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IMPLICATIONS OF SOME ANALYTICAL SOLUTIONS FOR DRAINAGE OF SOIL WATER 

P.A.C. Raats 

INTRODUCTION 
To describe movement of water in unsaturated soils, just over 50 

years ago, Richards (1931) proposed the simplest possible balance 
of mass and balance of momentum, the latter expressed in Darcy's law. 
Restricting attention to one-dimensional vertical flows, the balance 
of mass for the water may be written as: 

oe o 
Ot - - ~ ev, (i) 

where t is the time, z is a vertical coordinate with its origin at 
the soil surface and taken positive downward, 8 is the volumetric 
water content, and v is the velocity of the water. The volumetric 
flux ev is given by Darcy's law: 

ev =- k [8] Oh ~-.-~-z + : k [ O ] ,  (2)  

= - D [ e ]  ae (3) 

where h is the tensiometer pressure head, k is the hydraulic 
conductivity, and D is the diffusivity defined by 

dh 
D =k ~--~. (4 )  

Symbols enclosed in square brackets denote functional dependence. 
Unlike the dependence of k upon e, the dependence of h upon 8 tends 
to be subject to hysteresis. As a consequence, equation (3) is, 
strictly, only valid for monotonic changes in water content from 
some initial condition with uniform @ and h. 

Introducing (3) into (i) gives 

88 8 D [8 ] ae a8 (5) 
8t - 8z ~zz - ~:[ e ] 8-'~" ' 
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where 

[ e  ] = dk /de .  (6)  

If the gradient of the tensiometer pressure head << i, then the 
first term on the right hand sides of (2), (3), and (5) can be 
neglected. Thus for such purely gravitational flows 

ev = k [  e ] ,  or  v = k [ O ]  /e ,  (7) 

0_£ = .[o] 0e (8) 
8t 8z 

Equation (8) is a kinematic wave equation with wave s p e e d  ~ [ @ ] 
(of. Whitham, 1974). According to (8), surfaces of constant e will 
propagate downward at speeds ~ [ e ] . The ratio R [ @ ] of the wave 
speed ~ [ e ] to the speed Vg of a parcel of water due to the 
gravitational force is given by: 

_ ~ _ dk/de k -Idk d in k (9) 
R[e] Vg ~ - e - l d e  - d i n  e " 

Thus R is equal to the ratio of the relative rates of change of 
k and of e. This ratio will be shown to play an important role in 
gravitational drainage. 

The main difficulty in applying Richards' theory is the spatial 
variability of the parameters. In recent years the distribution of 
the parameters has been determined in numerous field experiments. 
Often the distributions are found to be lognormal. Lognormal 
distributions satisfy the following reproductive rule: if the 
variable X is lognormally distributed with mean ~ and variance 02 , 
then e a ×b is lognormally distributed with mean a + bB and 
variance (bo) 2 (Aitchison and Brown, 1957). The theory of scaling 
and similarity of unsaturated soils implies that various parameters 
and physical properties ~ are proportional to integer powers n of a 
microscopic length scale k (see Miller, 1980 for a review of this 
theory). Thus, if the length scale is lognormally distributed, then 
it follows that various parameters and physical properties will also 
be lognormally distributed. A summary of the results is shown in 
Table i. A detailed derivation and evaluation is presented elsewhere 
(Raats, 1983). 

The main purpose of this paper is to describe the theoretical 
background of some experimental techniques commonly used to collect 
the field data showing the distribution of the physical properties. 
Much of the analysis will be valid for arbitrary dependencies of h 
and k upon @. In some parts one of the following two classes of 
soils will be considered: 

A. Soils with a linear retention curve and an exponential depen- 
dence of the hydraulic conductivity upon the water content; 



1 6 3  

TABLE i 

Scaling rules and implied means and variances for a set of similar 
media with lognormally distributed length scales. 

n Mean of v Variance 
of 

t -3 -3 ~ 9 o2 

h -i - ~ 02 
H -i - ~ o2 

x ,  y ,  z -I - ~ O= 

e 0 - 

v i ~ 02 

dO/dh 1 ~ o2 
D 1 ~ o2 

k -Idk/dh (= a for A) i ~ 02 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . - - -  

k 2 2B 4o = 
ev 2 2~ 4o = 
v 2 2~ 4o2 

= dk/dO 2 2 ~ 4 02 

dk/dh 3 3 ~ 9 o2 

B. Soils with power function dependencies of the pressure head and 
the hydraulic conductivity upon the water content. 

These relationships are listed in Table 2, together with the 
implied dependencies of the diffusivity upon the water content and 
of the hydraulic conductivity and diffusivity upon the pressure 
head. 

