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Abstract

In the Data Quality Objectives (DQO) process, statistical methods are used to determine an optimal sampling and analysis plan.
When the DQO decision rule for instituting remedial actions is based on a critical change in water quality, the monitoring program
design must ensure that this change can be detected and measured with a specified confidence. Usually the focus is on the change at a
single monitoring location and the process is limited to addressing the uncertainty inherent in the analytical methods and the
variability at that location. However, new strategies that permit ranking the waste sites and prioritizing remedial activities require the
means for assessing overall changes for small regions over time, where both spatial and temporal variability exist and where the
uncertainty associated with these variations far exceeds measurement error. Two new methods for assessing these overall changes
have been developed and are demonstrated by application to a waste disposal site in Oak Ridge, Tennessee. These methods
incorporate historical data where available and allow the user to either test the statistical significance of a linear trend or of an annual

change compared to a baseline year for a group of water quality wells.

Introduction

The importance of using methods that quantify the uncer-
tainty associated with water quality data and the significance of
changes in concentration is emphasized by their incorporation
into the Data Quality Objectives (DQO) process (EPA, 1987a).
This process is designed to ensure that sampling and analysis
plans developed for environmental monitoring and remediation
are sufficiently sensitive that contaminant levels and changes in
contaminant concentrations can be detected at specified levels.
While not explicitly addressed, the DQO process can also result
in cost minimization by determining the minimum number of
samples and lowest analytical level required to provide the neces-
sary sensitivity.

In the DQO process, decision rules are developed based on
the data needs, data users, and the overall problem to be
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addressed (EPA, 1992). These decision rules become drivers for
development of the monitoring strategy by establishing the
allowable uncertainty associated with conclusions drawn from
the data. This uncertainty comes from two primary sources:
(1) sampling and analytical uncertainty, which govern the ability
to detect and quantify the level of a particular contaminant; and
(2) spatial and temporal variations, which govern the ability to
determine the significance of changes within a population using
sample data.

The first of these sources, sampling and analytical uncer-
tainty, is addressed by choosing approved methods and proce-
dures that ensure accuracy at or below detection levels specified
by the DQOs (e.g. EPA, 1986; 1987b). Quantifying the spatial
and temporal variability is less straightforward, but must be
factored in where DQO decision rules are based on net changes
within an areally distributed population. Changes in site hydro-
logic conditions and geochemical interactions can result in tem-
poral variations that might confound the detection of changes in
actual release of contaminants from disposal areas, for example.

In order to design a monitoring program that will detect
changes of the magnitude specified within the DQO process,
some initial estimate of the degree of spatial and temporal
variability is required. Where historical data have been obtained,
these data can be used to determine statistical parameters that
can then guide the initial optimization of the sampling and
analysis plan. The plan can then be refined as additional data are
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Fig. 1. The study site is located at Oak Ridge National Laboratory
(ORNL) near Oak Ridge, Tennessee.

obtained and the system variability is better quantified. Data sets
often contain irregularly spaced data and statistical methods
designed to use these data must allow for this.

This paper presents two methods for examining temporal
changes in areally distributed ground-water quality data. The
two methods provide different views of these changes and are
used for somewhat different purposes depending on the sam-
pling design and the question being addressed. The first method
addresses the identification of trends over time, and the second
addresses a yearly comparison to an established baseline popula-
tion. The theory is first laid out then examples are given using
data from a contaminated site.

Background and Site Description

Waste Area Grouping (WAG) 6 is located at the Oak Ridge
National Laboratory (ORNL) in east Tennessee (Figure 1).
WAG 6 has been a disposal site for radioactive, hazardous, and
mixed wastes since 1969 (ORNL, 1991). In accordance with the
hydrologic conceptual model for the QOak Ridge Reservation
(Solomon et al., 1992), contaminated ground water and surface
water from WAG 6 ultimately discharge into White Oak Lake,
where they mix with contaminants released from other WAGs
further upstream in the White Oak Creek watershed which
drains most of Bethel and Melton Valleys (Figure 2). From there,
off-site release is via White Oak Dam into the Clinch River.
Currently, tritium, *Sr, and **’Cs are the most significant con-
taminants being transported through the ground-water and
surface-water systems (ORNL, 1991).

