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Abstract. A simple microstructure model is used to describe a fluid-filled open-cell foam. In
the simplest case it consists of parallel elastic plates with gaps between them, which are filled
with a Newtonian fluid. We assume that the load applied to this model material is uniaxial. The
constitutive equation is formulated with the pressure of the fluid as an inner variable. The model
yields an evolutional equation for the fluid pressure which itself is a field equation, that is a partial
differential equation in time and space coordinates. This differential equation is solved for an
instantaneously applied constant load and for a harmonically oscillating load. The solution of the
differential equation, in combination with the constitutive equation leads to a relation between
mean applied load and global strain of the test specimen. Finally, we obtain the creep compliance
and the complex modulus of the foam material, respectively. The influence of different geometries
of the foam and of different material behaviour of the matrix and fluid on the creep compliance and
the complex modulus is discussed.
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1. Introduction

In general, fluid-filled open-cell polymer foams are used as dampers of waves, impact
loadings and vibrations. They can be applied in a broad range, for example damping of
vibrations of machines, protection of sensitive goods against vibrations and impacts,
and they are used in casual shoes and mattresses as well.

In order to construct fluid-filled open-cell polymer foams with desired damping
characteristics, one needs to understand how the matrix material, the fluid properties,
and the cavity structure influence the damping behaviour. The aim of this paper is to
analyze the influence of the above parameters.

Fluid-filled open-cell foam is not a so-called ‘simple material’, that is the stress at a
pointX does not depend only on the deformation atX or the history of deformation
at X. Since the fluid needs a finite time to flow out of high pressure regions into
low pressure regions, the system will pass a nonequilibrium state. Therefore, the
constitutive equation has to take into account long-range interactions. The well-
known approach (Eringen, 1975) for a nonsimple material of higher-order gradients
assumes that the stress tensor at a placeX is a function of the histories of the firstn

gradients of deformation atX. This is not sufficient when we have pronounced long-
range interactions. This is the case for open-cell foams with fluid flow interactions.
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However, modelling the material as a ‘continuum with an inner fluid state variable’
also considers long-range interactions. The field equation of the inner fluid state
variable is an evolutional equation. The fluid pressurep can be taken as an inner
state variable.

In the present paper, we will look at a model foam with as simple a microstructure
as possible. Initially, we will consider the fluid flow through the hollow space of the
matrix material in directionx. The fluid volume flow is assumed to be proportional
to the loss of pressure−∂p/∂x in this direction. For a specimen which is loaded
uniaxially inx-direction the equation of state is given by

σ = σ(ε, p). (1.1)

The fluid pressurep satisfies a partial differential equation in space and time
coordinates. In the following this is derived for a model foam with a simple
geometry.

2. Mathematical Modelling of a Porous Medium

The micromechanical model foam (Figure 1) consists of linear-elastic plates which
are arranged parallel to each other. The gaps between the plates are filled with an
incompressible Newtonian fluid under the pressurep. Because of the regularity of
the structure, it suffices to regard a unit cell (Figure 2). The unit cell consists of two
half plates and the fluid-filled space between them. Both the distanceH between
the middle of neighbouring plates and the widthb of the plates inz-direction are
assumed to be constant. This is true if the package of plates is surrounded by rigid
walls, and no shear stress occurs between the walls and the plates. The actually
existing shear stress can be neglected if we consider areas with sufficient distance
from the boundary.

It should be mentioned that different methods exist to gain the macroscopic
constitutive equations of this special porous material. On the basis of concepts from
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Figure 1. Micromechanical model foam.
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continuum mechanics, Biot’s theory of poroelasticity (Biot, 1956; Detournay and
Cheng, 1993) could be applied, or the theory of mixtures extended by the concept
of volume fractions (de Boeret al., 1991). Because of the periodic microstructure,
it would also be possible to apply homogenization techniques like those which are
used in the mechanics of composite materials (Coussy, 1991). With the material
under consideration, however, a difficulty arises when such theories are used. This
is due to the fact that, in the direction perpendicular to the plates, the solid is not
interconnected. Therefore, it is difficult to find the proper stress-strain relation for
this direction. It seems to be easier to treat this problem in an elementary manner.

