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The non-Newtonian flow behavior of a culture fluid with suspended adhesive particles of microbes and poly- 
saccharides is analyzed in this study based on a new concept. The concept assumes that the force generated by 
the contact between particles under shearing flow due to mixing is decreasingly transmitted through the fluid in 
radial directions. A viscosity equation that includes the degree of force transmisson is derived by considering the 
shear stress to the force. On the other hand, the shear stress dependence on the concentration of bound particles 
is expressed in an equation by introducing an effective shear stress that works on the contact sites of the bindings 
and varies the concentration. Relating the degree of force transmission to the concentration derives a non- 
Newtonian viscosity equation in terms of shear stress (or shear rate), in which zero-shear viscosity is correlated 
with both the particle concentration and molecular weight of polymers. It is confirmed that calculations based 
on the equation are in good agreement with experimental results previously reported for aqueous solutions of 
several polysaccharides. 
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In most fermentation processes, the viscosity of cul- 
ture broths in a fermentor increases with the growth of 
microbes, resulting in a significant reduction in agitation 
efficiency which is important in the fermentation industry. 
The flow of culture broths containing filamentous 
microbes and/or polysaccharides exhibits non-Newtonian 
flow properties (l-6). It has been expressed approxi- 
mately by a power law model. In previous studies, we 
investigated the steady-shear viscosity and dynamic visco- 
elasticity of concentrated cell suspensions of bacteria 
which did not produce soluble polysaccharides, and ex- 
plained the complicated flow behavior of the cell suspen- 
sions: strong viscoelastic properties are caused by the 
formation of microbial flocks, which are fragile under 
applied stresses, and the network structure of linked 
microbes (7-9). In the present paper, the flow behavior of 
non-Newtonian fluids consisting of monodispersed adhe- 
sive particles of polymeric substances, that is, having 
noncoagulated structure of constituent particles is ana- 
lyzed, to determine the basis of rheological properties of 
some microbial culture system producing polysaccha- 
rides. 

A large number of experimental and theoretical stu- 
dies on the rheological properties of such polymeric 
fluids and suspensions of particles have been carried out. 
The flow behavior of non-Newtonian fluids has been 
thoroughly investigated from various points of view, in 
which considerable effort has been focused on analyzing 
that of the viscous fluids (10-13). 

In an ordinary treatment on viscosity of a fluid, theo- 
retical considerations have mainly focused on a single 
flow plane independent of other flow planes even in the 
case of non-Newtonian fluids. When suspended particles 
collide with one another (hereafter, the term ‘particle’ is 
used even for solute) under shearing flow by an external 
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action, force caused by a contact action between the 
particles arises in a flow plane and is succeedingly trans- 
mitted to the neighboring flow planes through bindings 
made by the contact. Therefore, it is considered that the 
force generated in every part of the fluid travels through 
it as a transmission medium. The force should conse- 
quently be included in the estimate of shear stress to 
derive a viscosity equation for the non-Newtonian flow 
behavior. 

Since the transmission of force in this kind of mecha- 
nisms, in which the bindings that compose the transmis- 
sion medium are in a state of makings and breakings, 
is generally accompanied by loss as it travels, the force 
decreases during the transmission process. With a shear 
stress against the total forces, which is the sum of the 
force transmitted from every place in the fluid to a flow 
plane chosen for consideration, a viscosity equation can 
be given as a function of a transmission coefficient (or a 
reciprocal of an attenuation coefficient) of the force. 

On the other hand, in a fluid containing adhesive parti- 
cles, under the shearing flow, both making and breaking 
of the binding sites between particles are occurring 
concurrently. At a steady state the concentration of the 
bindings remains constant, depending on shear stress, 
binding forces between the particles, and other factors. 
In the present study, the dependence of the concentra- 
tion on the shear stress is expressed in an equation by 
introducing a newly defined effective shear stress that 
works on the contact sites of the bindings and varies the 
concentration. Since the contact between suspended parti- 
cles enables the transmission of the force, it is surmised 
that the degree of force transmission can be correlated 
with a concentration proportional to the number of bind- 
ings in a line. By relating the transmission coefficient to 
the concentration, we have a non-Newtonian viscosity 
equation in terms of shear stress (or shear rate), which 
will express the flow behavior of various kinds of fluids 
consisting of adhesive particles. 

