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Abstract-Filtration of submicrometer aerosol particles by nonhomogeneous porous filters is 
studied analytically. The effect of inhomogeneities is to cause nonuniform pressure gradient and 
concomitant curvilinear mesoscale air streamlines within the filtering material. A general equation 
governing change of aerosol filtration length along curved air streamlines is developed. 

Analytical analyses are performed for a homogeneous bulk filter material containing a small 
volumetric fraction, a, of spatial inhomogeneities (inclusions). An expression is derived for the 
effective filtration length of such a composite filter material, relative to the comparable length of the 
corresponding uniform matrix and the filtering properties of the inclusions. 

Calculations performed for spherical inclusions show that they tend to decrease the aerosol 
filtration efficiency when their porosity is less than that of the surrounding filter medium. However, 
the effect of inclusions with porosity exceeding that of the filter material is to decrease the aerosol 
filtration length, i.e. to enhance the aerosol collection rate. 

The model was tested by experiments performed for submicrometer aerosols, collected in a granu- 
lar bed filter. It was composed of 1.4 mm spherical glass beads, forming a homogeneous matrix, and 
15 mm balls, serving as impermeable inclusions. For such a medium the model predicts a nonmono- 
tonic a-dependence of the effective filtration length, which qualitatively agrees with the experimental 
data. 

1. INTRODUCTION 

Classical filtration theory (Dorman, 1974; Pith, 1966; Davies, 1973) treats the filtration 
problem by calculating the aerosol collection rate on a single filter element, the size and 
shape of which are chosen to best represent the microstructure and porosity of a given 
filtering material. The filtration efficiency y is calculated by summing up the contributions 
of all such elements to yield 

ye = 1 - z = 1 -exp(-L/l), 

where tiin, &,, are the respective aerosol concentrations in the inlet and the outlet of a filter 
of thickness L, and 1 is the characteristic filtration length (Leers, 1957). Known models for 
the evaluation of I include those based on single element efficiency (Davis, 1973; Brown, 
1993) and dispersion-reaction theory of aerosol filtration (Shapiro and Brenner, 1990; 
Shapiro et al., 1991). 

The above approaches assume that the filter medium is macroscopically homogeneous. 
One example of such filters is packed beds of granules (Tardos et al., 1978) of similar shapes 
and sizes (e.g. sand beds). However, fibrous filters are oftentimes characterized by 
nonuniformities of different sizes, distributed within the filter medium. These nonuniformi- 
ties are known to produce a strong effect on the filtration properties. In some cases they lead 
to an increase of penetration of submicrometer aerosols by a several-fold factor (Liicke 
et al., 1993). 

The existence of structural nonuniformities introduces an additional length-scale into the 
hierarchy of scales existing in all porous materials (Adler, 1992). Normally these scales 
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include microscale (of the order of the collector size, d), used for the description of 
interstitial aerosol transport and collection, and macroscale, comparable to the filter 
external size, L. In addition to the above, in nonuniform filter materials there exists an 
intermediate, or mesoscale a, characterizing the average size of nonuniformities, however, 
still much larger than collector diameter d, or the average interstitial pore size. Accordingly, 
at this mesoscale the filter is viewed as a continuum with spatially nonuniform properties. 

The effect of spatial inhomogeneities is to produce a nonuniform mesoscale pressure 
gradient distribution within the filter material. Since this pressure gradient is proportional 
to the local mesoscale velocity via Darcy’s law (Bear,1972), aerosol particles move in 
different parts of the filter material with different mesoscale velocities. This nonuniform 
mesoscale velocity distribution results in different microscopic velocity fields (prevailing 
around each collector element). Therefore, particle collection mechanisms may change 
along the mesoscale streamlines. As such, different parts of the filter material may collect 
aerosol particles at different rates. 

The overall effect of the above processes on the filtration efficiency depends on the 
nonhomogeneous structure of the filter material (e.g. size, shape and porosity distributions 
of inhomogeneities) as well as on the spatial variations of the collector size and orientation 
distributions. If this information is known, for example, by means of a detailed investigation 
of each given nonhomogeneous filter, classical filtration concepts can be applied to calcu- 
lation of the aerosol collection rate (Schweers and Loffler, 1993), with the above detailed 
information being accounted for in appropriate numerical calculational models. In general, 
one can state that the more we know about the nonuniform nature of the filter material, the 
better we can predict its filtration efficiency. 

Measurements of the above meso- and microscale filter properties (Lticke et al., 1993) and 
computer calculations accounting for this extensive information constitute very difficult 
tasks. It may turn out that several parameters, employed in such calculations, such as 
angular distribution of the collector elements, are unnecessary for the majority of filter 
materials. As such, an important problem deserving special attention is characterization of 
the nonhomogeneous filter structure by easily measurable parameters and their incorpora- 
tion in simple and efficient models for calculating aerosol collection rates. Towards this 
goal, in this paper we attempt to devise a basic model of aerosol filtration by spatially 
nonhomogeneous filter materials, which is amenable to analytical analyses. 