For the following considerations, we assume that inertia effects can be neglected,
and that the strain is small. The shear deformation will not be taken into account. We
will investigate two different cases. First, we consider the fluid flowing in the direction
of the applied load. As a second case, we analyze the fluid flowing perpendicular to
the direction of the applied load. In the first case the load is applied stress controlled,
and, in the second one, it is applied strain controlled. This is done for the simplicity
of the averaging integration of the constitutive equations.

2.1. flow parallel to the direction of an applied load

Here, we will calculate the averaged strainε in x-direction in the case when a normal
stressσ in x-direction is applied to the elastic plates by means of rigid end plates
(Figure 3). Owing to the applied load, the fluid flows inx-direction.

The strainεy iny-direction and the strainε inx-direction of the linear-elastic plates
depend on both the fluid pressurep within the gaps and the stressσ in x-direction
inside the plates.

Hooke’s law for plain strain yields

ε = 1 − ν2

E
σ + ν (1 + ν)

E
p, (2.1)
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Figure 3. Loaded and unloaded plates, flow parallel to an applied normal stress.

εy = − 1 − ν2

E
p − ν (1 + ν)

E
σ, (2.2)

with E being Young’s modulus andν Poisson’s ratio of the plate material. Leth0 be
the distance of the unloaded plates andδh the small change of gap width due to the
applied strain. Then the gap width under load is

h(x, t) = h0 + δh(x, t). (2.3)

Therefore, the strain of a plate iny-direction is

εy = − δh

H − h0
, (2.4)

and, with (2.2), the changeδh of the gap width can be written in the form

δh = (H − h0)

[
1 − ν2

E
p + ν (1 + ν)

E
σ

]
. (2.5)

The flow of fluid between two plates caused by the applied stress is assumed to be
quasi-stationary. Furthermore, we assume the change of the plate thicknessδh to be
small compared to the plate thickness, that is the stream lines are roughly straight-
lined and parallel to each other. With these assumptions the Navier–Stokes equations
lead to Darcy’s law, and the averaged velocityv in x-direction depends on the fluid
viscosityη, the permeability coefficientK and the loss of pressure−∂p/∂x. The
velocityv, that is the volume floẇV referred to the areab · h, is given by

V̇

bh
= v = K

η

(
−∂p

∂x

)
. (2.6)

If we assume furthermore that the lengthb of the plates is much larger than the gap
width h, thenK is the permeability coefficient of two flat plates and is given by

K = 1
12 h2. (2.7)
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Figure 4. Averaged normal stress.

A change in the distanceh of two plates, that is a volume change of the fluid-filled
space, leads to a flow of the incompressible fluid. The balance of the fluid volume
yields

∂(V̇ /b)

∂x
= −∂h

∂t
− h

∂ε

∂t
. (2.8)

Until now we have not taken into account that, due to the fluid flow, a shear stressτf ,
interacting at the boundary between fluid and matrix material, arises. The equilibrium
of forces at a unit cell (Figure 4) yields

(H − h)σ − p h = σ H. (2.9)

Here,σ denotes the averaged stress inx-direction. The pressure term in (2.9) rep-
resents the effect of the shear stressτf . Instead of the shear stressτf acting at the
surface area, we can imagine a volume force inside every plate. This ‘pseudo volume
force’ has the same effect as the shear stressτf , as can be derived from differentiating
(2.9) and noting that pressure drop and shear stress are proportional:

∂σ

∂x
= h

H − h

∂p

∂x︸ ︷︷ ︸
pseudo volume force

∝ τf

H − h
. (2.10)

The constitutive equation of the model foam is now obtained by substitution of
the equilibrium equation (2.9) into Hooke’s law (2.1), linearizing with respect top,
σ andδh, and by a subsequent integration over the height of the plates:

ε = A‖ σ + B‖
1

l

∫ l/2

−l/2
p dx (2.11)

with the constants

A‖ = 1 − ν2

E (1 − h0/H)
, B‖ = 1 + ν

E (1 − h0/H)

[
ν + (1 − 2ν)

h0

H

]
. (2.12)
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Figure 5. Loaded and unloaded plates, flow perpendicular to an applied strain.