The remedial strategy for the ORNL site includes prioritiz-
ing the WAGs according to their relative contribution to the total
off-site flux at White Oak Dam, thus allocating resources in a
way that allows remediation of the largest contributors first
(ORNL, 1993). This strategy is conceptualized as a series of
funnels depicted in Figure 3. Ground water and surface water
originating from each WAG or group of WAGs within a small
watershed can be visualized as discharging into a funnel that

580

e scale
Wnio Oaktake  \ - ST
" Wnite Ok Dam 0 2000 #t

[—— el

Fig. 2. Map of the White Oak Creek watershed, showing the location
of WAG 6 and other WA Gs relative to surface-water drainages.

empties into the White Oak Creek watershed and ultimately
White Oak Lake, which functions as the overall collector. Total
off-site risk is determined at White Oak Dam (WOD), the closest
point at which public exposure can occur, and relative contribu-
tion to the total risk at WOD is determined by measuring
contaminant contributions from the individual funnels discharg-
ing into the White Oak Creek watershed.

Currently, the relative contribution from WAG 6 is small
and, therefore, a decision was made to defer remedial action at
this time in order to allocate resources to WAGs with larger
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Fig. 3. Depiction of the funnel concept. Contaminants discharge from
local waste disposal sites (WA Gs) into surface-water drainages within
the White Oak Creek watershed, where they are carried into White
Oak Lake and ultimately released over White Oak Dam. Contami-
nants are discharged into local funnels from both surface-water and
ground-water pathways.



contaminant releases. However, a monitoring strategy was
required that would allow continued determination of the rela-
tive contaminant contributions to total flux at WOD over time.
In addition, an early response capability was desired so that
changes could be detected that would indicate that WAG 6 was
approaching a magnitude of contaminant release requiring initi-
ation of source control measures, allowing an adequate response
time.

The strategy for ORNL site remediation is central to the
DQO process for WAG 6 environmental monitoring because it
calls for a decision rule based on summed releases from the WAG
rather than on concentrations at individual monitoring loca-
tions. For example, within this strategic framework, a concen-
tration increase at an individual well is not likely to drive con-
tingent actions. However, a significant increase in the mean
contaminant concentration within a specified group of wells
could signal deterioration of existing structures that were
designed to provide hydrologic isolation of the wastes. The
monitoring plan for WAG 6 was developed to address activities
over a five-year period, after which an evaluation will be made to
determine ongoing monitoring needs (ORNL, 1993). In order for
WAG 6 to be elevated to a level requiring immediate action
during this time frame (i.e., relative contaminant contributions
equalling the current worst contributors), it was determined that
a twofold annual increase in concentration would have to occur
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over each of the four years following the baseline year. Thus, a
twofold increase in concentration was established as the target
for designing a monitoring program, While this driver was ap-
plied to both surface water and ground water as separate media,
this paper addresses its application to ground water only.

