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T. ROSS. 1996. T w o  complementary measures are proposed as simple indices of the 
performance of models in predictive food microbiology. T h e  indices assess the level of 
confidence one can have in the predictions of the  model and whether the model displays 
any bias which could lead to ‘fail-dangerous’ predictions. T h e  use of the indices 
is demonstrated using data collated from independent and published literature. T h i s  
analysis supports previous reports that evaluation of predictive models by comparison to 
published microbial growth rate data may be inappropriate because of limitations in 
that data. T h e  indices may fail to reveal some forms of systematic deviation between observed 
and predicted behaviour. I t  is concluded, however, that the indices provide an objective 
and readily interpreted summary of model performance and may serve as a first 
step towards the development of an objective and useful definition of the  term ‘validated 
model’ in predictive food microbiology. 

INTRODUCTION 

Predictive food microbiology is based upon the premise that 
the responses of populations of micro-organisms to environ- 
mental factors are reproducible and that it is possible, from 
past observations, to predict the responses of micro-organ- 
isms in a particular environment. In general, a reductionist 
approach is adopted and microbial responses are measured 
under defined and controlled laboratory conditions, often in 
liquid media. The results are summarized in the form of 
mathematical equations which, by interpolation, can be used 
to predict responses to sets of conditions which were not 
specifically tested. 

Methods for comparing the goodness-of-fit of competing 
models to the data used to generate them, or to determine 
whether a fitted model is statistically acceptable relative to 
the measuring error inherent in the data, have been used 
in the predictive microbiology literature (Adair et a/. 1989; 
Zwietering et ( I / .  1990, 1991) and general methods are 
described in statistical texts (e.g. Draper and Smith 1981). 
13efore they can he used in practice, however, predictive 
models must be shown to predict accurately the behaviour 
of micro-organisms in foods during processing, storage and 
distribution. Demonstration of this ability, a process generally 
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termed ‘validation’, remains an ill-defined aspect of predictive 
microbiology but must involve comparison of predicted 
responses to observations in product, independent of those 
used to generate the model. Typically, growth rates or gen- 
eration times predicted by the model are compared to those 
observed for the same organism in food (Gibson et al. 1988; 
Buchanan et al. 1993; McClure et a / .  1993; Wijtzes et ( I / .  

1993; Sutherland et a / .  1994). 
Wijtzes et 111. (1993) plotted literature values for the gen- 

eration time of Listeriu tnonocytogenes against the cor- 
responding predictions of a model derived from studies in 
laboratory broth. From this plot, predictions which would be 
unsafe in practice could be visualized readily, and the overall 
reliability of the model assessed. Duh and Schaffner (1993) 
developed predictive equations for Listerill growth rate based 
on measurements in hrain heart infusion broth. Comp- 
lementary literature values for the growth of the organism in 
food were then added to the data set and regression analysis 
of the supplemented data set performed. The  close similarity 
in MSE (mean-square error) and r2 values of the equations 
fitted to either data set was taken as an indication of the 
reliability of the models when applied to foods. Another 
measure of the accuracy of predictive equations was intro- 
duced by McClure et a / .  (1993) who compared their models 
on the basis of the sum of the squares of the differences of 
the natural logarithm of observed and predicted values: 
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A smaller value indicates a model which, on average, better 
predicts the observed response. 

It is important that users of models have both an under- 
standing of the range of applicability of their predictive 
models, and also the limits of their performance. When con- 
sidering performance, of most immediate interest is whether 
the model is ‘fail-dangerous’, i.e. whether it produces esti- 
mates that underestimate the risk of spoilage or extent of 
pathogen growth, but models should also predict as closely 
as possible the observed behaviour to avoid wastage of pro- 
duct. T o  date, no standard method or set of criteria has been 
published by which a model can be said to have been vali- 
dated. Ideally, such measures would be readily interpretable 
and dimensionless so that the performance of models could 
be readily summarized and compared. In this paper simple 
indices of performance for kinetic models are developed and 
their utility to measure the reliability of models is assessed. 

MATERIALS AND METHODS 

Development of indices 

Consistent with the desire to develop readily interpretable 
indices, measures based on an average deviation between 
predicted and observed generation times were sought. Gen- 
eration times may- vary greatly in magnitude depending upon 
the organism and its environment. Thus,  the ahsolutc devi- 
ation, i.e. the difference between the predicted and observed 
response, for large values will have greater influence in any 
averaging process, requiring that some measure of relutive 
average deviation be developed. T h e  simplest relative mea- 
sure is a wt io  of the predicted and observed generation times 
and, thus, was adopted to ‘standardize’ the deviation. T h e  
implications of this assumption are considered later. 

