
Landau equations are satisfied :

14, = c;RyA—c3A* —c, AB? (17a)
d\ B, =d,RyB—dB*—d,A*B, (17b)
where the coefficients, ¢, d, i = 1,...,4, are given by
¢, =2[1+(n?/4kb)sinb] ¢, =1
c; =3R,/16 ¢, =3/16
d = Rio[l —(n?/4kb)sinb] d, = 1/R,
dy =3/16 d, =3/(16R,). (18)
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It may be shown that there are an infinite number
of steady-state solutions for A and B, and these take
the form

_ 16Ry0

A2 = B>
R,

_16R,(1-w)
- ==,

(19)

where & can take any value between 0 and 1, inclusive.
A linear stability analysis of solution (19) for an arbi-
trary value of a yields one decaying mode and one
neutrally stable mode, and hence all the solutions
given by equation (19) are neutrally stable. Thus, the
degeneracy found at leading order with the appear-
ance of a double eigenvalue has not been removed at
third-order: there is no preferred weakly nonlinear
solution and the solution obtained depends on the
form of the initial disturbance. Such a result arises as
a direct consequence of the fact that c;d; = ¢,d, in the
Landau equations, above. The conclusion is, there-
fore, that the final steady-state solution is highly
dependent on the form of the initial disturbance. Pre-
liminary work on the numerical solution of the full
governing equations, (1) and (2), confirms the per-
sistence of nonuniqueness into the strongly nonlinear
regime—we intend to report on this elsewhere.

It is necessary to mention that, although the final
steady flow in the weakly nonlinear Bénard and
porous Bénard problems is also dependent on the
initial disturbance, it is always composed of one roll
mode, rather than as an arbitrary sum of two distinct
modes which is the case here. Some degeneracy always
exists in such finite horizontal layer problems, because
the wavenumber and orientation of the roll depends
on the precise form of the disturbance, and the final
steady solution is also neutrally stable. For these latter
problems ¢;d; > c,d, which ensures that a single mode
steady solution is obtained. When ¢3d; < c,d, the final
steady solution has a square or rectangular planform
(see Riahi [27], Rees and Riley [18]) and is therefore
composed of a definite, rather than an arbitrary, pair
of modes.

5. WEAKLY NONLINEAR ANALYSIS FOR
ASYMPTOTICALLY TALL CONTAINERS

An asymptotically tall container corresponds to an
asymptotically small value of the wavenumber, k. We
therefore rescale the x-coordinate using X = kx and
use k as the small parameter in a weakly nonlinear
analysis. The slow timescale is now given by © = k%,
and, in terms of X, the container lies between X = 0
and X = n. The full governing equations become

kzl//XX’_lpyy = Rey

kzat +k(lpy9X - l///\’Gy) = kZGXX+ Hyy)

(20a)
(20b)

where k& « 1. The weakly nonlinear expansion has the
form

=k, +kA Y+ (21a)

0= —x+k0,+k*6,+k*0;+ - - (21b)
R=Ry+k*Ry+ ---. (21c)

At O(k) in the expansion we have
Vi =10, (22a)
01, +¥1, =0, (22b)

for which the solution is taken to be
I (14 cosmy)
(0, =AXA (sinmy)/n
—(sinny)/= )
+ B(X, X 3
( t)<—(1+cosny)/n2 23)

the y-dependent parts of this solution are identical to
the respective small k limits of the solutions given in
equation (14).

The O(k?) solutions are simply ¥, = 0 and 6, =0
as the equations are homogeneous. At O(k*) we obtain
the pair of equations,

‘[/3,\»)»“”26” = Rzely—l//wx’
Oz +¥3, = 01— Oixxe +¥1,0, x— 1401,

where the right hand sides contain components pro-
portional to the O(k) eigensolutions. Insisting that
these equations have a solution yields the following
pair of amplitude equations:

(24a)
(24b)

A, = R,A+4A4, +A,B—AB,,  (25a)

B, = R,B+3By—n"AAx—BB,; (25b)

these are to be solved subject to the boundary con-
ditions

A=B=0 onX=0 and X==n  (25)

A straightforward linear stability analysis of the
solution, 4 = 0, B = 0, shows that the eigensolutions,
AocsinX, B=0and 4 = 0, B o sin X both bifurcate
at R, = 4, a result which is consistent with the form
of the neutral curve, R = n*>+4k>, and the expansion
(21c).