The environmental monitoring plan for WAG 6 includes a
12-18 month period of intense sampling to establish a statistical
base, followed by four years of routine monitoring at reduced
frequencies. Cost minimization required using subsets of the
existing wells. Criteria for well selection were that all disposal
areas be represented, that interior wells be selected based on
historical data indicating contamination at those locations, and
that perimeter wells be located either downgradient or along
strike of disposal areas. Because the lithology beneath WAG 6
consists of fractured shales and carbonates, contaminants tend
to migrate preferentially along discrete fracture flow paths
(Solomon et al., 1992). The historical presence of contaminants,
then, is an indication that a well intersects a contaminant flow
path. Upgradient perimeter wells were also selected for control
purposes, but do not factor into the statistical methods described
in this paper. An initial sampling strategy was designed that
called for quarterly sampling at all well locations during the
baseline assessment, followed by quarterly sampling at down-
gradient perimeter wells, semiannual sampling at upgradient
perimeter wells, and annual sampling at interior wells. The
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Fig. 4. Map of WAG 6 showing the distribution of water quality measurements. Circles indicate interior wells, and triangles indicate
downgradient perimeter wells. These designations are for functional purposes: perimeter wells are part of the current perimeter monitoring
network, and interior wells were chosen based on historical concentrations and proximity to waste disposal areas.
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statistical methods described in this paper have been designed
and used to test the adequacy of this sampling design for assess-
ing changes according to the DQO decision rule.

The decision rule is applied to the monitoring strategy in the
following manner. Employing the funnel concept, we are inter-
ested in a summed effect within the set of wells in the WAG
interior and within the set of wells at the downgradient perimeter
of the WAG. As previously stated, the two sets provide different
information and therefore require different evaluations. In the
WAG interior, we are interested in detecting large changes that
would indicate a significant increase in the release of contami-
nants from the disposal units. At the perimeter we are interested
in detecting trends that would indicate that contaminant release
from the WAG is on the rise. Both need to be evaluated insuch a
manner that action can be taken before substantial contaminant
releases occur. Following this rationale, the DQO driver was
applied to the two populations in the following manner. Wells at
the perimeter must be sampled at a frequency such that a linear
trend in mean concentration leading to a factor of two increase
over five years could be declared statistically significant at speci-
fied probabilities for type I and type Il errors, denoted by « and
B, respectively. (In this case, a type | error would occur when we
say that a linear trend exists that would result in a factor of two
increase when, in fact, this is not the case; and a type 11 error
would occur when we say there does not exist a linear trend that
would result in a factor of two increase when, in fact, such a
linear trend did exist.) Wells within the WAG interior must be
sampled at a frequency ensuring that a twofold increase for any
“out year” above baseline levels when summed over the entire set
of wells could be declared statistically significant at specified
probabilities for type 1 and type 11 errors. In the first case we are
evaluating the significance of a linear slope, and in the second
case we are evaluating the significance of a change from baseline
year to out year, or the “year effect.” Historical tritium data have
been used to establish statistical parameters for testing the initial
sampling design.

Evaluating Linear Trends in Well Data: Theory

Assume that we have n observations (ti, ¢;) where t; = i
observation time (sampling event), and ¢; = observed average
concentration from a sample of perimeter wells (possibly in
log-units) of the i" samplingeventfori=1,2, ..., n. Inaddition,
assume the mean of the response (c) at a given observation time
(t) is given by the regression model 8o 1+ S1t. (This paper uses
universal statistical notation where if 8 does not have a subscript
it refers to a probability type Il error, and if B has a subscript it
refers to a coefficient in a regression model.) If the usual normal-
ity and independence assumptions are made, then the signifi-
cance of B8 will be the basis for concluding that there is a
significant linear trend in the observed concentrations. In statisti-
cal terms we are testing the null hypothesis

Ho:81 =0
against the alternative hypothesis
Ha:B:1 = B:*(> 0).

Under the above assumptions, the least-squares estimate of 81,
denoted by by, is normally distributed with mean 0 (under Ho) or
B1* (under H,) and variance given by
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1=1
where o is the variance of cfor a given t, and t equals the mean of
t from 1 to n, where the effect of sample size can be seen by the
denominator. See Draper and Smith (1981) for additional dis-
cussion about regression.

If o° is assumed known, the probabilities of type I and II
errors for testing Ho against H4 are given by « and S, respec-
tively, then the value of 8,* we would anticipate to declare as
significant (at the « level of significance and a power of 1 — g for
the given set of n observations) is given by

Br* = (zq + 25) [Var(b1)]"” 2

where z, and zg are the 100 X (I — a) and 100 X (I — f)
percentiles, respectively, of the standard normal distribution.
[See Appendix for derivation of equation (2).]