For concentrated polymer solutions, it has been deter- 
mined experimentally that zero-shear viscosity is propor- 
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tional to around 3.4 power of both polymer concentra- arbitrarily chosen distance within the range of the particle 
tion and molecular weight (14-16), and the relation has diameter. In other words, the velocity of the fluid and a 
been studied theoretically (17, 18). In this study, this function of the particle concentration c, which is general- 
tendency is elucidated in the course of the analysis. A ly represented as cl (the exponent 1 is estimated later), are 
general nature of non-Newtonian flow exhibiting shear- concerned and the volume Au is used in relation to the 
thinning behavior of viscosity, which has been examined force caused by the particles passing through the volume. 
on several polymer solutions (2528), is also indicated by The force is expressed, with the introduction of a pro- 
the viscosity equation. portional coefficient /3, as 

A relation between viscosity and shear rate is obtained 
by a parametric method in the equation. It was verified 
that the viscosity equation was applicable to experimen- 
tal results measured in various aqueous polysaccharide 
solutions (15, 19). 

u(Au) = PC’ exp ( - cwr)kr cos HAu (2) 
Equation 2 indicates the traveling force produced in Au 
and reached a unit area of the flow plane located at the 
origin. The coefficient p is the efficiency of the force 
generated from a pair of colliding particles. It is neces- 
sary for the estimation of viscosity to include the stress 
due to the transmission of the force generated in every 
part of the fluid that is expressed by Eq. 2. 

METHODS AND RESULTS 

Shear stress in the Couette Bow Usually, special 
shearing flow that resembles the Couette flow with a con- 
stant shear rate in every part of a fluid has been used for 
the analysis of non-Newtonian flow behavior (10-13). 
Theoretical treatment in this study is also based on the 
assumption that the flow was imposed the same shear rate 
throughout the whole fluid. 

First, the shearing flow of a constant rate (T) is ex- 
pressed in spherical coordinates. A volume element and 
flow velocity at coordinates (r, 8, #) are expressed by 
du = 9 sin BdrdBdqi and u = Yr cos 8, respectively, where r, 
0, and $ represent the radial length, latitude, and longi- 
tude, respectively. Here, B represents the angle between 
the radial axis and the line perpendicular to the flow 
which is drawn from the origin of the coordinate sys- 
tem. 

For homogeneous shearing flow of a non-Newtonian 
fluid in which adhesive particles (the concentration of 
which is represented by c) are suspended, the force 
produced through the contact action between the parti- 
cles arises in every part of the fluid and is propagated 
through the fluid as a transmission medium in radial 
direction. It is surmised that the force is reduced during 
each transmission process due to the contact sites be- 
tween the suspended particles, because the bindings of 
contact particles are in a state of making and breaking. 
The attenuation rate of the traveling force u is, on as- 
suming uniformity of the rate of reduction, expressed by 
the equation: 

da --=a(J 
dr 

where a is an attenuation coefficient of the traveling 
force. When the initial value of g is go, integration of 
Eq. 1 gives: u =uo exp (-ar). A factor analogous to the 
form appeared in the discussion of the report on 
screened hydrodynamic interactions in entangled poly- 
mer solutions (20), but it is not directly related to that 
of the present paper. 

In order to estimate the traveling force in a propor- 
tional relation, we choose a small volume (Au) at coor- 
dinates (r, 8, #), in which the velocities of suspended par- 
ticles are nearly the same, and flow planes are separated 
by a distance of one particle diameter. The contact 
between the particles within the volume and those on the 
neighboring flow planes produces a force which is direct- 
ly proportional to both fluid momentum at the position 
and collision frequency of the particles. The same 
proportional relation except for the magnitude of the 
force can be formed for flow planes separated for an 