2. PHYSICAL MODEL 

The filter material is assumed to be a uniform matrix, containing a certain volumetric 
fraction c( of inclusions of size a (see Fig. 1). Both inside and outside the inclusions, the filter 
structure is assumed to be homogeneous, albeit with different porosities. The filter medium 
porosity E is, thus, a piecewise continuous function: 

s= E1 
i 

outside inclusions, 

82 inside inclusions, 

where, generally, s1 # s2. The total filter void fraction may be expressed as 

(2) 

s = LX&Z + (1 - cX)E,. (3) 

We assume the size a of the inclusions to be much smaller than the characteristic filter 
dimension L, but much larger than the mean distance between the collector elements, yi, 
either inside, or outside the inclusions. The distance yi is related to the collector diameter 
d via the porosity as 

d”/$ = 1 - Ei, i = 1,2, 

where n = 2 for cylindrical and II = 3 for spherical collectors. This yields 

yi = d(1 - Ei)-l’n: 
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Fig. 1. Schematic of the mesoscale filter geometry and aerosol flow between the successive layers of 
inclusions. 

and the constraints imposed upon a are 

d(1 - &i)-lin < a 6 L, i = 1,2. (4) 

In particular, for i = 2 the above left inequality means that each of the inclusions contains 
sufficiently many collector elements. Inequality (4) defines an intermediate (meso-) length- 
scale a, which characterizes the filter nonhomogeneous structure. 

The above simplistic model is not aimed at describing in a detailed manner non- 
homogeneous structures of industrial filters. In granular bed filters, inhomogeneities may be 
associated with local variations of the granular sizes, especially when beds are composed of 
polydisperse granules which are not well mixed. Sometimes combinations of granules are 
used, the sizes of which differ significantly (Ives, 1989). Large granules (of size a) form 
inclusions and smaller granules (of size d) filling the voids between the large ones serve as 
a porous matrix. In this case Ed = 0, and the model proposed here may be used to 
rationalize the choice of the granular sizes (a and d) and the volumetric fraction CI of the 
above bidisperse granular distribution. 

In fibrous filters, inhomogeneities are usually formed by irregular structures embedded 
within flat fibrous sheets. The size a of these structures may not be small to comply with 
inequality (4) and, hence, may not correspond to an idealized geometric model here 
considered. In fact, the model (2)-(4) is but a particular case of a more general situation, 
where one can specify arbitrary meso- or even macrostructural inhomogeneities, as em- 
bodied in the distributions of porosity, E, permeability, rc, fiber diameter, and orientation: 

E = c(r), K = it(r), etc. 
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Such an approach was attempted by Schweers and LofIler (1993) and Lajos (1985) who 
subdivided the filter in a lattice of volume elements of size m < L, each characterized by its 
own structure. This can be described by considering porosity, permeability, etc., as piece- 
wise continuous functions of a mesoscale spatial position r. A particular case, where such 
spatial elements differ only by their porosity (and permeability), with all other properties 
being identical, clearly falls within the scope of model (2). 

The present treatment is aimed at calculation of the macroscopic properties (at the 
length-scale L) of the filter medium, i.e. its characteristic pressure drop and the overall 
aerosol characteristic filtration length, provided that these quantities are known at the 
mesoscale. We, thus, calculate the aerosol filtration rate in a representative mesoscale filter 
volume element, surrounding one inclusion (see Fig. 1). The first step towards this goal is 
calculation of the mesoscale air velocity distribution in this element. 

3. MESOSCALE VELOCITY DISTRIBUTION WITHIN A NONUNIFORM 
FILTER MATERIAL 

Denote the permeabilities of the filter matrix and of the inclusions by K~ and K?, 
respectively. That is, the permeability K(r) of the composite filter material is 

,<= K1 
i 

outside T. 

ti? inside T, 

where r is the volume domain inside each inclusion and r is the mesoscale position vector. 
We assume that Darcy’s law (Bear, 1972) is valid everywhere, i.e. 

V.V=Q V= -“VP 
11 ’ 

(6a, b) 

where V = d/h; V(r), P(r) are the mesoscale air velocity and pressure fields and ~1 is the air 
dynamic viscosity.* 

The pressure distribution within the filter material is obtained by eliminating the velocity 
from equations (6a, b), which yields Laplace’s equation 

V2P = 0 inside and outside T. (7) 

This is to be solved subject to the following boundary conditions: 

P - continuous across ?t. 

K,V.vP = KzV.VP, rE?T. 

(ga) 

@b) 

expressing continuity of the pressure and the velocity component normal to the interface & 
separating two porous materials with v being the unit vector normal to 8~ (see Fig. 2). For 
a small volumetric fraction a, equations (7) and (8) are solved for a single inclusion subject to 
the condition to uniformity of the air flow velocity at a large distance from z. This may be 
expressed in terms of the cylindrical coordinates r, z, 0 (see Fig. 2) in the form 

p= $ 
( > 

P rcosH + const = - - V, rcosfl + const as Y + m. (9) 
?’ lil 

In the above the constants (dP/dz), and 

V, = -K, (dP/dz),//l (10) 

are the pressure gradient and the air velocity far from the inclusion respectively. 
In the situation where a is not small, equation (9) cannot be used. In this case equations 

(7) and (8) are solved in the whole filter material subject to the condition K~V' VP = 0, 

*One should note that the above velocity and pressure fields are different from their microscale counterparts V. p, 
defined at the interstitial, or microscale. 
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Fig. 2. Aerosol mesoscale streamlines near an inclusion placed within a homogeneous filtering 
material. 

imposed on the filter walls. Mathematically this represents a particular case of equation 
(8b), where IQ = 0. Equation (7) may be solved for any porosity distribution within the filter 
by the application of known methods of mathematical physics. The solution for this 
problem may be used to calculate the mesoscale air flow trajectories, required for calcu- 
lation of the aerosol deposition [see equations (19)-(23)]. 

Below we derive an approximate solution (q-(9) in a particulate case, where o! -% 1. Specifi- 
cally we are interested in a solution at large distances from a single inclusion. This will prove 
useful in deriving a general functional form for the effective filtration length (see Section 4). 