‘The ratio alone, however, may be misleading because, for 
example, a ‘factor of 10’ overprediction (predicted/observed 
= 10) will have more weight than a ‘factor of 10’ under- 
prediction of generation time (predicted/observed = 0.1) in 
the calculation of a mean. It was considered desirable to 
give equal weight to over- and underprediction. Thus,  the 
logarithm of the ratio was chosen so that over- and under- 
prediction were given equal w i g h t  in determining the aver- 
age deviation. T h e  antilogarithm of this value (average 
relative deviation) may be interpreted as the average ratio of 
the predicted and observed generation times, i.e. the geo- 
metric mean of the ratios. For convenience, this value will be 
termed the ‘bias factor’, and is defined: 

\i here GTPrCdILICd is the predicted generation time, GT,,h,,,,,d 
is the observed generation time, and n is the number of 
obserbations used in the calculation. 

Perfect agreement between predictions and observations 
will lead to a bias factor of 1. This  is, perhaps, contrary to 
the more intuitive and established understanding of zero 
bias indicating perfect agreement. In developing this index, 
however, the objective was to derive a simple and readily 
interpretable quantitative measure of bias, and it was con- 
sidered that bias measured on a logarithmic scale would be 
less immediately interpretable. Instead, by taking the anti- 
logarithm, the value obtained is a multiplicative factor by 
which the model, on average, over- or under-predicts, hence 
the terminology biasfuctor. Thus,  a bias factor of 1.1 indicates 
not only that the model is ‘fail-dangerous’ because it predicts 
longer generation times than are observed, but also that the 
predictions exceed the observations, on average, by 10%. 
Conversely, a bias factor less than one indicates that a model 
is, in general, ‘fail-safe’, but a bias factor of 0.5 indicates a 
poor model that is overly conservative because it predicts 
generation times, on average, half of that actually observed. 

Under- and over-prediction will tend to  ‘cancel out’ in this 
measure because the logarithm of the ratios will have opposite 
signs. Consequently, eqn 2 provides no indication of the 
average accuracy of estimates. Thus,  the average of the i ihs t~ l -  

ute values of the logarithm of the ratio (similar to eqn 1 in 
which the squaw of the ratio makes all values positive) was 
calculated. T h e  antilogarithm of this value will alwal-s be 
greater than or equal to one. This  value will be termed the 
‘accuracy factor’, and is defined: 

( 3 )  

where the terms are as previously defined. 
T h e  larger the value, the less accurate is the average esti- 

mate. As with the bias factor, the accuracy factor is a simple 
multiplicative factor indicating the spread of results about 
the prediction. Thus, an accuracy factor of two indicates that 
the prediction is, on average, a factor of two different from 
the observed value, i.e. either half as large or twice as large, 
while a value of one indicates that there is perfect agreement 
between all predicted and observed values. 

Note that eqns 2 and 3 can equally well be used for any 
time-based response, e.g. lag time, time to an n-fold increase, 
maximum specific growth rate. If rate values are compared, 
however, a bias factor less than 1 indicates a ‘fail-dangerous’ 
model. 

Data sources and bases of comparison 

Model. A model derived to predict the growth rate of Staph11- 
lococcus U U Y ~ U S  3b as a function of temperature and ~ a t e r  
activity, due to NaCl as the humectant, was chosen to exemp- 
lify the use of the indices. A data set of 211 g r w t h  curles  
for Staph. uureus 3b, measured by optical density method\, 
was generated in the temperature range 8.9-36.2”C and M ater 
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activity range 0.860-0.997. Generation times (GT) were 
derived from the parameters of a Gompertz-like equation 
(McMcekin el ( I / .  1993; App. 2 A.9) fitted to the growth curve 
data. Growth rate ( l / G T )  data were fitted to a combined 
temperature-water activitl model of the type introduced by 
McMcekin et u/ .  (1987). Full details of the generation of the 
data and derikation of the model are given in Ross (1993). 

Data sources. Data for the growth of the modelled micro- 
organism in foods, independent of that used to generate the 
model, were obtained from three sources: 

( i )  by determination of the rates of growth of Stuph. uureus 
3b inoculated on to foods of varying water activity and 
stored at various temperatures (Ross 1993); 

(ii) by reference to published data for the growth of the 
Stuph. uurcus and including data collated from the litera- 
ture by Sutherland ct u/ .  (1994); and 

(iii) unpublished data of I l r  Isabel Walls. 

The model does not include a pH term. Therefore, only 
data in the pH range 6.0-7.0 were used in the comparison on 
the basis of the reported optimal pH range for Slnph. uureus 
(Banwart 1989, Table 4.6; Jay 1992, p. 459). Other results 
(Aalberts, unpublished) confirm that variations in pH in this 
range have a negligible effect on the growth rate of Staph. 
aureus 3b. 