Note that the implied dependencies for class A are all exponential 
functions and for class B are all power functions. The exponential 
dependence of k upon h implies that (2) may be replaced by 

Ov = - a -  i ak 
'~z  + k  , ( i 0 )  

i.e. the flux is linear in k. Introducing (i0) into (i) and using 
the exponential relationship for k [ e ] listed in Table i gives 
(Raats, 1976): 

( B k ) - I  Ok ~x_ 1 0 2 k  Ok 
O-T = ~ - ~ . (n) 
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TABLE 2 

Two classes of soils. 

Mildly nonlinear Power function 
soils (A) soils (B) 

h r + ~(e - e r) primary re- h [ @ ] 
lationships 

k[@] 

derived re- D [ e ] 
lationships 

k r exp 8(e - e r 

D r exp B(@ - e r 

where D r = 7k r 

k [h] k r exp a(h - h r 
where a = 8/? 

D [ h ] D r exp ~(h - h r 

hs (e/es)~ 

ks (e/e s )m 

D s (e/e s )n 
where D s 

[] 

= (£kshs/@ s) 
=~ +m-i 

ks(h/ha )p 
where P = m/£ 

Ds(h/hs )q 
where q = n/£ = 

(~ + m - i)/~ 

The mild nonlinearity of (ll)guarantees a qualitatively correct de- 
scription. If the exponential relationship between k and h were 
combined with the linear relationship between k and O given by 

k = k r + m (O - O r), (12) 

then the factor (6k) -I on the left hand side of (ii) would be 
replaced by ~-i . The resulting linear flow equation can be used 
to describe certain integral features of water movement, but does 
not adequately describe the distribution of the water content 
(Ababou et al., 1979). 

Class A was used in studies of drainage of soil profiles by Raats 
(1976) and Parlange (1982) and in an analysis of constant-flux 
infiltration from a hemispherical cavity by Clothier and Scotter 
(1982). Class B was used in many studies including an analysis of 
redistribution by Gardner et al. (1970). Both classes, sometimes 
in slightly different and/or incomplete forms, have been used as a 
basis for evaluating field observations (Nielsen et a2., 1973; 
Warrick et al., 1977 a, b; Simmons et al., 1979; Libardi et al., 
1980) 

2. INSTANTANEOUS PROFILE METHODS 
A soil is characterized by the dependencies of h and k upon 8. 

Simultaneous measurements of distributions of @ and h yield directly 
h [ 8]. If the distribution of @v could also be measured, then k[@] 
could also be calculated. A method for measuring the distribution 
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of 8v does not exist at present and is not likely to be forthcoming. 
But one can get around this shortcoming of technology by integrating 
the balance of mass: 

z2[t] 08 
(eV)lz [ t ] (ov)l = - z~[t] -z~[ t ] ~-dz, (13) 

or, using Leibniz's rule, 

(OV)Iz2[t] -(Ov) %[t] = O[z2,t] dtdZ~ 

- O[z z ,t] d--~- dzl d--{d z2[t ] - z/[t] Odz. (14) 

Equation (14) shows that one of the fluxes on the left hand side 
can be calculated, provided the other flux, the time course of the 
distribution of the water content, and the velocities dz I /dt and 
dz2/dt are known. Two important special cases of (14) are: 

I. z I is the soil surface with flux equal to zero and z 2 is 
independent of time 

Z2 
d f Odz. (15) (0V)Iz 2 = - Zl 

2. zlis independent of time and z2[t ] is the location of a zero- 
flux plane 

(SV)Iz I z2It] dz2 (16) d f 8dz - 8[z 2,t] at = ~-6~ 

Cooper (1979, 1980) gave a time-integrated version of (16). Although, 
following Richards et al. (1956), the zero-flux plane method for 
calculating fluxes has often been used, I have not found in the 
literature a derivation of Equation (16) as such. 