Assuming, for simplicity, axisymmetric inclusions, the large r solution may be shown to 
possess the following general from (Morse and Feshbach, 1953): 

P(r,@z g 
( >[ m i3 

A,P,(c0s8)(~)L+2+cos8]r+const r-03, (11) 

where Pk (x) is the kth Legendre polynomial and Ak (k = 0, 1, . . . ) are constant coefficients. 
One can further use equations (6a, b) to show that 

s VP.dS=O, 
sn 

(12) 

where dS is the surface element on any surface Se surrounding the inclusion. Substituting 
P given by equation (11) into equation (12) and choosing So as a sphere of a sufficiently large 
radius r = ro, one obtains that all terms in the infinite series in equation (11) vanish except 
k = 0, for which PO (cos 0) = 1. This immediately yields A0 = 0. Therefore, for large r the 
solution for the pressure field is 

P(r,8)=(~)a[A~(~))+1]rcosf3+O(rm3), r+co. (13) 

The components of the velocity field far from the inclusion are obtained by the introduc- 
tion of equation (13) into equation (6b): 

V, = T/,(1 - 2Ala3/r3)cos8 + 0(re4), r 9 a, (144 

V, = --Fm(l + AIa3/r3)sintI + 0(rp4), r 9 a. (14’4 
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The air flow streamlines through the porous filter material are obtained from the 
differential equation 

ldr V, --=- 
r d0 V,’ (15) 

Upon substitution of equation (15) into equations (14a, b) and integration, one obtains 

(16) 

where X, is an integration constant, representing the distance between the streamline and 
the z-axis at r -+ co (see Fig. 2). This equation shows that far from the inclusion the 
streamlines tend to straight lines x, = const parallel to the z-axis. The x- and z-velocity 
components may be obtained from equations (14a, b) by means of the relationships 
V, = V, cos 0 - V, sin 0, V, = V, sin 0 + V, cos 8. 

In Section 5 we use the large r solution form (13) and (16) for a general estimate of the 
effective filtration length of the nonhomogeneous filter material. 

4. AEROSOL TRANSPORT AND DEPOSITION WITHIN 
UNIFORM FILTER MATERIALS 

As one can see from equations (14a, b), the mesoscale flow velocity field in the region 
exterior to the inclusion is nonuniform and gradually approaches the uniform flow for 
r + 00. In the latter undisturbed region the following mesoscale aerosol transport and 
deposition equation is valid (Shapiro and Brenner, 1990; Shapiro et al., 1991): 

d2n 
U,* $= - Dzz --z 

dz2 
+ Kzznn, = 0, (17) 

where nm = n,(z) is the mesoscale aerosol concentration far from the inclusion, and 
the constant coefficients UZV, LIZ=, K,= are the mesoscale aerosol velocity, diffusivity 
and volumetric deposition coefficient in the uniform filter matrix.+ These quantities 
may be calculated from the microscale unit cell analysis, as outlined in the disper- 
sion-reaction theory of aerosol filtration. In particular, it has been shown that in 
many practically important situations encountered in aerosol filtration the diffusive 
term in equation (17) may be neglected. Therefore, equation (17) may be rewritten in 
the form 

dn, 1 
x+rn, =o, 

cc 

where 

(184 

is the characteristic filtration length of the material, prevailing far from the inclusion. 
Equation (18a) is generalized to include spatial dependence of the mesoscale aerosol 

transport coefficients 

V.[U(r)n - D(r).Vn] + K(r)n = 0, (19) 

where n(r) is the aerosol mesoscale concentration and U(r), D(r), K(r) are the mesoscale 
position-dependent transport coefficients. These may be calculated from the disper- 
sion-reaction aerosol filtration model by assuming it to be applicable locally at every point 
r, using the local value V(r) of the air velocity. This assumption of the local applicability of 

‘Note that, generally, aerosol velocity U,, differs from air velocity V, (Shapiro et al., 1991). 
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the dispersion-reaction model and the mesoscale equation (19) is similar to the assumption 
of the local thermodynamic equilibrium, used in the heat transfer theory (Bird et al., 1960), 
which enables one to consider the heat transport equation with variable (position-depen- 
dent) transport coefficients. 

A general condition of applicability of equation (19) is that the characteristic distance, on 
which the air velocity changes appreciably, is much larger than the interstitial scales 
d(1 -&i)- . ‘In This characteristic distance is of order a [e.g. see equations (14a, b)]. There- 
fore, the condition of validity of equation (19) is 

U B d(1 - &i)-“3, i = 1,2, 

which accords with the left inequality of equation (4). In fact, the above inequality also 
provides the condition of applicability of the Darcy’s equations (6a, b) (Adler, 1992). 

In accordance with the assumption made in the derivation of equation (lSa), we further 
omit the aerosol mesoscale diffusion (dispersion) term in equation (19) as negligible. With 
this simplification one can show that in the absence of external forces U is proportional to 
V (Shapiro et al., 1991) and, hence, V. U oc V. V = 0 [see equation (6a)]. This allows to 
rewrite equation (19) in the form 

U(r).Vn + K(r)n = 0. (20) 

In order to solve this equation for n(r), one should calculate U(r) and K(r) at every point 
r employing the dispersion-reaction theory and using the local value of V(r) calculated from 
problem (7)-(9). Rather than follow this straightforward but computationally difficult 
route, we use the fact that U(r) is parallel to V(r). This allows to rewrite equation (20) in the 
following form: 

(21) 

wherein I(s) = U(s)/K(s) is the local filtration length and the coordinate s is measured along 
the streamlines, which now may also be viewed as aerosol mesoscale trajectories. 