The traveling force transmitted throughout the fluid, 
which is acting on the flow plane, is the difference 
between the forces generated from positive and negative 
sides of the coordinates. Shear stress against the force is 
added to a shear stress in the absence of the effect. The 
total shear stress emerging on the face of a unit area 
surrounding the origin is expressed by 

a, I 277 
p=p- -2pclj J J exp (-ar)Tr cos @do (3) 

where du =r2 sin BdrdBd$, and pm represents a shear 
stress without the effect of the traveling force. Integrat- 
ing Eq. 3 on the condition that the shear rate Y is con- 
stant throughout the fluid gives 

p =p- - 12ntw Y/(14 (4) 
A non-Newtonian viscosity equation In the case of 

the Couette flow of Newtonian fluids, a shear stress is 
proportional to a shear rate. Viscosity is defined as 

(5) 
where 7, p, and Y represent the viscosity, shear stress, 
and shear rate, respectively. Even for the case of non- 
Newtonian fluids where viscosity varies depending on the 
magnitude of shear rate, the viscosity defined in Eq. 5 
can be used on condition that the shear rate holds a con- 
stant value throughout the fluid. 

Substituting p expressed in Eq. 4 into Eq. 5 gives the 
following viscosity equation: 

‘7 = vi, + 127rpt4 (6) 
where [= l/a is a transmission coefficient, and is a func- 
tion of shear stress (or shear rate) which varies the num- 
ber of contact particles. The term ;7J= -p-/T) re- 
presents the viscosity neglecting the effect due to the 
traveling force. 

Variation of the concentration of bindings by shear 
stress In non-Newtonian fluids, many sites between 
constituent adhesive particles are bound by attractive 
force. Under a state of shearing flow, some of the bind- 
ings are broken by shear stresses acting on the faces 
of flow planes and are simultaneously made by contact 
between the particles. Meanwhile, since the contact 
between the suspended particles results in the transmission 
of force, it is surmised that the transmission degree of 
the traveling force is related to the concentration of the 
bindings. The dependence of the concentration on the 
shear stress would be expressed in an equation on the 
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assumption that contact areas between the particles in 
pair and adhesive forces per unit contact area are given. 

In the following analysis we restrict our discussion to 
states under steady shearing l-low in which structural and 
characteristic changes of a fluid do not occur except for 
the number of bindings. 

We introduce the new concept of an effective shear 
stress, which is the ratio of shear stresses working on 
the contact sites of the bindings to the binding forces 
between the particles. In a case when the shear stress 
increases by Ar (r= lp 1 =p I T I), the increment (A$) of 
the effective shear stress for the bindings is expressed by 

Arx= x.3. AT 
R x,.s.r, 

where, X is the concentration of the bindings, which is 
the number of bindings on a unit length of the line be- 
tween two points that the force travels. The concentra- 
tion is constant under the condition of steady shearing 
flow, as the bindings are in a dynamic equilibrium state 
of making and breaking. X0 represents a value of X at a 
limiting case of ~40; ?, and S represent the average 
values of the binding forces and the contact areas be- 
tween the paired particles, respectively, which are project- 
ed on planes in parallel to the direction of the flow. The 
average contact area S in the numerator and the denomi- 
nator of Eq. 7 cancel each other, and do not enter explic- 
itly in the following discussion. 

It is clear from the definitions that as the shear stress 
increases by a small amount (Ar), the concentration X 
decreases in proportion to both concentration and incre- 
ment of the effective shear stress varying it directly. The 
relation is described by - AXmX. A& which, on substi- 
tuting Eq. 7, offers the dependence of the concentration 
on the shear stress in equation 

dX Ql -= 
dr x3 0 

where ~~ is a proportional constant (a,=~/?,), in which z 
is a constant independent of states of the steady shearing 
flow and shapes, sizes, and species of constituent parti- 
cles of the fluid. 

Integrating Eq. 8 on the condition that X-+X, at r+O 
gives a relation of X to r in the following form: 

XL!L 
l+Q,?- 

Equation 9 expresses the dependence of X on the shear 
stress in states under steady shearing flow. 

A viscosity equation for non-Newtonian flow behavior 
In Eq. 6, viscosity has been given as a function of the 
transmission coefficient of traveling force. At that stage, 
the dependence of the equation on shear stress (or shear 
rate) emerging in the non-Newtonian fluid is not explicit- 
ly shown. The transmission coefficient E is confidentially 
depended on the shear stress (or shear rate) from what 
the coefficient is correlated with the concentration of 
bindings that is varied by the magnitude of shear force 
affecting the binding texture. 