For publications in which a range of generation times 
were recorded for one or more strains, the shortest recorded 
generation time was chosen as the basis for comparison to 
assess the ability of the models to make ‘fail-safe’ predictions. 

RESULTS 

Table 1 demonstrates, in detail, the calculation of the bias 
and accuracy factors for a small data set. 

Table 2 presents the predicted and observed generation 
times of Staph. uureus 3b inoculated into a range of food types 
at temperatures and water activities covering a wide range of 
the response surface encompassed by the predictive equation, 
and the bias and accuracy factors appropriate to that data for 
the model. 

Table 3 shows observed generation times of Sluph. uureus 
reported in the literature for a variety of foods, temperatures 
and water activities covering a wide range of the response 
surface encompassed by the predictive equation. The  pre- 
dicted generation times are also shown, as are the bias and 
accuracy factors appropriate to that data for the model. The  
data in Table 3 are also presented, in the manner of McClure 
et a/. (1993), in Fig. 1. 

The  bias factor and accuracy factor determined for the 
data set used to generate the predictive model were found to 
be 1 .OO and 1.20, respectively. 

DISCUSSION 

The  bias and accuracy factors may be interpreted as quan- 
titative summaries of the type of plot, shown in Fig. 1, used 
by several groups (McClure et ul. 1993; Wijtzes et a/. 1993; 
Sutherland et al. 1994; Bhaduri et n/. 1994) to evaluate the 
performance of predictive food microbiology models. The  
bias factor answers the question whether, on average, the 
observed values lie above or below the line of equivalence 
and, if so, by how much. Thus  it assesses whether the model 
is ‘fail-safe’. T h e  bias factor can also be calculated from that 
plot by fitting to the data the equation: 

1’ = .v + 6‘ 
where is the logarithm of the predicted response time, .v is 
the logarithm of the observed response time, and I‘ is the 
logarithm of the bias factor. 

The  accuracy factor averages the minimum ‘distance’ 
between each point and the line of equivalence as a measure 
of how close, on average, predictions are to observations. The  
accuracy factor is, thus, a measure of average deviation and 
may be used as a simple measure of the level of confidence 
one may have in the model’s predictions. 

Equation 3 ,  though developed entirely pragmatically, is 
analogous to existing statistical measures of ‘goodness-of-fit’ 
and is a member of a general class of measures of ‘per- 
formance’ which can be summarized as: 

171 11 

I (predicted -observed)[” 

measure of performance = 
?I 

tn  = 1 , 2 , 3 . .  . (4) 

where n is the number of comparisons, e.g. nt = 2 cor- 
responds to the root mean square error (RMSE). The  larger 
the value of m the greater the influence of predictions which 
deviate widely from the observed result, resulting in larger 
values of the ‘error’ estimate. RMSE is a widely used measure 
of ‘goodness-of-fit’, and can be used to derive a measure 
analogous to the accuracy factor (e.g. accuracy factors based 
on eqn 4, using log predicted and log observed values and 
with m = 2, are 1.24, 1.39 and 1.75 for the data ofTables 1, 2 
and 3 ,  respectively). That eqn 3 is similar to existing statistical 
measures is a simple consequence of a common objective. 
The  novelty of the proposed approach lies mainly in the use 
of eqn 2 in combination with eqn 3 ,  and also in their intended 
application. 

Provided that the bias factor is close to 1, the accuracy 
factor is almost equivalent to the 5O”/n confidence interval 
calculated from the standard deviation (S.D.) of the ratios. 
(The 50% confidence intervals, i.e. 0.67449 x S.D., of the 
ratios for data in Tables 1, 2 and 3 are 1.17, 1.25 and 1.46, 
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Table 1 Demonstration of the calculation of bias and accuracl- factors (data of Ross 1993) 

Variables 

Temperature Water GT G T  predicted/ log absolute 
Observed Predicted 

Food type (“C) activity (h) (h) observed (pred/obs) value 

Smoked salmon 12.5 0965 1 1 . 5  
Smoked salmon 17.5 096.5 4.05 
Smoked salmon 22.5 0.975 1.6.5 
Smoked salmon 2 5 4  0.9-55 1.90 
Smoked salmon 27.5 097.5 0.78 
Smoked salmon 32.5 0.965 0.57 
Smoked salmon 3 5 4  0.955 o.50 

hlcan 
* bias factor (= antilog,,, 0.01) 
* accuracy factor (= antilog,,, 0.07) 

17.4 1.52 0.1 x 0.18 
3.89 0.96 - 0 4 2  0.02 
1.52 0.92 - 04)4 0.04 
1.34 0.71 - 0 . 1 5  0.1 .5 
0.84 1.15 0.06 0.06 
0.58 1.02 0.01 0.01 
0.53 1 .Oh 0.03 0 . 0 3  