Finally, we obtain the partial differential equation of the inner variablep from
(2.1), (2.2) and (2.5)–(2.9). Neglecting nonlinear terms results in

a‖
∂2p

∂x2
− ∂p

∂t
= k‖

dσ

dt
, (2.13)

where

a‖ = E h2
0

12η

(h0/H)(1 − h0/H)

(1 + ν)[1 − ν − 2 (1 − 2ν)(h0/H) (1 − h0/H)]
,

k‖ = ν + (1 − 2ν)(h0/H)

1 − ν − 2 (1 − 2ν)(h0/H)(1 − h0/H)
.

(2.14)

2.2. flow perpendicular to the direction of an applied load

We now calculate the averaged stressσ in x-direction for the case where rigid end
plates apply a strainε in x-direction to the elastic plates and the fluid between them
(Figure 5). Owing to the applied strain and the boundary conditions, the fluid flows
in z-direction perpendicular to the applied load.

In principle, the derivation of both the constitutive equation and the partial differ-
ential equation forp is analogous to the first case in 2.1, but there are some important
differences.

The state of strain is now three-dimensional. Hooke’s law yields

ε = 1

E
[σ − ν(σz − p)], (2.15)

εy = − 1

E
[p + ν(σ + σz)], (2.16)

εz = − 1

E
[σz − ν(σ − p)]. (2.17)
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Insertion of (2.16) into (2.4) yields

δh = H − h0

E
[(1 − ν2) p + (ν + ν2) σ + νEεz]. (2.18)

The fluid velocityvz in z-direction is given by

V̇

lh
= vz = K

η

(
−∂p

∂z

)
. (2.19)

Assuming that the heightl of the plates is much larger than the gap widthh, the
permeability coefficientK again coincides with the permeability coefficient of flat
plates (2.7). The balance of fluid volume yields

∂(V̇ / l)

∂z
= −∂h

∂t
− h

(
∂ε

∂t
+ ∂εz

∂t

)
. (2.20)

The equilibrium of forces inz-direction at a fluid element shows that the shear stress
τf at the boundary between fluid and matrix material is proportional to the pressure
loss−∂p/∂z:

τf = − h

2

∂p

∂z
. (2.21)

The equilibrium of forces inz-direction at an element of the matrix material leads to
the equation

∂σz

∂z
= 2

H − h
τf = h

H − h

∂p

∂z
. (2.22)

If the fluid pressurep = 0, there will be no strainεz in z-direction. This results, with
(2.15) and (2.17), in the following relations:

σ = ν(2h − H)

H − h
p + 1

1 − ν2
ε E,

σz = h

H − h
p + ν

1 − ν2
ε E.

(2.23)

The linearized average stressσ in x-direction is defined as

σ = 1

b

∫ b/2

−b/2

[(
1 − h0

H

)
σ − h0

H
p

]
dz. (2.24)

Substituting (2.23) into (2.24), and neglecting nonlinear terms, we obtain the consti-
tutive equation

σ = A⊥ ε + B⊥
1

b

∫ b/2

−b/2
p dz (2.25)
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with

A⊥ =
(

1 − h0/H

1 − ν2

)
E, B⊥ = − (1 − 2ν)

h0

H
− ν. (2.26)

Finally, we obtain the partial differential equation of the inner variablep from (2.7),
(2.15), (2.17)–(2.20) and (2.23). Neglecting nonlinear terms results in

a⊥
∂2p

∂x2
− ∂p

∂t
= k⊥

dε

dt
, (2.27)

where

a⊥ = a‖ = E h2
0

12η

(h0/H)(1 − h0/H)

(1 + ν)[1 − ν − 2 (1 − 2ν) (h0/H) (1 − h0/H)]
,

k⊥ = [ν + (1 − 2ν)h0/H ](1 − h0/H)

(1 − ν2)[1 − ν − 2 (1 − 2ν) (h0/H)(1 − h0/H)]
E.