In this paper I restrict my attention to the first special case. 
Introducing (2) into (15) and solving for k gives: 

d z2 

k d--{ z { 8dz 
= Oh (i 7 ) 

Oz 

To calculate k from (17), the time courses of the distributions of 
8 and h must be known. Collecting and processing such data is 
expensive. This explains the keen interest of soil physicists in any 
features in data sets that may relax the data requirements and/or 
simplify the data analysis. The main such features in some data sets 
are : 

I. The gradient of the tensiometer pressure head is << 1 i.e., 
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the flow is nearly purely gravitational. If this so-called unit 
gradient approximation is acceptable, then only the time course of 
the volumetric water content needs to be measured (Black et ai., 
1968; Davidson et s2., 1969). 

2. The average water content above depth z is a linear function of 
the water content at depth z (Simmons et a2., 1979; Libardi et a2., 
1980). 

3. The water content distributions at successive times are paral- 
lel (Black et ai., 1968; Davidson et ai., 1969). 

In Section 3 the implications of feature I will be described for soils 
with arbitrary dependencies of h and k upon 8. In Section 4 the influ- 
ence of capillarity will be evaluated for soils of class A. It will 
be shown that features 2 and 3 can be rationalized to some extent. 

3. GRAVITATIONAL D~%INAGE 
Drainage of uniform profiles with a deep water table requires 

solution of (8) subject to the initial condition 

e[z,0] = 8i, k[z,0] : ki, for z > 0, (18) 

where 8. and k i are the uniform initial water content and hydraulic 
i . 

conductlvlty in the soil profile. Sisson et al. (1980) observed 
that if one adds to (18) a fictive condition 

8[z,0] = era, k[z,0] = k m = 0, for z < 0, (19) 

where e m is a fictive, uniform water content in the region z < 0, 
chosen such that the hydraulic conductivity k m corresponding to 
e m is zero, then conditions (18) and (19) describe an initial shock 
and solution of (8) subject to these conditions describes the decay 
of this shock. The solution of this type of problem is due to Lax 
(1972, 1973). Values of water content in the range e m < e < 8 will 
propagate downward from the soil surface at speeds ~ [~ . i Noting 
that 

8z 
~[0]  = ~ I  0 , (20) 

it follows that the depth z at which the water content will be @ 
at time t is given by 

z[O,t]  = ~[O]t .  (21) 

For depths larger than z > ~[Oi]t the water content will be O i- 
If k is given as a function of 8, then the profiles 8[z,t] can 
be easily determined graphically (Raats, 1982). In Fig. 1 the 
depth-time courses of particular water contents are shown in the 
first quadrant: according to (21) these are straight lines with 
slopes ~ [e]. Intersections of the straight lines with vertical 
lines of constant t give pairs of 8 and z at constant t. From this 
the successive profiles of 8 shown in the third quadrant can be 
plotted. Intersections of the straight lines with horizontal lines 
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of constant z give pairs of 8 and t at constant z. From this the 
successive time course of 8 shown in the first quadrant can be 

plotted. 

- - . v  

Fig. i. Depth-time course of water content for gravitational drainage 

Sisson et al. (1980)derived explicit expressions for e[[ z,_t e] for 
the classes of soils listed in Table 2. Introducing the 
relationship for Class A into (21) gives an explicit expression for 
the successive water content profiles: 

0 = O i + B -z I n  8--~'~t' 0 < 0 < 0± .  ( 2 2 )  

Note that for class A the condition (19) is not satisfied in the 
physically relevant range 0 < 8 < 8 i. As was pointed out already by 
Sisson et a2., purely gravitational drainage will for soils of 
class A imply 8 = 0 for z < x [ 8 = 0, t]t. Thus the complete solution 
is 

e = o )  

O = O i + 8 -I 

8 = ei, 

z < , , [ e  = o ] t ,  

~, z , , [ e  = o ] t  < z < , , [ e  = e i ]  t ,  i n  t--T?£ 

z > , , [ e = e i ]  t ,  

(23) 
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where ~ is defined in Table 2 and ~. is defined by 
i 

T i = (~6ki)-~ . (24) 

If the expression for e in (23) is considered over the entire range 

- ~ < O < =, then curves of Be versus ~z at successive t/T i are seen 

to be parallel to each other (see Fig. 2). 