Since the contact between suspended particles enables 
the transmission of force as previously mentioned, it is 
reasonable to correlate the transmission coefficient direct- 
ly with the concentration of bindings which are along 
the line that the force travels. With a proportional corre- 
lation between [ and X expressed by Eq. 9, the follow- 
ing relation in terms of the shear stress r is obtained, 

where X0 is represented as m-th power of the particle 
concentration c (m is estimated later), that is, 

e- QoC* 
1 +Q,r 

where a0 is a proportional constant. 
Substituting Eq. 10 into Eq. 6 transforms the viscosity 

equation as a function of the transmission coefficient to 
that of the shear stress and the particle concentration. 
On the expressions of 1+4m=n and 127rp~~~=/~, we 
have 

With the definition of 7 = ‘i. at r+O, Eq. 11 gives 

‘;;o=‘l’-+j,cn (12) 
From Eqs. 11 and 12, it follows: 

The constant al relates to the binding force only and 
does not depend on the particle concentration as indicat- 
ed in Eq. 8. 

Another form of viscosity equation Substituting 
r=~? (?>O) for r in Eq. 13 transforms the viscosity 
equation, shown as a function of the shear stress, to an 
equation expressed in terms of the shear rate, 

(P-~,)(1+Q,77~)4=)?~-)703 (14) 
When v. and T- are known, the viscosity at a given 

shear stress or shear rate can be calculated from Eq. 13 
or Eq. 14, provided that the constant al is given. 

The equations derived above express the non-Newtonian 
flow behavior of viscosity in states under constant 
shear rate flow. The equations are applicable to various 
fluids that are solutions of polymers, monodispersive 
suspensions of adhesive particles, and their mixtures, on 
condition that the shear-thickening effect is negligible; 
this effect has been observed often in states of high shear 
rate flow of concentrated suspensions consisting of parti- 
cles with weak adhesive properties (21-24). Though 
empirically, viscosity is affected by temperature, the rela- 
tions in the analysis ought to obey the same forms as the 
temperature is constant. 

An estimate of the constant n In a range of con- 
centration where monodispersive condition for particles 
in a fluid holds under a state of steady shearing flow, a 
frequency at which the particles passing through a 
differential volume element in the fluid collide with those 
on the neighboring flow plane is proportional to the 
two-thirds power of the particle concentration c, since 
the number of particles in a line is in proportion to the 
one-third power of c. Thus, it is inferred that values of I 
and m appearing in Eqs. 2 and 10 should be 2/3. Conse- 
quently, a value of n in Eq. 12 is 10/3 (%3.33). An 
argument which resembles the above statement for the 
estimate also holds for a correlation between the zero- 
shear viscosity v. and molecular weight of polymers, if 
each polymer in solution is regarded as a mass of adhe- 
sive particles the number of which is proportional to its 
molecular weight. The value obtained in the above argu- 
ment for n agrees closely with experimental values 
(around 3.4) obtained in relation to zero-shear viscosity 
(corresponding to v. in Eq. 12 neglecting the term T-) to 
both concentration and molecular weight in concentrated 
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solutions of certain kinds of polymers (14-16). Studies 
were conducted to explain the dependence quantitatively 
in molecular dynamics based on a tube model and in a 
molecular flow theory for entangled polymer solutions 
(17, 18). 

A characteristic feature of the viscosity equation at a 
limiting case In a shear rate region where the limiting 
conditions of v>>+= and a,~?>>1 are realized, a 
logarithmic expression of Eq. 14 is in the form: 

log 7=0.2 log (vrJ/a,4)-0.8 log r (15) 
Therefore, it can be shown from the equation that the 
maximum (negative) slope of a curve representing vis- 
cosity plotted as a function of shear rate in double- 
logarithmic coordinates takes 0.8; this significant feature 
of the non-Newtonian flow expressed by the viscosity 
equation agrees well with that of the tendency measured 
for several polymer solutions (25-28). It is surmised that 
the dispersing states of the polymers in these solutions 
allow the basic conditions imposed in this study. 