Equation (21) implies that aerosol particles move only along the air streamlines, without 
either longitudinal or lateral diffusion at the mesoscale. This assumption is valid at short 
distances (of order a), as measured by the characteristic Peclet number (Shapiro and 
Brenner, 1990). However, the role of aerosol diffusion is very important on a larger scale, 
where its effect is to remix aerosol particles far downstream after each layer of inclusions (see 
Section 5 for a discussion on this matter). 

In order to integrate equation (21), one should specify how the characteristic filtration 
length changes along the aerosol trajectories. For submicrometer aerosols, whose depos- 
ition is governed by the Brownian diffusivity D, one can generically write 

1 oc $(s)Pe”, (22) 

where Pe = T/d/D is the characteristic microscale P&let number based on the collector 
diameter, $ is a porosity-dependent function (Davis, 1973) and k is a constant varying 
between 2/3 for random arrays (Levich, 1962; Tardos et al., 1978) and 1 for ordered arrays 
(Shapiro et al., 1991). 

From equation (22) one can deduce that the local characteristic filtration length changes 
with s in accordance with the relations 

outside the inclusion, 

k inside the inclusion, 

(234 

VW 

where 1, and V, are given by equations (18b) and (lo), respectively, and the absolute value 
of the air velocity, V(s) = [V:(s) + V~(S)]‘~~, is calculated from the solution of the problem 

(7)-(9). 
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We will use equations (22) and (23) with k = 1, although the results to be derived may be 
obtained with other values of k and also with additional deposition mechanisms which can 
be incorporated in equation (22). 

Equation (21) with I(s) given by equations (23a, b) may be solved to yield the mesoscale 
aerosol concentration field IZ = n(s) everywhere in the nonuniform filter medium, i.e. both 
inside and outside the inclusions. It may be solved with any air velocity field V(s), obtained 
from the solution of the Darcy’s equations (6a, b) with an arbitrary specified permeability 
distribution x(r) [not necessarily the one given in equation (5)]. In the following we do this 
using asymptotic solution (13) (14) (16) obtained for small volumetric fraction (x. Jt will 
eventually turn out that in this case one can approximately solve equation (21) and 
determine the functional form of the efSktiue characteristic filtration length rof a nonuni- 
form filtering material, which characterizes the efficiency of the aerosol filtration process at 
the macroscale. 

5. EFFECTIVE FILTRATION LENGTH OF THE 
NONHOMOGENEOUS FILTER MEDIUM 

Equation (21) may be integrated by separating variables 

lnrz=- 6. 
s s 

The local filtration length I(s) may be expressed in the form (see also Fig. 2) 

I(s) = l(z, s,), 

where the coordinate z is measured from the center of an axisymmetric inclusion. Moreover, 
one can see from the asymptotic solutions (14), (16) and (23a) that 

l(z, x,) = 1, Cl +f(z, %)I> (254 

ds = dzJ1 + (V,/V,)2 = dz [l +fi (z, xx,)], (25b) 
where 

f(z, x,),fi(z, x,) = O(rP3) as Y = (z2 + ~t)i’~ + x. (26) 

Using equations (25a, b) in equation (24) and performing integration with respect to the 
dimensionless variable% z” = z/a from z” = - CT to a current position 5, one obtains 

In n(.?, &) = - u 
z” + 4(?, 2,) 

1, 
+ const, 

wherein also x”, = x,/a, and 

(27) 

(28) 

In the absence of inclusions (uniform filter material) [(i, x”,) = 1, = const everywhere and 
the solution for the aerosol concentration distribution is 

In n, (2) = - p z” + const. (29) 
X’ 

Eliminating the constant from equations (27) and (29) one obtains 

n(T, 2-,) = n, (?)exp 
( 

-+_;,.Q ) 
1 

(30) 
1 

*In this section we mark by a tilde all dimensionless distances normalized by the radius a of the inclusions. All 
variables with the overbar pertain to the macroscale. 
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wherein we have assumed that the concentration distribution far upstream before the 
inclusion is uniform, i.e. depends only on z” but not on %‘,. 

For any fixed Zrn the integrand function in equation (28) vanishes as iP3 with increasing 
B [see equation (26)]. Hence, for ,? --f co the integral in equation (28) converges and yields 

In view of relation (26) the integral value 4m(Xlm) exhibits the following large Z’, behavior: 

4,(x”,) = 0(Zz2) = B,X”i2 + o(x”i2) as 1, --f cc, (31W 

with B, = const. 
The function 4a.(X”m) describes the influence of inclusions on the downstream mesoscale 

aerosol concentration. This function is affected by the following two factors, both, however, 
stemming from the presence of inclusion: 

(i) Increase of the total length of the aerosol pass (see Fig. 2). Far from the inclusion the 
effect of this factor is controlled by the coefficient A 1, appearing in equations (13), (14) and 
(16). Explicitly, with increasing IAl - 11 the air flow trajectories become more curved, which 
leads to larger $m (Xlm). 

(ii) Deviation of the local filtration length from its limiting value at infinity [see equations 
(23a) and (25a)]. For less permeable inclusions (ICY < ICY) this factor may be shown to 
increase @5 (Z’,) for those trajectories which pass exterior to the inclusions. 

In all cases, however, the effects of both of the above factors vanish far from each 
inclusion in accordance with equation (31b). 