(2.28)

3. Solution of the Partial Differential Equations

The partial differential Equations (2.13) and (2.27) are of the same type. Subse-
quently, the solution of (2.13) is given for both an instantaneously and a sinusoidally
applied load.

3.1. solution for an instantaneously applied load

Let us consider the case where the loadσ is linearly increased from 0 toσ0 in the
time interval [0, δt0], and then kept constant at the valueσ0.

The differential Equation (2.13) can then be written as

a‖
∂2p

∂x2
= ∂p

∂t
+ k‖

σ0

δt0
for 0 < t < δt0,

a‖
∂2p

∂x2
= ∂p

∂t
for t > δt0.

(3.1)

An instantaneously applied stressσ will lead to an abruptly increased constant fluid
pressure. Therefore, the initial condition of the fluid pressure immediately after an
applied jump of stress can be written as

p(δt0) = −k‖ σ0 for δt0 → 0. (3.2)

We assume the fluid pressure at the end of the plates inx-direction to be zero. This
gives the boundary conditions

p
(
x = 1

2 l, t
) = p

(
x = −1

2 l, t
) = 0. (3.3)
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With these boundary conditions and the initial condition (3.2), we obtain the follow-
ing Fourier series as a solution of the differential equation (2.13) for the case of a
jump of stress:

p(x, t) = −k‖ σ0
4

π

∞∑
n=1

{
(−1)n+1

2n − 1
· cos[(2n − 1) π (x/l)]

exp[π2(a‖/l2)(2n − 1)2t ]

}
. (3.4)

3.2. solution for a sinusoidally applied load

Now we consider a sinusoidally applied load

σ = σ0 sinωt (3.5)

with the angular frequencyω. The approach

p(x, t) = f (x) sinωt + g(x) cosωt (3.6)

and the same boundary conditions as before (fluid pressure at the ends of
the plates= ambient pressure= 0) give the following solution of the differential
equation:

p(x, t) = k‖ σ0

sin2(1
2 lK‖) sinh2(1

2 lK‖) + cos2(1
2 lK‖) cosh2(1

2 lK‖)
×

× {[− sin2(1
2 lK‖) sinh2(1

2 lK‖) −
− cos2(1

2 lK‖) cosh2(1
2 lK‖) +

+ sin(xK‖) sinh(xK‖) sin(1
2 lK‖) sinh(1

2 lK‖) +
+ cos(xK‖) cosh(xK‖) cos(1

2 lK‖) cosh(1
2 lK‖)] sinωt +

+ [sin(xK‖) sinh(xK‖) cos(1
2 lK‖) cosh(1

2 lK‖) −
− cos(xK‖) cosh(xK‖) sin(1

2 lK‖) sinh(1
2 lK‖)] cosωt} (3.7)

with

K‖ =
√

ω

2a‖
. (3.8)
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4. Results

4.1. flow parallel to the direction of an applied load

4.1.1. Material Behaviour for an Instantaneously Applied Load

The creep law, that is the relation between the averaged strainε and an instantaneously
applied loadσ 0, is obtained by inserting (3.4) into (2.11):

ε(t) =
[
A‖ − 8

π2
B‖ k‖

∞∑
n=1

exp[−π2(a‖/l2)(2n − 1)2t ]

(2n − 1)2

]
σ0

= D(t) σ0. (4.1)

The termD(t) is called creep compliance. For the initial value (t → 0) and for the
equilibrium value (t → ∞) of D(t) we get

D(t → 0) = A‖ − B‖ k‖,

D(t → ∞) = A‖.
(4.2)

4.1.2. Material Behaviour for a Sinusoidally Applied Load

In the case of a sinusoidally applied load (3.5), we have to insert the solution (3.7)
of the partial differential Equation (2.13) into the constitutive Equation (2.11). This
gives the following expression for the averaged sinusoidal strain:

ε = σ0

√
C2

1‖ + C2
2‖ sin(ωt + ϕ) (4.3)

with

C1‖ = A‖ − B‖ k‖ + B‖ k‖
l K‖

×

× sinh(1
2 lK‖) cosh(1

2 lK‖) + sin(1
2 lK‖) cos(1

2 lK‖)

[sin(1
2 lK‖) sinh(1

2 lK‖)]2 + [cos(1
2 lK‖) cosh(1

2 lK‖)]2
, (4.4)

C2‖ = B‖ k‖
l K‖

· sin(1
2 lK‖) cos(1

2 lK‖) − sinh(1
2 lK‖) cosh(1

2 lK‖)

[sin(1
2 lK‖) sinh(1

2 lK‖)]2 + [cos(1
2 lK‖) cosh(1

2 lK‖)]2
. (4.5)

The loss angleϕ is given by

tan ϕ = C2‖
C1‖

, (4.6)

and the dynamic modulusEdyn is given by

Edyn = σ0

ε0
= 1/

√
C2

1‖ + C2
2‖. (4.7)
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The theoretical treatment predicts that the dynamic modulusEdyn and the tangent of
the loss angle, tanϕ, are functions of the ratioh0/H , Poisson’s ratioν of the linear-
elastic plates and a certain dimensionless quantity. This quantity5‖ is the following
function of the angular frequencyω, the viscosity of the fluidη, Young’s modulusE
of the linear-elastic plates and the ratio of the fluid path lengthl to the gap lengthh0:

5‖ = ω

(
l

h0

)2
η

E
. (4.8)

For small values of the dimensionless quantity5‖, the dynamic modulusEdyn,
denotedEstat, is equal to the reciprocal of the creep compliance for large values
of t :

Edyn
(
5‖ → 0

) = Estat = 1

D(t → ∞)
= 1

A‖
. (4.9)

For very large values of the dimensionless quantity5‖, the dynamic modulusEdyn

is equal to the reciprocal of the short-time creep compliance:

Edyn(5‖ → ∞) = 1

D(t → 0)
= 1

A‖ − B‖k‖
. (4.10)

Thus, it will be sufficient to look at the material behaviour of a harmonically applied
load.

The tangent of the loss angle is a measure of the energy dissipation per cycle. At
low values of5‖, the tangent of the loss angle increases with the quantity5‖, due
to the fluid flow relative to the matrix. The fluid flow at higher values of5‖ is more
and more in phase with the applied load, and the tangent of the loss angle decreases.
The fluid flow is negligible at high values of5‖, and the tanϕ tends towards zero.
This qualitative behaviour is shown in Figures 6 and 8. Furthermore, in Figure 6 it is
shown that increasing values of Poisson’s ratioν cause a higher energy dissipation.
The energy dissipation also increases with increasing ratioh0/H (Figure 8), which
can be interpreted as the portion of the fluid volume.
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Figure 6. Tangent of the loss angle versus5‖, variation ofν.
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Figure 7. Dynamic modulus with respect to the static modulus versus5‖, variation ofν.

Figure 8. Tangent of the loss angle versus5‖, variation ofh0/H .

The fluid flow relative to the matrix causes the dynamic modulus to increase with
the quantity5‖. At high values of5‖, the fluid flow is negligible, and the incom-
pressible fluid acts as a hindering for the lateral strain. This means that the dynamic
modulus increases with increasing values of5‖, and tends towards a maximum at
high values of5‖. This behaviour is shown in Figure 7 and Figure 9. The dynamic
modulus, with respect to the static modulus, increases with increasing values of
Poisson’s ratioν (Figure 7), and also increases with increasing portion of the fluid
volume (Figure 9).

It is worth mentioning that the Poisson’s ratio has a considerable effect on the
material behaviour in the case of the flow being parallel to the direction of an applied
load. This effect should not be neglected. The qualitative material behaviour of our
model is the same as (Rusch, 1965) predicted with his model, but he did not take into
account the effect of compressible matrix material. In addition, we can omit some
assumptions which (Rusch, 1965) needed to set up his model.
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Figure 9. Dynamic modulus with respect to the static modulus versus5‖, variation ofh0/H .