Evaluating Linear Trends in Well Data: Application

In applying the DQO decision rule to offsite contaminant
release via the shallow ground-water system, we wish to be able
to detect a trend in the average tritium concentration at the
downgradient perimeter wells that would result in a twofold
increase over five years. Thus we need to determine whether or
not the initial test design of quarterly sampling over the five-year
period will provide sufficient resolution to detect this change
given the variability of the system. From equation (2), for a given
set of statistical parameters, an estimate of the slope that would
be declared significant can be determined. There is a natural
slope due to radioactive decay of the sources, so in order to test a
null hypothesis of zero slope, we decay-correct all data to the
time of the last sampling event. Per the initial sampling design,
we assume quarterly sampling at downgradient wells over a
five-year period, or n = 20, where n is the number of sampling
events in the time series for regression. If we wish to determine
the value of 8,* for probabilities of type I and type 11 errors both
equal to 5%, then o = 8= 0.05 and z, = z5 = 1.645. The only
other parameter required is o° [equation (1)]. Here, because we
are interested in the trend of the overall mean concentration, we
use the error mean square from regression of the historical
transformed and decay-corrected tritium concentrations on time
to estimate ¢” (i.c., the variance of the average sample event
concentrations about the decay-corrected slope).

Historical tritium concentrations measured at the down-
gradient wells can provide a test of the assumption of initial slope
of zero and an estimate of o°. Table la contains tritium data for
all perimeter wells over a four-year period. The fields of this table
include the well ID, observation date, tritium concentration in
pCi/l, and the value of three times the counting error (3 c.e.). A
measurement was considered left-censored (below detection) if
the measured value was less than 3 c.e. For the sampling events
(dates) with censored observations, maximum likelihood estima-
tion methods for a censored normal distribution were used to
estimate the mean concentration. Otherwise, the sample mean
was used as an estimate. All data were first transformed into
natural log values and subsequent calculations were made within
the transformed space. Table 1b contains a summary of these
calculations after log transformation for all 11 sampling events.

The statistical theory presented in the previous section is



Table 1a. Decay-Corrected Tritium Concentration Data for the Perimeter Wells

Date: July 1988 October 1988 January 1989 May 1989 May 1990 November 1990
Well ID C(pCi/ll) 3ce. CCi/ll) 3ce. C@ECl) 3ce C@ECil) 3ce CpEC) 3ce CCi/ll) 3ce
1243 NA NA NA NA NA NA NA NA 794000 118500 NA NA
835 24868 2433 32436 4054 20270 2433 26219 2433 18651 2026 21081 2433
836 3514 1621 13243 2433 < 1702 2244 1338 1649 1540 < 1500
837 NA NA NA NA < 1905 1487 1216 2433 1500 NA NA
838 14324 2026 < 1946 11351 2433 7028 1621 24868 2433 23243 2433
839 29730 4054 8108 2433 23784 28838 26489 2433 17840 2026 23784 2433
840 21622 2433 21354 2838 11351 2433 3244 1216 4054 1621 5135 1621
841 270300 40545 243243 8109 172992 4054 216240 4054 143259 4054 129730 4054
842 648720 40545 675750 40545 567630 40545 459510 40545 183804 4054 154054 4054
843 810900 40545 919020 40545 1243380 40545 756840 40545 324360 40545 54054 40540
844 72973 4054 75684 4054 59466 3649 64872 4054 54060 4054 75676 4054
847 83793 4054 89199 4054 83793 4054 81090 36490 72981 4054 86486 4054
Date: February 1991 September 1991 December 1991 March 1992 May 1992
Well ID C(pCi/l) 3ce. C(Ci/ll) 3ce. C@Cil) 3ce C@Cil) 3ce. CpCi/) 3ce
1243 NA NA NA NA NA NA NA NA NA NA
835 May-81 4054 13243 1621 NA NA 32432 4054 NA NA
836 2054 1459 < 1419 NA NA < 974 NA NA
837 NA NA NA NA NA NA NA NA NA NA
838 22703 2433 26216 2026 NA NA 25405 2026 NA NA
839 22432 2433 20811 2026 NA NA 23243 2026 NA NA
840 4324 1621 11081 1621 10811 1621 7027 1216 2405 1176
841 118919 4054 70270 4054 81081 4054 143243 4054 97297 4054
842 129730 4054 102703 4054 108108 4054 97297 4054 67568 4054
843 162162 40540 243243 40540 567000 81000 1080000 81000 189189 40540
844 27027 24324 78378 4054 59459 4054 64865 4054 83784 4054
847 32432 24324 72973 4054 94595 4054 97297 4054 91892 4054