( t z  

3i 

o ~o /4e 20 "1, ' '~ 
\1 

e )C = t / TL 

30 

,0 I I I11 

I 
I 
I 
i 
I 
I 

Fig. 2. Water content profiles during gravitational drainage of 

soils of class A. 

Earlier it was pointed out that this is one of the features in 
some data sets. In section4 it will be shown that, even if the 

effect of capillarity is not neglected, for class A, the curves of 

e versus z at successive times will still be parallel, but then 
with a zone e < 0 appearing only after a very long time. 

Returning to the general case, the amount of water stored at time 
t above depth z is given by 

z 

w =0 / Odz. (25) 
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For purely gravitational flow a surprisingly simple expression for 
w, valid for any k[8] will now be derived. Integration of (19) by 
parts gives 

8 
w = 8z - f z de. (26) 

8m 

Introducing (21) into (26) and evaluating the integral at constant 
t, recalling that k m = 0, gives 

w = 8z - kt. (27) 

Although Sisson et al. did not derive this general expression for 
w, for specific exponential and power function dependencies of the 
hydraulic conductivity upon the water content, they did derive 
expressions for w that are consistent with (27). Equations (26) and 
(27) allow a simple graphical interpretation. In the third quadrant 
of Fig. i, at t = I, z = 0,2, and 8 = 0,35 the term 8z corresponds 
to the rectangle ABCD, while the integral in (26) and kt in (27) 
correspond to the shaded area. Solving (27) for k gives: 

k[8] 8z - w 
= t (28) 

This equation gives a very simple recipe for calculating the k[O] 
curve from a single observed profile of the water content at time t 

The average water content above depth z is given by 

~ w/z. (29) 

Dividing both sides of (27) by z and using (29), (21), and (9) 
gives 

= (i - R -I [8])e. ( 3 0 )  

From purely gravitational drainage, equation (30) relates the 
average water content e above depth z to the water content at 

depth z. This relationship is surprisingly simple: it does not 
involve the depth z and time t explicitly. For classes A and B in 
Table 2, equation (30) reduces to, respectively 

= 8 - B -I, for class A, (31) 

= (I - m ~ )e, for class B. (32) 

It appears that these two are the only classes yielding a linear 
relationship between 8 and 8. As mentioned earlier, such a linear 
relationship is sometimes observed (Simmons et al, 1979; Libardi 
et a2., 1980). 
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4. THE INFLUENCE OF CAPILLARITY 
The relatively simple forms of the flux ev and the flow equation 

for soils of class A, given by (15) and (16) can be used to 
evaluate the influence of capillarity upon the drainage process. 
The method of separation of variables can be used to show that 
(Raats, 1976) 

i + aZ 
0 = Oio + 6 -I in ~.+ t/~i ° (33) 

is an exact solution of equation (ii). The parameter Tio in (33) 
is given by 

Tio = (~6kio)-~ , (34) 

with kio being the hydraulic conductivity corresponding to the 
initial water content 8io at the soil surface. Setting t = 0 in 
(33) shows that (33) describes water content profiles evolving from 
the initial distribution 

O i = Oio + 6 -1 ln(l + az). (35) 

[ In equation (25) of my earlier paper (Raats, 1976), the sum 
(i + ~z) is mistakenly multiplied by kio ] . A plot of (35) is shown 
in Fig. 3. 

( t z  

2 

0 10 " -  20 30 
I 

e 3°- 1 

e 3o- 31 

?o_ 1 

I 
I 

I 
I 
I 
I 

~. 9 0 = t / T L o i n ( 3 2 )  
I 

94.4 6.7:  t / r i  i n (35 )  

Fig. 3. Water content profiles during drainage of soils of class A, 
including the influence of capillarity. 
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The profiles described by (22) and (33) are closely related. The 
plots of (22) are transformed in plots of (33) by shifting the 
origin of the z-axis a distance ~ downward and reducing t by a 
period ~o-Just as for (22), the curves of 8 versus z at successive 
t described by (33) are parallel to each other. 