VERIFICATION OF THE THEORETICAL 
VISCOSITY EQUATION 

The applicability of the viscosity equation (Eq. 14) de- 
rived theoretically to some experimental data cited from 
literature was examined to confirm the above analysis on 
the mechanism of non-Newtonian flow. 

Simulation of experimental data The correlation 
between viscosity and shear rate is obtained by means of 
a parametric method in Eq. 14. The parameter adopted 
to solve the equation is 

t=alTY (16) 
From Eqs. 14 and 16, the following relation is obtained: 

(17) 
5-=tt/a1{pm +(‘l*-vM)/(l +t)4> 

\ I 

The characteristic constants ~1, ‘lo, and v- of a fluid 
concerning the flow can be determined by fitting Eq. 17 
to some experimental data of 7 vs. ? with varying t 
under the restriction of t>O (Eq. 16). 

In Fig. 1, the open circles denote the data obtained by 
Woods and Krieger (19) using 0.7% (w/v) aqueous solu- 
tion of hydroxyethyl cellulose at 30°C. The solid line 
represents a simulation curve calculated by Eq. 17 with 
al =2.0 x lop2 (l/Pa), vo=0.08 (Pass), and ~,=0.012 
(Pa-s). The simulation using these characteristic con- 
stants fits well to the experimental data; the data were 
obtained using various types of instrument, and were 
superposed on each other, which would indicate that those 
data were intrinsic values independent of the measure- 
ment methods. That is, under approximately the same 
shearing flow; the condition for the flow enables the com- 
parison with calculated values from the viscosity equa- 
tion derived based on the Couette flow. 

The results presented in Fig. 1 show that the viscosity 
equation (Eq. 14) can express the experimental data over 
a wide range of shear rates. 

Dimensionless expression of the viscosity equation 
Next, we transform Eq. 14 to a dimensionless form to 
generally express the non-Newtonian flow behavior, as 
carried out by Morris (29). The method was based on an 
equation proposed by Cross (11) to express the flow 
behavior. 

FIG. 1. Shear rate dependence of viscosity of an aqueous solution 
of 0.7% (w/v) hydroxyethyl cellulose. The data are cited from the 
paper reported by Woods and Krieger (19). The solid line represents 
the result of simulation according to Eq. 17. 

Dividing both sides of Eq. 14 by 7. yields the equa- 
tion: 

(IjiR - vRm)( 1+ alT?)4 = 1 - )7Rm (18) 
where l;iR denotes ~/vo. 

By denoting the shear rate in the case of v= vf (i.e., 
vR = l;iR f) as Yf, we write Eq. 18 as 

()7Rf-~Rm)(1fal~f~f)4=1--R, (1% 

i.e., 

a,={[ S;~;;~]1’4-l}/?fir (20) 

By substituting Eq. 20 into Eq. 18, we have 

(]7R-ZIRm)(1+AfljiR~R)4=1-)7Rao 

where 
(21) 

Equation 21 is a dimensionless form of Eq. 14, which is 
considered to generally express the non-Newtonian flow 
behavior. 

In a case where vRrn is negligible in comparison with 
VR and TRm<l, Eq. 21 reduces to 

vR(1 +AfvR?R)4= 1 (22) 
where a reduced form of Af is expressed by 

of= [ [&]1’4- 1]/7Rf 
In Fig. 2, various data of viscosity against shear rate, 

which were obtained by Morris et al. (15) with the 
introduction of dimensionless values of vR and ?R 
by adopting vRf value as 0.1, are replotted. The data 
points for the concentrated aqueous solutions of guar 
gum, l-carrageenan (1.5-5% (w/v)), locust bean gum, 
‘high mannuronate’ alginate, and hyaluronate (M,: 1.6 x 
106, 0.16-l g/dl) at 25°C all converge to a single curve. The 
solid line in Fig. 2 was calculated using Eqs. 22 and 23 
at gRf=O.l (Af=7.78). The polysaccharides used in the 
experiments are conformationally mobile, and have been 
expected to adopt disordered or ‘random coil’ chain geo- 
metry. The deducible formations of the polymers in the 
solutions meet the dispersive condition required in the 
present analysis. 