Measured concentrations below three times the counting error, indicated by “<” were treated as left-censored data in the maximum likelihood

estimation of the mean. Wells not included in a particular sampling event are represented by “NA.”

Table 1b. Results of Maximum Likelihood Estimation
for Each Sampling Event

# Censored Mean Std. Dev.
Event Time (mo) n observations In C(pCi/l) InC(pCil/l)
1 0 10 0 10.7118 1.6515
2 3 10 1 10.4819 2.0455
3 6 11 2 10.0346 2.3992
4 10 11 0 10.0801 2.0491
5 22 12 0 10.3058 1.8758
6 28 10 1 10.1354 1.5364
7 31 10 0 10.1379 1.3402
8 38 10 { 10.2632 1.5348
9 41 6 0 10.7724 0.8152
10 44 10 2 10.0576 1.6381
11 46 6 0 10.8844 1.4215

Fields are the sampling event number, time in months, number of
samples per event, number of censored values, and mean and standard
error in log-transformed space.

based on an assumption of sample independence. This assump-
tion is reasonable in both spatial and temporal terms for this
system. Because contaminants tend to move along discrete flow
paths, concentrations at distributed locations are not as likely to
impact one another. Also, as long as the sampling frequency is
quarterly or less, as it is for the historical data shown, then the
data are likely to be only weakly dependent if at all on previous
samples (Barcelona et al., 1989).

Estimated mean concentrations I one standard deviation
about the mean are shown in Figure 5. The error bars represent

the variability of values over the set of wells sampled during each
event, or the between-well variance. Because we want to deter-
mine a trend in the mean, however, we are most interested in the
variance of the mean over time. Correcting the data for radio-
active decay causes a minor shift in the slope. Linear regression
over the corrected data results in a nearly horizontal slope [b; =
—0.00401 In(pCi/l)/ month] indicating that the system is cur-
rently stable at an average concentration of 10.35 In(pCi/1). For
the 11 sample event means, the error mean square from the linear
regression provides an estimated value of o” given by 6° = 0.0971,
and assuming 20 quarterly sampling periods,

§ (t: —t)* = 665.

i=1

3

Using the parameters described above, an estimate of the
significant slope, 8:*, can be determined using

X & 0.0971
Var(b,) = = =0.000146  (4)
n _ 665
b3 (ti — t)2
i=1
and
Bi* = (z, + 25) [Var(b1)]"* =
2(1.645) (0.000146)"* = 0.0397. )

expressed as the natural log of concentration in pCi/l per sam-
pling period. Note that 8, represents the rate of increase in the
natural log concentration of tritium over a three-month period
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Fig. S. Four-year trend in average decay-corrected tritium concentration in the perimeter wells. Each data point represents the mean of the
sampling event and the error bars indicate + one standard deviation about the mean. The EPA Maximum Concentration Limit (MCL) for

drinking water is 20,000 pCi/L.