4.2. flow perpendicular to the direction of an applied load

4.2.1. Material Behaviour for a Sinusoidally Applied Strain

In the case of a sinusoidally applied strainε0 sinωt , the solution of the partial
differential Equation (2.27), inserted into the constitutive Equation (2.25), gives the
following expression for the averaged stress:

σ = ε0

√
C2

1⊥ + C2
2⊥ sin(ωt + ϕ) (4.11)

with

C1⊥ = A⊥ − B⊥ k⊥ + B⊥ k⊥
b K⊥

×

× sinh(1
2 bK⊥) cosh(1

2 bK⊥) + sin(1
2 bK⊥) cos(1

2 bK⊥)

[sin(1
2 bK⊥) sinh(1

2 bK⊥)]2 + [cos(1
2 bK⊥) cosh(1

2 bK⊥)]2
, (4.12)

C2⊥ = B⊥ k⊥
b K⊥

· sin(1
2 bK⊥) cos(1

2 bK⊥) − sinh(1
2 bK⊥) cosh(1

2 bK⊥)

[sin(1
2 bK⊥) sinh(1

2 bK⊥)]2 + [cos(1
2 bK⊥) cosh(1

2 bK⊥)]2
,

(4.13)

K⊥ =
√

ω

2a⊥
. (4.14)

In this case, the loss angleϕ is given by

tan ϕ = C2⊥
C1⊥

, (4.15)

and the dynamic modulusEdyn follows from

Edyn = σ0

ε0
=

√
C2

1⊥ + C2
2⊥. (4.16)
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Figure 10. Tangent of the loss angle versus5⊥, variation ofν.

The dynamic modulusEdyn and the tangent of the loss angle, tanϕ, are again func-
tions of the ratioh0/H , Poisson’s ratioν of the linear-elastic plates and a certain
dimensionless quantity. This quantity5⊥ is analogous to the quantity5‖, but the
ratio of the fluid path length to the gap length is now given byb/h0:

5⊥ = ω

(
b

h0

)2
η

E
. (4.17)

For small values of the dimensionless quantity5⊥, the dynamic modulusEdyn,
denotedEstat, is

Edyn (5⊥ → 0) = Estat = A⊥. (4.18)

For very large values of the dimensionless quantity5⊥, the dynamic modulusEdyn

is given by

Edyn (5⊥ → ∞) = A⊥ − B⊥k⊥. (4.19)

The qualitative material behaviour when the flow is perpendicular to the load is
similar to the behaviour of the case where the flow is parallel to the load (Figures

Figure 11. Dynamic modulus with respect to the static modulus versus5⊥, variation ofν.
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Figure 12. Tangent of the loss angle versus5⊥, variation ofh0/H .
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Figure 13. Dynamic modulus with respect to the static modulus versusπ⊥, variation of
h0/H .

10–13). The maximum energy dissipation per cycle, when the flow is perpendicular
to the load, is considerably lower than the maximum energy dissipation of the first
case. However, now the influence of Poisson’s ratio on both, the tangent of the loss
angle (Figure 10) and the dynamic modulus (Figure 11), is negligible. Increasing
values of the fluid volume portionh0/H again cause a higher energy dissipation
(Figure 12) and higher values of the dynamic modulus (Figure 13).

5. Conclusion

The presented micromechanical model of a fluid-filled open-cell foam is appropriate
to describe the damping behaviour resulting from fluid flow during deformation.
Furthermore, the model yields the parameters upon which the damping behaviour
depends. This cannot be found by using macroscopic continuum approaches, and,
with this understanding, it is possible to construct fluid-filled open-cell polymer
foams with desired damping characteristics.

The parameters on which the damping behaviour depends, are the Poisson’s
ratio ν, the fluid volume portionh0/H and a dimensionless quantity. When the
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load is applied parallel to the direction of the fluid flow, the quantity is given by
ω (l/h0)

2 η/E, and, when the load is applied perpendicular to the direction of the
fluid flow, the quantity is given byω (b/h0)

2 η/E.
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