5.1. Analysis for smalil values of (R,—4)

Consider now the behaviour of the solutions of
equation (25) in the near neighbourhood of R, = 4 by
setting

A=08A,+8A,+ 8 A5+ - (26a)
B=0B,+6*B,+8°By+ - (26b)
R, = 4485+ (26¢)
T =081 (26d)

and
A, = A() B, = B®®) (26e)

in equations (25). The expansion parameter, J, is
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taken to be small. Omitting details of the weakly non-
linear analysis we find that a solvability condition at
0(8?) yields the amplitude equations

A =SA-L(m*A*+ B4 (27a)

B. = SB—(n*4A*+ B*)B. (27b)

The coefficients in these equations are identical to
the small-k limit of the corresponding coefficients in
equations (17a,b). Therefore we have an asymptotic
matching between this case and the £k = O(1) case and
hence, all the results found there are also applicable
here, including the fact that steady solutions are non-
unique and neutrally stable.

5.2. Analysis for large values of R,

Before we present fully numerical results for inter-
mediate values of R,, we turn our attention to very
large values of R,, for it is possible to obtain strongly
nonlinear results when the container is asymptotically
tall.

The pure-B solution is the easier case to discuss and
therefore we shall consider this solution first. Setting
A = 0 in equation (25) gives

(Ry;—3By)B+4Byy =0, (28)

an equation which is closely related to Burger’s equa-
tion. The boundary conditions are that B(0) = 0 and
B(m) = 0. It is easy to verify that

B=!R,(X—X,), (29)
where X is arbitrary, is a solution of equation (28),
but it does not satisfy the boundary conditions. We
can choose a value of X, to satisfy only one of the
boundary conditions and it is necessary to perform a
singular perturbation analysis to enable the second
condition to be satisfied. Choosing X, = = gives

B=1R,(X—-m), (30)
means that the condition at X = = is satisfied, but not
that at X = 0. It may be shown that for large values
of R, a thin layer of thickness O(R;') near X =0
enables the X = 0 boundary condition to be satisfied.
If we rescale the X-coordinate using

X=R;"¢ (31

expand B as
B=R,B;+B,+0(R5"), (32)

and use standard techniques of matched asymptotic
analysis, it is possible to show that

T né
B, = ——tanhé

3 3 (33a)

and

P

1 8 7'[6 né 1 é ZTCG
B, = 3|:Etanh?<ln cosh . 2>+ 2sc:ch 3

0

:
+ sech? %é- J Incosh %ﬂ dn]

1 m €,
+(4+81n2)[;tanh8 +zsech g | (33b)

Given equations (33a,b) it is easy to verify that
equation (32) takes the form

m ¢
B~ =3+ Ry

; (34)

as R, - oo,
which, when written in terms of X, is identical to
equation (30).

An almost identical analysis is obtained if the
boundary condition at X = 0is satisfied first by choos-
ing X, = n—in this case a boundary layer of the same
O(R;") thickness is formed at X = 7.

When we take X, equal to neither 0 nor = then
mixed modes are obtained. It is easily verified that

B~ LR (X - Xo), (352)

and

A~D (35b)

over almost the whole of the range 0 < X < = for large
values of R,. At X =0 and X = = thin layers occur
which may be analysed using a virtually identical
analysis to that given above. However, a third thin
layer, an internal layer, occurs near where X = X,. It
may be shown using a scaling argument that it has an
O(R3'?) thickness, and hence we rescale according
to

A=R;'"4,B=R;"B, and X=X, +R;"X.

(36)
The steady forms of equations (25a, b) now become

,‘T+4A_W+JYE—JE;=O, (373.)

B+4Bgy+3n*AA¢—3BB; = 0, (37b)
and these have to be solved subject to the matching
conditions that 4 —» 0 and B, —»% as X > +oc. This
system has an infinite number of solutions which are
identical in profile, but invariant under a Gallilean
transformation or origin-shift; such nonuniqueness
arises from an O(R; '/?) uncertainty in the location of
X,. Therefore we set B = 0 at ¥ = 0 in order to obtain
a unique solution. It is simple to confirm that B is
antisymmetric and A4 is symmetric about the origin,
and therefore we can solve this problem from X = 0
to X = oc using A¢(0) = 0 as the extra boundary con-
dition. The profiles were obtained as the final steady
state of an unsteady calculation using a slightly modi-
fied version of the numerical code described below.