(quarter), and that 8,* [estimated from equation (5)] represents
the value of B, we would declare as significantly greater than zero
assuming the specified sampling design, and « and B values.

Over a five-year period, the slope calculated in equation (5)
would correspond to an increase in average log concentration of
20 quarters X 0.0397 = 0.794. Starting from the current average
concentration for the previous four-year period of 31,260 pCi/|,
we would declare as significant a linear trend resulting in an
average concentration of

exp[In(31,260) + 20(0.0397)] =~ 69,000 pCi/

after five years, or slightly more than a factor of two increase.
Thus, quarterly sampling over the five-year period will provide
sufficient resolution to satisfy the DQOs.

Evaluating Shifts from Baseline in Well Data: Theory

In order to evaluate shifts from baseline in a response (e.g.,
tritium concentration), a group of wells will be monitored for
two years. Let y;x equal the k™ observed response (possibly in
log-units) from the j" well in the i year, and assume

Vik = 4t 7 Tyt o€ 6)

where i = 1 (baseline year), 2 (out year); j = 1,2, ..., J;
k=1,2,...,ny puis the overall mean; 7iis the i™ year effect; v; is
the j™ well effect; and e;;« is the random error component which is
assumed to be normally distributed with zero mean and variance
o’. The difference in the mean response from the baseline year
(i=1) to another specified period or “out year” (i = 2) is assumed
to be

5=T2“T1. (7)

From the wells, we have independent estimates = 1,2,...,J)of
& given by

A —_—

3 =y5— Vi )]
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where

njj

Yi= 2 yix/ng. ©)
k=1

If we assume independence of the observations across years and
wells, then & is normally distributed with
2

~ — —_ o
Var(8;) = Var(yy — y3) = - (10)
s
where
1 1 \!
W = (— + —) = nyny/(ny + ny). (11)
nyj nyj

The null hypothesis of no temporal change or time effect is
given by

He:0=0

and the alternative hypothesis of an increase in the response from
year 1 to year 2 is given by

Ha: 6 = 6*(>0).
A weighted estimate of § is given by

J .
2 wjé,-
A j=1
§ =——— (12)
J
> W;j
i=1
whose variance equals
~ 02
Var(§) = ——. (13)
J
3w



Under Ho, 8 has anormal distribution with zero mean and
variance given by equation (13). Under Ha, 8 has a normal
distribution with mean equal to 6* and variance given by (13). If
o’ is assumed known and the probabilities of type I and 11 errors
are given by o and S, respectively, then the value of 6* we would
anticipate to declare as significant (at the « level of significance
and a power of 1-8 for the given sample) is given by

o
O* = (24 T 2g) — (14)

J 1/2
( 2 Wj) /
j=1
where z, amd zg are the 100 X (1 — «) and 100 X (I — B)
percentiles, respectively, of the standard normal distribution.
Once the values are available for the n;j’s and o, equation (14) can
be used to determine 8* for given values of o and 8.

Evaluating Shifts from Baseline in Well Data: Application

Application of the DQO decision rule to the interior wells
requires detecting a twofold change in tritium concentration for
any given year as compared to a baseline year. This change,
referred to as the year effect (6*) in the previous discussion, can
be estimated if the values of « and S are specified, the standard
deviation (o) of the concentrations is known, and the sample
sizes n;;, from which the weights w;; are determined, are specified.
We again obtain values for these parameters from historical data.
Table 2 lists tritium concentrations for a set of interior wells
sampled at varying intervals during a 50-month period. Fields
listed in the table are well ID, date the sample was obtained, and
tritium concentration in pCi/l. For all samples, the measured
value far exceeded 3 c.e. and, therefore, there were no censored

remained relatively stable over time within each well (Figure 6).
In order to avoid having the between-well variance swamp the
population comparison, the standard deviation (o) in equation
(10) is determined from the pooled variance for the group of
wells, a measure of the within-well variation rather than the
between-well variation. For the pooled variance, a weighting
scheme is used to accommodate an unequal number of samples
per well. Those wells with higher numbers of samples contribute
more heavily to the pooled variation.