We now calculate the aerosol concentration distribution far downstream from the 
inclusion. It is given by equation (30) upon replacing d(f, x”,) by 4m(.C’cc) there: 

n&G) = n,(i)exp(-%,,(-G)). (32) 

One can see, therefore, that the downstream aerosol concentration is nonuniform (depends 
on the lateral coordinate 2,). This result is used to calculate the area-averaged concentra- 
tion at the downstream location from a layer of inclusions separated by an average distance 
2x, (see Fig. 1). Towards this goal, integrate equation (32) over the circular area of radius 
x,, to obtain 

(33) 

where x”, = x,/a. Furthermore, we will look into the circumstances where the area-aver- 
aged aerosol concentration decays exponentially with increasing number of the layers, 
separated by the distance 2x,, which means that 

ii&) = n,( - x”,)exp 
2&l ( 1 - T , 

wherein iis the effective macroscalejiltration length of the nonuniform filter material. Using 
equations (34) and (33) jointly with equation (29), one obtains the following expression for 1: 

1 1 --- =&ln[$/O’m&,,exp(-%~~(i,))di,]. TL m (35) 

Since, generally, the volume of the inclusion is proportional to u3, one has (see Fig. 1) 

&I =x,/a-a . -l/3 (36) 
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In particular, for spherical inclusions 

(3W 

which shows that 2, 9 1 when tl 4 1. In this limit one can show that the expression in 
square parentheses in equation (35) is close to unity. Indeed, with increasing .?‘,, 
4,(Zm) decays to zero as 2,‘. Therefore, with increasing upper limit of the integral in 
equation (35) one has exp [- ~~~(Z~rn)/l~] -+ 1 as ZK, -+ cc, and the integrand function 
approaches 2,. Bearing in mind the above, we rewrite the integral in equation (35) in the 
following form: 

with fl(X”,,,) given by the integral 

where in view of equation (36) 

Substituting equation (37) into equation (35) and expanding In in power series using 
equation (38b), one obtains 

1 1 --- =JQ?(l,). i 1, a (39) 

The function b(&) is governed by the asymptotic rate (31b) at which $,(_?,J vanishes 
with increasing 1,. In the particular case of a sufficiently small size of the inclusions and 
a relatively large I, one can deduce the functional dependence fl($,,) by substituting 
equation (31b) into equation (38a) and expanding the argument of the exponential function 
in the power series for ar$~,(Z,)/l~ 4 1, thereby obtaining 

a 
/?(x”J - - [C; In(&) + C;] 

1, 
as gm+co, (40) 

where C;, C; are independent of 1,. Introducing equation (40) into equation (39), one 
finally obtains 

i 1 

1,= 1 + a[C,lna + CZ + O(a)]' (41) 

with C,, C2 being constants expressible via C;, C;. 

The above expression constitutes the main result of our analysis. It is derived for 
inclusions of arbitrary axisymmetric shapes. One can see from equation (41) that the 
conclusion of whether the effect of inclusions is to increase or decrease the characteristic 
filtration length depends on the volumetric fraction CI and the constants C1, C2. These 
values depend on the precise shape of the inclusion and the filtration properties of the filter 
material. More detailed considerations of spherical inclusions are given in Section 6. 

6. VALIDITY OF DIFFUSIONLESS MESOSCALE AEROSOL TRANSPORT 

This section concerns aerosol concentration distribution between subsequent layers 
of inclusions within the filtering material. This distribution has been assumed uniform 
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(Zm-independent) far upstream before each layer of inclusions. Therefore, different portions 
of aerosol particles, which were assumed to move in a diffusionless manner along different 
trajectories, deposit with different rates. This results in a nonuniform aerosol concentration 
distribution far downstream from each inclusion. The above model is valid if there exists 
a mechanism responsible for aerosol redistribution, i.e. remixing leading to a uniform 
concentration at the upstream of each subsequent layer of inclusion. Such remixing indeed 
occurs as a result of lateral (in the x-direction) mesoscale aerosol diffusion (dispersion), 
neglected in the solution in Section 4. This assumption, on the one hand, enables exact 
solution of the problem. On the other hand, it is justifiable only for relatively short distances 
(comparable to a). 

Summarizing the above, one can formulate the following quantitative criteria for the 
validity of the model developed above. The effect of the lateral diffusion on particle 
migration between different streamlines during their motion in the vicinity of an inclusion 
should be negligible. The characteristic time of their motion in this region is t, = u/V,. 
During this time the particles migrate at a characteristic distance (Dxt,)i’2 = (D,Lz/V~)“~, 
where D, is the lateral component of the aerosol mesoscale diffusion coefficient. This 
distance should be much less than the size a of the inclusion, i.e. 

(DxalV,) 112 + a. (42) 

On the other hand, the characteristic time of motion between two successive particle layers 
t, = x,/V, should be sufficiently large to smear out the nonuniformity of the size a of the 
downstream aerosol distribution. This leads to the condition 

(Dxx,/Vm)“2 = O(a). (43) 

The effective lateral diffusivity (dispersivity) is primarily caused by mechanical, or pure 
hydrodynamic dispersion and may be correlated by (Adler, 1992) 

D, - V=d. (44) 

Using equations (44) and (36) one can rewrite conditions (42) and (43) in the following 
respective forms: 

d/a 6 1. (45) 

d/a - 0(0r)“~, (46) 

both of which are satisfied if c1 6 1, in accordance with the prior assumption of smallness of 
the volumetric fraction of inclusions within the porous material. 