The only remaining problem is that (33) with Tio given by (34) 
evolves from the very specific, nonuniform initial condition (35) 
rather than the uniform initial condition (18). Some recent 
comments of Parlange (1982) on the paper by Sisson et a2. (1980) 
resolve this dilemma. Parlange also considered soils of class A 
in Table 2. He derived an expression for dk/d8 from which, in the 
notation of this paper, follows: 

I + ~z 
O = O i + 8 ~ in ( I ~  t)/T i , (36) 

with ~ given by 

k° 8i " e° ~ (37) 
T = F~-..~o t + ki - ko 

To obtain his expression for dk/dS, Parlange integrated (i0) to 
obtain an expression for k, and used equations (7) and (21) with t 
replaced by an arbitrary function F(t) to get an estimate of 8v. 
He evaluated F(t) on the basis of a mass balance for the entire 
profile. The resulting solution satisfies the initial condition (i~), 
implies the exact cumulative drainage kit and approximately accounts 
for the influence of capillarity. The shape of the water content 
profile is not exact, but a zone with 8 = 0 will emerge only after 
some time. 

In (37) the subscript o denotes time dependent values of 8 and 
k at the soil surface. Using the exponential relationship between 
k and 8 and setting z = 0, equations (36) and (37) can be written 
as : 

+ t = (ki/ko)~i, (38) 

ko 
= ~ {t + ((ki/k o) in (ki/ko))Ti}, 

Solving (38) and (39) for t and ~, respectively, gives: 

t/~ i = {(ki/ko) - i - in (ki/ko)} , 

(39) 

(4o) 

T/~ i = {i + in (kilko)}. 

Using (41) to eliminate ki/k o from (40) gives 

(41) 
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t/~ i = {exp (~/~i - i) - ~/~i }. (42) 

Introducing the exponential dependence of k and e in (40) and (41) 
gives : 

t/~ i = exp B(e i - e o) - 1 - B(O i - eo) , (43) 

T/T i = 1 + B(e i - eo). (44) 

Equations (42), (43), and (44) are plotted in Fig. 4. 

/ tel- eo) 
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u / I t / ~ - . - O  ~ ' - .  r i M - , - , - ,  I 
I " ~ ' . ~  I 
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T/T~ 

Fig. 4. Relationships among t/Ti, T/~i, and ~(e - ei). 

In the limit of small t/~ i the parameter ~/~i approaches unity and, 
hence, (37) reduces to (33). In the limit of large t/Ti, the 
parameter ~/~i << t/~i and, hence, (37) reduces to 

1 + ~ Z  
e = e i + B ~ in ~ t  (45) 
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For intermediate times the deviation from these limits is large. 
Equations (33) and (36) describe the same set of water content 
profiles, but the times at which the various profiles occur differ 

(see Fig. 3). 

Introducing (32) into (26) gives 

w = 8z - (x + t) (k - k o) + ~-~ (e - Co). (46) 

Solving (46) for k gives 

ez - w + ~-~ (8 - e o) (47) 
k = k o - 

T + t 

Introducing (46) into (29)gives 

= e - (~  + t )  ( k  - k o )  - ~ '~  (6) - C o )  ( 4 8 )  

If ~, e~, and k o are zero then (46), (47), and (48) reduce to (27), 
(28), and (30). As was pointed out before, for soils of class A in 
Table 2 the influence of gravity upon the water content profiles is 
merely a shift of the profiles in space and in time. Unfortunately 
the resulting expressions for w, k, and e are far more complicated. 
To use (47) for calculating k from observed water content profiles 
requires prior knowledge of ~, 8, and k o. Of course, one could use 
(47) as the basis of an interative procedure. Using (38) in (47) 

gives 

exp 8(8 - e o) + 6(e - e o) + =6(ez - w) = i. (49) 

Equation (49) can be used to iteratively estimate e and B from 
the water content profile above an arbitrary depth z. It would be 
worthwhile to analyze some of the existing data sets on the basis 
of (28) and (49), particularly any sets in which the successive water 
content profiles are parallel for some period. 

5. CONCLUDING REMARKS 
Instantaneous profile methods are often used for in situ 

determination of physical properties. Among this group of methods 
the one based on the process of drainage of a uniform profile from a 
uniform initial condition is commonly used to study spatial varia- 
bility of field soils. To relax the data requirements and/~ 
simplify the data analysis, special physical and empirical assumptions 
are often used. In this paper some ~f the commonly used assumptions 

have been justified. 
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