Although the historical data listed in Table 2 span a four-
year period, we treat them as a single baseline period for testing
our initial sampling design of once per year for routine monitor-
ing in the interior wells. We are interested in determining the
magnitude of difference (6*) in tritium concentration to be
detected as significant for an “out year,” where we set ny = 1 for
all j to correspond with a single sample at each well. Table 3
provides a summary of the weights and standard deviations for
each well that are required for estimating 6*. Again, all historical
data are corrected to remove the effect of radioactive decay and
log-transformed prior to calculations. The variance o® is esti-
mated by the pooled variance of the sample data:

(1) *s
2
= m T (15)
j

and o is estimated by s,. If we wish to test with « = $=10.05, then
2, = zg = 1.645, and 6* from (14) is estimated by:

)1/2

a

2
Tw
J

8*=(za+zﬁ)(

. . 0.376555 \1n
data as in the previous example. 2( 1.645)( e ) = 0.6012 (16)
Tritium concentrations varied widely between wells, but 11.2756
Tritium Concentrations in Interior Wells
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Fig. 6. Decay-corrected tritium concentrations for the interior wells used as a cumulative baseline period.
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Table 2. Decay-Corrected Tritium Concentration Data for the Interior Wells

Jan-89
C (pCi/l)

Jul-92 Oct-92 Dec-92
C@Cil) C@ECll) C@Cill)

Apr-92
C (pCill)

Jan-92
C (pCi/l)

Sep-91
C@cCil)

May-90

Jul-89 Sep-89
CEdi) CEdl) CEGl)

May-89
C @G/

Oct-88
C (pCill)

Jul-88
C (pCi/l)

Nov-87
Well ID C (pCi/l)

Date:

NA
NA
NA

NA NA NA
NA

NA
NA
NA

NA NA NA

NA

21200

879000

1600000

NA NA

NA
NA

NA
NA

NA
NA
NA
NA
NA

1225
1228

1229

NA
NA
NA

NA
NA
NA
NA

NA
NA

NA
NA

10900
16400
65200
561000

10000
16000
54000
760000

NA
NA

NA
NA NA NA

NA
NA

1231

NA
NA

NA
NA

NA
NA

NA
NA

NA
NA
2800
NA

NA
NA
NA

NA
NA

NA

NA
NA

1233
1241

NA
NA

NA

NA
NA
NA

NA
NA
NA
NA
NA

NA
NA

NA
NA

NA

230000

4300000
2600000

NA
NA
NA
NA

32003
3200352

40545
2000200

17569
4324800
2973300

NA

26489
4324800
2459730

NA

NA
NA
NA
NA
NA
NA

845

NA
NA

NA

NA

NA

NA
NA

NA
NA
NA

NA
NA
NA

NA

NA
NA
NA

NA
NA
NA

NA
NA
NA

26000
49000
57000

2600

NA
NA

30603
43904
56906

1500165

27933

400545

1027140

37842
3784
59466

43248
43248

59466

850
851

849

NA
NA
NA

NA
NA
NA

NA
NA
NA

NA
NA
NA

NA
NA
NA

NA
NA
NA

NA
NA
NA

33000

NA

NA
NA
NA

2660

185020
NA
NA

51357
2973
151368

NA

NA
297330
NA
NA
NA

3244
183804

NA
NA
NA
NA

852
853
854

NA

430000 400000
57000

NA

380000
32000

NA

380000
12000

NA

380000
8600

NA

300000
14000

NA

NA

351390

1166

51000

NA NA NA
NA NA NA

NA NA
NA NA NA

NA
NA

1036
1039

Table 3. Statistical Weights by Well as Determined from the

Frequency of Historical Measurements

Well (j) nlj n2j wj sf
1225 2 1 0.67 0.4235
1231 2 1 0.67 0.1333
1233 2 1 0.67 0.2147
1241 1 1 0.50 —