7. CALCULATION OF THE CHARACTERISTIC FILTRATION LENGTH 
FOR SPHERICAL INCLUSION 

One can obtain the following expressions for the air flow streamlines in the porous 
material near a spherical inclusion (see Appendix A): 

rsin8 
2ta3 

J--- 
1 --=x r3 Q), r>a, (47a) 

r sin e = ~~jJf-25, r<a (x, <aJiY?j), (4W 

with X, defined as in Section 2 (see also Fig. 2) and { given by equation (A2a). 
In the following we denote by x, z, I the corresponding dimensionless coordinates 

(normalized by a), The goal of the following treatment is to calculate $m(x,) appearing 
in equation (32) with the subsequent evaluation of the aerosol filtration length in the form 
(41). To this goal we calculate f and fi appearing in equations 25a, b), separately for the air 
trajectories which cross the inclusions and those which pass beyond them. 
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7.1. Tmjectories which do not cross the inclusions [x, > (1 - 24)r1”] 

We approximate the trajectory equations (47a) outside an inclusion by replacing x with 
x0, related to x,, by 

xg =x, c 1 1_s -w 
X,” 

, x, > (1 - 2#/2, (48) 

which represents the coordinate of the trajectory point at z = 0. This will not introduce 
large errors in the calculations, since for small z 4 a dx/dz - 0 along the trajectories; for 
large z 9 II the expression in the square root of equation (47a) is dominated by z2 and 
almost independent of x. 

The dimensionless air speed V/V<, given by equation (A7a) may be approximated with 
the help of equation (47a) in the considered region by 

v * r 2 
- 2 1 + ,‘i (cos20 - 1) 2 1 - 2$ g 1 - (xa2:l;)S,2 , 
VX 

(49) 

which yields the following expression for the function f’(z, .x,~ ) appearing in equation (25a): 

.fk x,) = - (x;2$)s;2 . 
z 

Furthermore, using 
equation (25b): 

equation (A7a), one obtains the following expression for fi (z, x,) in 

(51) 

7.2. Trajectories which cross the inclusions [x, < (1 - 25)‘12] 

The dimensionless air speed V/V, given by equation (A7a) outside an inclusion may be 
approximated by 

V 
- z 1 + ~(2cos20 - 1). 
VX 

For these trajectories one can determine ,f(z, x,,): 

4x,( 
.f (z, x,) = - (x; +c;2)3:2 + (x; + z2)5:2 ’ 

(52) 

(53) 

where x0 is now given by [cf. equation (48)] 

X0 = Xx,(1 - 25) 
* -1,2 

, x I, < (1 - 25”)“2 ) (54) 

and designates the x-coordinate of the point of intersection of the trajectory with the 
inclusion. The expression for the function ft (z, x,) outside the sphere is identical to 
equation (5 1). 

Inside the sphere one has 

f(z,x,) =gj ( - 1 = y = const. ,f, = 0. 
El 

(55) 

Equations (50), (51) and (55) may be used to calculate 4,(x,) and the macroscopic 
characteristic filtration length. Details of these calculations are given in Appendix B. As 
a result, one obtains equation (41) for L wherein 

CI = 45’13, (56) 

C2 = 0.99< - 0.143t2 + 1.319t3 + 0.29914 - 1.4555’(1 - 25)3’2 - (1 - 25)~. (57) 
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8. DISCUSSION 

We analyze dependence of the characteristic filtration length (41) with Ci, C2 given by 
equations (56) and (57), on the porosity ratio EJE, . Parameter y in equation (57) depends on 
the ratio of permeabilities [see equation (55)]. For this ratio we employ the correlation 
(Davies, 1973, p. 36) 

a2 

K = 16(1 - E)~‘~ [l + 56(1 - E)~]’ 

valid for E < 0.98. This yields 

ic2 (1 - ~i)~“[l + 56(1 - ai)31 
lc, = (1 - ~~)~‘*[l + 56(1 - rJ3]’ 

For the ratio II/(s2)/IC/(a1) the following expression is employed (Brown, 1993, p. 10): 

442) (1 - 81) 

IC/o=@T& 

(58) 

(59) 

(60) 

To simplify presentation of the data we neglect the term (1 - .z)~ in the square brackets of 
equation (59), thereby restricting ourselves to sufficiently high porosities s2, Ed. In this case, 
Ci , C2 depend on the ratio of solidities appearing on the right-hand side of equation (60) 
(see Fig. 3). 

For (1 - ~~)/(l - Ed) = 1, both Ci, C2 vanish and the effective filtration lengths is 1,. 
One can see, however, that in the limiting case (1 - +_)/(l - si) $ 1 (the inclusions are less 
porous than the filter matrix) both coefficients tend to approximately the same positive 
value. 

When the solidity ratio (1 - ~~)/(l - cl) < 1 the coefficients plotted in Fig. 3 have 
different signs. Since in this range 5 < 0, and also for all a In a < 0, one can generally 
conclude that inclusions, which are more porous than the filter material, lead to a decrease 
of the aerosol filtration length, i.e. to an enhancement of the aerosol filtration rate. 

_ _ 18.408 
8 

0.01 0.1 1 10 

Solidity ratio 
1_Ez 
I-&1 

Fig. 3. Coefficients governing the effective aerosol filtration length vs ratio of solidities. 
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Fig. 4. Aerosol filtration length vs volumetric fraction of inclusions for different porosities. 