Natural convection in a vertical porous box 117

3]
2

\

N\

N
L AN
0 T T | = T T

0 2 4 6 1 12 14 18

Fig. 2. Internal layer mixed-mode profiles for asymptotically
large values of R,.

This unique solution is presented in Fig. 2, and it
can be compared with fully numerical solutions of
equations (25a, b) below. A different way of viewing
the effect of this internal layer may be seen in Fig. 3

w
i

Fig. 3. Representative streamlines near the internal layer for
asymptotically large values of R,. Note the aspect ratio of
the container is also asymptotically large.

x|
]
©

which shows streamlines corresponding to the profiles
given in Fig. 2. The streamfunction is given by

¥ ~ kR "~ (14 cosny) A(X) + (sin ny/n) B(X)].
(38)

In viewing this figure (and also Figs. 6 and ) it is
important to be reminded of the fact that the container
is asymptotically tall and hence, the X and y scales
represented there are very different in magnitude. Far
from X = 0 the flow exhibits a two-cell structure, but
near X = 0 the dividing streamline in the centre of the
cavity attaches itself to one of the vertical walls
thereby allowing one of the cells to occupy the whole
of the width of the cavity, at least locally. The stream-
line pattern obtained possesses centro-symmetry
about X = 0 and y = 0. Therefore the mixed-mode is
composed of three cells, two of which occupy only
half the length of the cavity, and the other the full
length of the cavity. The full-length cell expands in
width near X = 0 and changes side from left to right,
or vice versa. This behaviour is also seen in the com-
putations for intermediate values of R, given below.

5.3. Intermediate values of R,

When R, is neither asymptotically large nor asymp-
totically close to 4, it is necessary to solve the unsteady
equations numerically. We have used the DuFort—
Frankel method which is second-order accurate in
both space and time. All the computations presented
here are based on either 100 or 200 equally spaced
intervals lying between X = 0 and X = 7. Numerical
stability limits the choice of the timestep and this
becomes increasingly restrictive as R, becomes large.
It became quite evident that when the timestep is
sufficiently small to avoid numerical divergence, but
still remains too large, then spuriously time-periodic
solutions are obtained. However, reducing the time-
step further allows the solution to tend to a steady
state. In fact, all the cases we considered tend towards
a steady solution if the timestep is sufficiently small,
and no evidence of persistently unsteady behaviour
was found.

Figure 4 shows the steady B-mode solution for vari-
ous values of R,. When R, is close to 4 the profiles
resemble the sinusoidal form given in equation (23).
As R, increases, the profile becomes increasingly
asymmetric. At large values of R, it becomes linear
over most of the channel and displays a distinct
boundary layer structure at X = 7, in confirmation of
the analysis presented in Section 5.2. The negative
counterpart to these solutions is given by — B(n— X).
where B(X) is displayed in Fig. 4.

Mixed modes are displayed in Fig. 5. Here we have
specified the initial conditions to be such that the
steady A-profile is symmetric and the B-profile anti-
symmetric. When R, is close to 4 the profiles are again
sinusoidal, but as R, becomes increasingly large the 4-
profile is concentrated increasingly at X’ = n/2 which is
where B = 0, and the B-profile develops two boundary
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Fig. 4. Pure B-mode profiles for various values of R,.

layers and one internal layer, in agreement with the
analysis of Section 5.2. The profiles for R, = 100
should be compared with the (half-range) asymptotic
profiles given in Fig. 2, Streamline plots cor-

A
=100
5.0
4.5
4.0
50
3.5
3.0 30
oo -
2.0 15
10
1‘5—‘ 3
1.0—1 6
0.5 5
42
0.0 T T T T T == X

0.0 0.5 1.0 1.5 2.0 25 3.0

0= T T T T X

responding to Fig. 5 are shown in Fig. 6. When the
Rayleigh number is very close to the critical value the
flow is predominantly unicellular, with two very thin
recirculation regions at diametrically opposed corners
of the box. As the Rayleigh number is increased, the
recirculating regions increase in size until both occupy
approximately a quarter of the container. At this stage
the flow pattern is virtually identical to that of the
asymptotic solution displayed in Fig. 3. The two
boundary layers at either end are very clearly
displayed and the internal layer at the centre is
evident.