845 5 1 0.83 0.9922
848 S 1 0.83 0.3365
849 5 1 0.83 0.4455
850 5 1 0.83 0.2033
851 5 1 0.83 1.1000
852 5 1 0.83 0.0599
853 4 1 0.80 0.1028
854 5 1 0.83 0.8386
1166 1 1 0.50 —
1036 6 1 0.86 0.1210
1039 6 1 0.86 0.8033

nlj = samples in baseline data.
n2j = samples in comparison year.
wj = weight for well j.

sj = standard deviation for well j.

The quantity & * is an estimate of the difference in the mean
concentration of tritium in pCi/l from the baseline year to the
out year in the log-transformed space that would be declared as
significant with specified variability and « and 8 values. This is
equal to the natural log of the ratio of the untransformed mean
concentrations:

& = In(Cy) — In(C1) = In(C,/C)) (17)
and
C/C1 = exp(0.6012) = 1.824. (18)

A change in average tritium concentration of slightly less than a
factor of two could be detected using the historical data as a
reference population. The historical data used as the baseline
period for this test range from one to six samples per well, with
an average of four samples per well. Thus if we assume that
quarterly sampling during the actual baseline year will result in a
similar estimate of the pooled variance, then annual sampling for
out years will provide sufficient resolution to satisfy the DQOs.

Summary

The design and optimization of a monitoring plan within
the DQO process may need to address not only the uncertainty
associated with sampling and analysis, but also the larger uncer-
tainty associated with spatial and temporal variability. While the
first of these uncertainties is easily quantified, knowledge about
the spatial and temporal variability of the system being studied
may not be initially available. If net changes within areally
distributed data are to be evaluated, then the spatial and tem-
poral variability need to be accounted for when drawing conclu-
sions from the data gathered. In addition, a first guess at quanti-
fying this variability is required in order to establish nonarbitrary
initial sampling frequencies,

Two methods for determining the significance of net
changes in water quality data over time have been developed and
presented. These temporal changes may be evaluated as either a
linear trend or as a change in an out year compared to an initial
or baseline year. Both methods require that the number of wells



to be sampled, the number of samples or frequency of sampling,
the desired probabilities for type I and type I errors (i.e., the
acceptable uncertainty), and the variance of the parameter of
interest be defined as input parameters. All but the latter are
user-defined. The variance is a system parameter that must be
either assumed or estimated. Where historical data are present,
as in the case presented here, these data can provide an initial
estimate of the environmental variability that can then be used to
determine an initial monitoring strategy. Where no data are
present, a conservative estimate can be assumed and then later
updated as data become available. In either case, iterative updat-
ing should be used to refine the monitoring strategy as the system
becomes better defined.

Use of the methods described in this paper can assure that
the monitoring design is sensitive enough to detect changes in
contaminant concentrations that will drive remedial activities, as
defined by statistical significance. In addition, the methods may
result in cost savings, as they can assist in determining the
minimum level of sampling required to meet specified levels of
uncertainty.

Appendix: Derivation of Equation (2)

In testing the null hypothesis Ho: 8, =0 against the alterna-
tive hypothesis Ha: 81 = S1* (> 0) at a given level (probability of
type I error) and known ¢°, one rejects Ho if

b

—_—— >, 19
[Var(o)]” ~ ° ()
Thus

P[b, = z,[Var(b:)]"* given Ho is true] = a. (20)

However, if the alternative hypothesis is true, the corre-
sponding probability of a type Il error 8 is such that

P[b: = Bi* — z,[Var(b,)]"* given Ha is true] = 8. (21)
For the two probabilities « and 8, we have
Bi* — z5[Var(b1)]"? = z,[Var(b1)]) 7, (22)
from which we obtain the result,

Bi* = (z, + z5) [Var(b)]"~. (23)
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