Figure 4 presents the dependence of the ratio of the characteristic filtration lengths 
vs x for &I = 0.9 (typical for fibrous filters) and several porosities a2 of the inclusions. 
One can see that in the considered range of small H (less than 0.2) more porous (than 
the filter material) inclusions improve the filtration capacity. The less porous inclusions 
lead to a deterioration of the aerosol collection rate. In particular, our model predicts 
that a slight difference in porosities, s2 - i:r = 0.05, leads to 20% decrease of the filtration 
length. 

Conclusion as to whether the effect of material inhomogeneities is to increase or decrease 
the effective filtration length in the whole range of solidity ratio, depends both upon the 
value of (1 - sZ)/(l - ar) and the volumetric fraction a. In particular, given the fact that in 
the range (1 - ~~)/(l - er) > 1 the plotted coefficients are both approximately equal 
to 2/3, one can see that the effective filtration length increases when lncx < - 1, i.e. 
r < 0.368. Therefore, less porous (than the filter matrix) inclusions tend to decrease aerosol 
filtration efficiency for small E with the reverse trend prevailing for larger volumetric 
fractions. In the following section we provide an experimental verification of this theoretical 
prediction. 

9. FILTRATION LENGTH OF A NONHOMOGENEOUS POLYDISPERSE 
GRANULAR BED 

Verification of the analytical model may be done on the basis of more accurate (numer- 
ical) integration of equation (21) for any given spatial distribution of inhomogeneities. This 
will be the subject of future investigations. An experimental check of the model prediction 
should be done using a filtering material, for which the mesoscale distribution of porosities 
may be measured. One such material is polydisperse packed beds. In the case where the bed 
is composed of granules of two different sizes, one can view small granules as a porous 
matrix and each large granule as an (impermeable) inclusion. 

The effective filtration length of a composite material of the above type can be calculated 
by using the permeability of inclusion ICY = 0 in equation (A2), which yields 4 = l/2. Further 
simplifying equations (56) and (57) one can reduce equation (41) to the form 

L- 1 

1, - 1 + r CO.667 In u + 0.6431’ (61) 

where c( is the volumetric fraction of large granules. The calculated ratio ql, is shown in 
Fig. 5, and exhibits a nonmonotic x-dependence, i.e. it increases with M for small c( < 0.364 
with the reverse trend prevailing for larger volumetric fractions. 
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Fig. 5. Comparison of the calculated effective aerosol filtration length (solid line) with the experi- 
mental data collected for latex aerosol particles by granular beds. The bed is composed of glass 
spheres of two sizes: 1.4 and 15 mm. Hollow symbols: aerosol d, = 0.1 pm, air velocity 

V = 0.25 ems-‘; filled symbols; d, = 0.24 pm, V = 1.05 ems-‘. 

Here we provide an experimental test of the above predictions for a bidisperse filter 
medium composed of glass spherical beads of two different sizes. Explicitly, the porous filter 
matrix was formed by a packed bed of 1.4 mm spheres, wherein larger spheres of 
diameter 15 mm served as inclusions. The granular beds were prepared for different 
volumetric fractions c( of larger spheres, ranging from 0 to 26%. The bed thickness was 
10 cm and the diameter was 5 cm. The filtration efficiencies of 0.1 and 0.24 pm latex aerosol 
particles produced by the Royce aerosol generator, and passed through the TSI Electros- 
tatic Classifier were measured with the filter face velocities of 0.25 and 1.05 ems-‘. 
Measurements were performed in the steady regime using the TSI Condensation Particle 
Counter. 

The results of the measurements are shown in Fig. 5. One can see that the theoretical 
nonmonotonic x-dependence is qualitatively confirmed by the experimental data. Phys- 
ically, the increase of ijl,, observed for small SI (less than 14%), stems from the air 
acceleration in the vicinity of larger spheres, which results in a lower diffusional collection 
rate [see equation (23a)]. For larger a the filtration efficiency increases (ql, decreases) due 
to increasing length of aerosol mesoscale trajectory within the filter matrix. For larger CI this 
factor becomes dominant and effectively controls the aerosol deposition in nonhomo- 
geneous granular filters. 

The above qualitative comparison cannot be viewed as a quantitative assessment of the 
merits of the proposed model. Strictly speaking, the limit &2 -+ 0 (impermeable inclusions) is 
not described by the model here proposed, since in the immediate vicinity of a large granule 
the Darcy law 6(a, b) is no longer valid. Calculation of the air velocity distribution and 
aerosol collection rate in this region requires incorporation of a more general Brinkman law 
(Neal and Nader, 1974). Additional sources of discrepancies between the model predictions 
and the experimental data in Fig. 5 may be filtration mechanisms (e.g. gravitation, intercep- 
tion), which are disregarded in the course of derivation of equation (61). Moreover, 
hydrodynamic interactions between the neighboring inclusions (which are also neglected) 
affect mesoscale air streamlines. These interactions play a major role for large X, for which 
equation (41) is no longer valid. 

10. CONCLUDING REMARKS 

In this paper a general model is developed for calculation of the aerosol collection rate 
by a porous filtering material for a given spatial distribution of porosity. Calculations 
performed for a special material structure e.g. for a small volumetric fraction CI of inclusions, 

AS 2712-H 
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embedded within a homogeneous matrix, exhibited the effect of the filter nonuniformity, 
and porosity of inclusions. Several simplifying assumptions pertaining to the geometric 
model employed here enabled derivation of a simple analytical expression (41) for the 
effective filtration length. The x-dependence of the effective filtration length as predicted by 
this formula was qualitatively confirmed by aerosol collection experiments performed for 
bidisperse granular bed filters. However, more experimental tests are required to evaluate 
the predictive capacity of the model for nonhomogeneous granular and fibrous filtering 
materials. 