Figure 7 shows various steady solutions for
R, = 100 in order to demonstrate that nonuniqueness
is also a feature of even strongly nonlinear solutions
of equation (25) and shows the existence of the three
thin layers. These solutions were generated by speci-
fying a range of different initial conditions and allow-
ing the code to run until the steady state was attained.
Of particular interest is the variation in the location
of the A-profile when R, = 100. The amplitude of the
A-mode is substantially different from zero only over
anarrow range of values of X—this range corresponds
to where B is close to zero, thereby providing a quali-
tative confirmation of the asymptotic theory of the
internal layer given in Section 5.2. Again, to clarify,
we present streamline plots of some of the solutions
given in Fig. 7—these are shown in Fig. 8. The location
of the region where the B-mode is zero corresponds
to where the streamlines emerge from the sidewalls;
at these locations the flow pattern is again very similar
to that shown in Fig. 3, even though the value of R
used is not particularly large.

607 R =100
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Fig. 5. Mixed-mode profiles for various values of R,.
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X=mx R=4.2 R=6 R=10
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Fig. 6. Representative streamlines corresponding to the profiles given in Fig. 5.
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Fig. 7. Different steady-state mixed-mode profiles for R, = 100 demonstrating the presence of nonunique
solutions. These profiles were obtained by setting 4 = asin X and B = bsin X as initial profiles where (i)
a=0,b=1,({)a=1,b=50,(0)a=1,56=30,(iv)a=1,b=15(V)a=1,b=5,(v)a=1,b=0.

6. CONCLUSIONS AND DISCUSSION

In this paper we have sought to analyse the linear
instability and the subsequent weakly nonlinear evol-
ution of disturbances in an unstably stratified vertical
porous container. It was found that unstable modes
bifurcate in pairs, because the linearized instability
equations admit an infinite set of double eigenvalues.
The subsequent weakly nonlinear evolution of the

primary pair of modes was analysed and it was found
that the resulting steady state is nonunique, and is
in fact highly dependent on the precise form of the
initiating disturbances. When the container is asymp-
totically tall and the Rayleigh number sufficiently high
the B-mode profile develops either a single boundary
layer structure or a three-layer structure, one of which
is an internal layer. In the former case the 4-mode is
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absent, but in the latter case 4 is nonzero only where
the B-profile is close to zero at an internal layer. The
internal and boundary layers have different asymp-
totic thicknesses.

It is necessary to comment further on the non-
uniqueness of the weakly nonlinear solutions. Many
other free convection problems have a degenerate lin-
earized eigenvalue problem associated with them in
the sense that linear modes are nonunique. In the
Bénard problem, for example, there is only one mode
shape, but the phase and orientation are indeterminate
if the layer is infinite in horizontal extent. Here,
though, we have two entirely different mode shapes at
onset and this is a very different form of degeneracy.
It is somewhat surprising that the present weakly non-
linear analysis does not result in one particular com-
bination of the two modes being preferred over all
the others, but that there are an infinite number of
combinations of the two modes which are realizable.
Even in the Bénard problem with sidewalls, where the
fluid is contained in a cuboid of such a size that an
exact number of linearized modes fits into it in either
direction, two linearized modes are possible, but a
weakly nonlinear analysis will give either one or the
other as being preferred, depending on the aspect ratio
of the box. Even if the horizontal cross-section is
square, the resulting convection pattern is drawn from
a small finite number of competing patterns. Math-
ematically, the difference between these qualitatively
different scenarios lies in the values of Landau
coefficients of the nonlinear terms.

We intend to extend this work in various directions.
In this paper we have assumed that the flow is two-
dimensional and it is necessary to investigate whether
or not three-dimensional effects are more important

(iv)

Fig. 8. Representative streamlines corresponding to some of the profiles given in Fig. 7.

(vi)

in a channel of infinite spanwise extent. Even if three-
dimensional effects turn out to be more important in
layers of infinite spanwise extent, the present analysis
will still apply for containers where the spanwise width
is such that three-dimensional modes are subdomi-
nant. This will always be true for sufficiently narrow
layers. Further, it is also important to investigate in
detail the flow in the strongly nonlinear regime,
especially from the point of view of determining when
the flow becomes unsteady. The work of Gill [28] on
the differentially heated vertical channel with uniform
wall temperatures shows that the basic flow in this
configuration is stable. We should also like to analyse
the transition between Gill’s flow and the one con-
sidered here by studying the effects of both differential
heating and nonuniform wall temperatures ; in effect
this will be a consideration of the effect of an inclined
thermal gradient in a vertical channel.
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