The theoretically derived dimensionless viscosity equa- 
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FIG. 2. Nondimensional expression of a correlation between 
viscosity and shear rate. The data are for the concentrated aqueous 
solutions of polysaccharides (15): guar gum, A; ,I-carrageenan (1.5- 
5% (w/v)), A; locust bean gum, l ; ‘high mannuronate’ alginate, 
m ; hyaluronate (M,: 1.6x 106, 0.16-l g/dl), 0. The solid curve 
represents the results of calculation according to Eqs. 22 and 23. 

tions (Eqs. 22 and 23) which were neglected the term vRm 
can express the experimental tendency for the viscosity to 
decrease with increasing shear rate over a wide range of 
shear rates for several polysaccharide solutions. 

Conclusion The flow behavior of fluids with sus- 
pended particles of adhesive substances, which simulate 
culture broths dispersing microbes and polysaccharides 
uniformly, was analyzed based on a concept of force 
and its transmission resulting from contact between the 
suspended particles, under the condition of constant 
shear rate flow by an external action. The force generat- 
ed in every part of the fluid travels through it in radial 
direction, and is attenuated during each transmission 
process accompanied by making and breaking of the 
binding sites between particles. A non-Newtonian viscos- 
ity equation related to a transmission coefficient of the 
force was derived on adopting a shear stress against the 
total force summed up the traveling forces. It is sur- 
mised that the transmission degree of the force is direct- 
ly proportional to the concentration of bindings, which 
are pairs of particles that lie along the line that the force 
travels, since the contact between the suspended particles 
causes the transmission of the force. On the other hand, 
the shear stresses acting on the faces of flow planes 
affect the formation of bound particles. On the assump- 
tion that adhesive forces between the contact particles 
were given, the dependence of the concentration on the 
shear stress was expressed in an equation by introducing 
an effective shear stress that affected the binding texture 
and varied the number of bindings. On the basis of the 
above-mentioned analysis of the fluid flow, a non-Newto- 
nian viscosity equation in terms of the shear stress (or 
shear rate) was obtained, and, from it, relations of zero- 
shear viscosity .to both the particle concentration and 
molecular weight of polymers were inferred. The equa- 
tion is also characterized by the maximum slope of a 
curve representing the relation of viscosity to shear rate 
in double-logarithmic coordinates having the value of 
-0.8. 

It is considered from the good agreement between 
experimental results and calculations according to the 
viscosity equation, that the analysis based on the concept 
of the force traveling through fluid under shearing flow 
elucidated an essential mechanism of the flow behavior 
of various polymeric fluids representing microbial cul- 
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ture broths with dissolved polysaccharides. 

NOMENCLATURE 

Af : constant expressed with Eqs. 21 and 23 
a0 : proportional constant in Eq. 10 
ai : proportional constant (=2/T,) 
C : concentration of particles 
1, m, n : power constants 
P : shear stress 
P- : shear stress neglecting the effect of traveling 

force 
r : radial length in spherical coordinates 
3 : average value of contact areas 
t : parameter defined with Eq. 16 
u : velocity of fluid 

k 
: chosen volume in fluid 
: concentration of bindings 

x0 : value of X at the limiting case of r-t0 
2 : proportional constant 
<Greek letters > 

: attenuation coefficient of traveling force 
: proportional coefficient in Eq. 2 
: proportional coefficient (= 12wpa$) 
: shear rate 
: shear rate in the case of T=Q 
: shear rate ratio (=Y/?,) 
: viscosity of fluid 
: zero-shear viscosity 
: viscosity neglecting the effect of traveling force 
: value of viscosity 
: viscosity ratio (= ‘;/vo) 
: viscosity ratio (= &vo) 
: viscosity ratio (= Bf/vo) 
: latitude in spherical coordinates 
: transmission coefficient (= l/a) 
: traveling force 
: initial value of traveling force 
: shear stress (absolute value) 
: average value of binding forces 
: effective shear stress for bindings X 
: longitude in spherical coordinates 
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