Approximate analytical derivations of equation (41) can be generalized by relaxing the 
assumption of the smallness of the volumetric fraction CI of the inclusions. This can be done 
by considering the cell-like Kuwabara-type geometric models to describe the mesoscale 
velocity distribution. Additionally, information about the collector (fiber) diameter distribu- 
tions and their orientations, both inside and outside the inclusions, as well as different 
particle capture mechanisms, can be incorporated in the aerosol mesoscale collection laws 
(23a, b). 

One advantage of the present model is that it enables incorporation of all the above 
information at the mesoscale level, i.e. for a representative volumetric element surrounding 
one inclusion, with subsequent integration over the whole filter material volume. In this 
sense the treatment proposed here parallels the classical filtration theory (Davies, 1973) 
developed for homogeneous filters. 

Instead of analytical solution, an alternative, more straightforward approach is integra- 
tion of equations (7) and (8) for a given porosity distribution. The air velocity field obtained 
from this solution and the data on the aerosol mesoscale transport and deposition coefi- 
cients may be used to solve equation (19). This would involve a significant computational 
effort, comparable to that required in the spatial elements’ model of Schweers and Liiffler 
(1993). 
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APPENDIX A: THE MESOSCALE AIR VELOCITY AND PRESSURE 
DISTRIBUTION AROUND A SPHERICAL INCLUSION 

For spherical inclusions of radius a equations (7) and (8) reduce to 

to be solved in the two domains 0 < r -C a and a < r < co subject to the boundary conditions 

P(a + 0, 0) = P(a - 0, I!?), (Alb) 

and condition (9) in the infinity. 
Problem (Al), (9) is identical to the problem of distribution of the electrostatic potential within a homogeneous 

material with a spherical inclusion of a different dielectric constant. The solution of this problem is given by 
Maxwell (1881) and may be expressed in the form [cf. equations (11) and (13)] 

p= !!! ( > jrcosB+const, O<r<a, 

P=ibp)_~$j+l )rcos*+const, a<ri co, 

where the constants 5, [ are 

(A24 

W’b) 

642c, d) 

Solution (A2a-d) may be used to calculate the effective permeability K of the nonhomogeneous porous material: 

1 - 2x5 
K=lc*- 

1+a5’ 
(A3) 

valid for small values of the volumetric fraction cc Explicitly, r? relates the pressure drop across the filter with the 
macroscale, area-averaged air velocity v: 

_ - 
~=-!$ (A4) 

The components of the velocity field are obtained by the introduction of equations (A2a, b) into equation (6b): 

V= V,(l-2ta3/r3)cos0, a<rC m, 
r 

{ Vm/,cos%, O<r<a, ’ 

v, = 
i 

- V, (1 + @/r3) sin 0, a<r< Co, 

-V,_[sinlJ O<r<a. 

(A54 

(AW 

The air flow streamlines through the porous material are obtained by solving the differential equation (15) 
together with formulas (A5a, b) [cf. equation (16)]: 

rsin@ (A6a) 

rsin8 = x,.JCQ, r <a, (x, < am), (AW 

with the meaning of x, as in Section 2. 
The air speed V/V, outside and inside the inclusion is 

I 
1 ++3cos2tW)+ 

(rlaS 
&(5 - 3~0~20) 

1 

l/Z 
> r>a, (ATa) 

(AW 

APPENDIX B: CALCULATION OF c#~~ (x,) 

For calculations of 4, (x,) we neglect f(z, x,) (as compared to unity) in the denominator of equation (31a). The 
Integration with respect to z may be performed independently for the trajectories crossing the inclusion and 
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passing exterior to it. Therefore, one has in accordance with equations (50) and (51) for Y n > (1 - 25)“’ 

cp,(X,)E - rr,(z;.~,)-~(z,~~,)]dz=2rjx: dw 

(1 + VP)512 
(Bl) 

Calculating the integrals 

one can rewrite equation (Bl) in the form 

W) 

One can see that this large X, dependence of & (x,~,) accords with the general prediction (31b). 
The expression for 4, (x,) for X, i (1 - 251)‘:’ 1s obtained by the introduction of equations (SO), (51) (53) and 

(55) into equation (31a) and also neglecting .f in the denominator: 

In the above 

(B3) 

zo= l- x: J- l-25 

is the coordinate of intersection of the trajectory with the inclusion and Ii, I,, I3 are given by 

n/2 n,‘Z 

I, = cost,kd$ = 1 -sin+,, I2 = co? $ d$ = 3 - (sin $0 - fsin’ tiO), 

s X,‘2 

I, = (cos6 (1, - co? I,?) di,k 
Il” 

5rr =__1 
128 

32(~$0+fsin2~,,-~sin4$,-~sin6~,-&sin8$,). 

and (see Fig. 2) 

$c = arcsinz, = arcsin J xc 
1 - ___ 

l-25 

(B4) 

(B5) 

Expression (B3) for 4z (x,) is too complicated for performing analytical integration with respect to x, Hence, 
for the latter purpose it has been approximated by 

_ I, < (1 - zt)-“Z, (B7) 

with x0 given by equation (54). 
Expressions (B2) and (B7) are to be substituted into equation (38a) for performing subsequent integration with 

respect to x,. Under the condition a4LC(?,,,)//m < 1 (implying that the size that the size of inclusions is small 
compared with the filtration length of the filter material at infinity) which greatly simplifies the integration 
procedure, one obtains equation (41), wherein C i, Cz are given by equations (56) and (57). respectively. 