0.01 0.07 
1.02 
1.17 

G I ,  Generation time. 

respectively.) Based on the accuracy factor for the data in 
Table 2 the predictions are, on average, within 26’10 of the 
observation. Thus, for a predicted GT of 100 min, the bounds 
expected to encompass approximately half of the observations 
would be 79-126min (i.e. 100 - 1.26, 100 x 1.26). Note 
that the bounds are asymmetrical about the prediction. A 
similar calculation was shown by McClure C t  t i / .  (1993) based 
on the RMSE of the model to the data used to generate it. 
T h e  standard deviation, however, calculates deviation from 
the average ratio of values. Thus, for a model which con- 
sistently over- or underpredicted the observed response, an 
accuracy estimate based on the standard deviation could be 
misleading. T h e  accuracy factor, however, will reflect the 
extent of the bias of the model. 

T h e  values of the indices reflect the level of ‘fidelity’ of the 
different data types. T h e  accuracy factor is best, i.e. closest 
to 1, for the data set used to generate the model for Striph. 
~ O ~ I ’ L ’ N S  3b. Those data are derived from the simplest and most 
homogenous system, and represents the highest degree of 
experimental control. T h e  bias factor is 1 also for that data 
set, which is expected because of the minimization-of-errors 
strategies used to fit the equation to the data. 

Also as expected, Tables 2 and 3 suggest that model accu- 
racy decreases as the degree of experimental control is 
reduced. T h e  data in Table 2 represent a lower level of 
experimental control than those upon which the model was 
based because non-sterile, inhomogenous foods were used as 
the growth medium. It is reasonable to  assume, however, that 
it is the growth of Staph. aurrzis 3b that is being measured, 
and that the temperature and water activity are as reported. 
T h e  data in Table 3, however, represent a yet lower level of 
data fidelity. For example, some of the values in Table 3 

were estimated from published growth curves and must be 
considered as approximate values. Furthermore, methods of 
growth rate determination were not uniform and relevant 
information (i,e. pH, temperature, i iJ upon which to base 
predictions was not documented in all publications. None- 
theless, that the bias factor remains close to unity for all these 
data sets is a reassuring feature of the predictive equation 
generated, and supports the validity of the predictive model- 
ling approach in food microbiology. 

Measures of performance previously employed in the pre- 
dictive microbiology literature have been used, typically, to 
evaluate the goodness of fit of a model or models, to the 
data used to generate them. Equations 2 and 3 are primarily 
intended to be used to evaluate the performance of a model 
by comparison to n o z d  data. Traditional statistical methods 
are based upon the deviation between the observed and mean 
response and are inappropriate for evaluating model per- 
formance by comparison to novel data because the mean 
response is not known. T h e  bias and accuracy factors test, in 
effect, the hypothesis that the model under evaluation pre- 
dicts the true mean, or that it represents it better than some 
other model. Inherent in the development of the bias and 
accuracy- factors is the assumption that the ratio of predicted 
to observed generation time, or  equivalently the difference 
between the logarithms of the predicted and observed times, 
is independent of the magnitude of the generation time. 
Consequently, the distribution of results about the mean 
must be considered so that the reliability of the indices them- 
selves can be assessed. 

McMeekin rt  ul. (1993, p. 130) suggested that the variance 
in bacterial growth response times is either Inverse Gaussian 
or Gamma distributed. These distributions require that the 
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Table 2 Evaluation of a model for 
Staph,ikocorrrrs aweus 3b Variables 
growth by comparison with novel 
data 1 emperature Water Predicted GT Observed G T  , >  

Food type ("C) activity (h) (h) 

Milk (Whole) 

( u w )  
(Whole) 

(UHT) 
(Whole) 

(UHI ' )  
(Whole) 

(UHT) 
(Whole) 

(UHT) 
(Whole) 

( U W  
Prawns 

(Cooked) 

(Uncooked) 
(Cooked) 
(Uncooked) 
(Uncooked) 
(Uncooked) 

Smoked salmon 

Smoked salmon 

12.5 
12.5 
12.5 
17.5 
17.5 
17.5 
22.5 
22.5 
22.5 
27.5 
27.5 
27.5 
32.5 
32.5 
32.5 
37.5 
37.5 
37.5 
32.5 
30.0 
30.0 
25.0 
20.0 
20.0 
17.5 
12.5 
12.5 
17.5 
22.5 
25.0 
27.5 
32.5 
35.0 
12.6 
17.5 
22.5 
27.5 
32.5 

bias fictor 
accuracy Factor 

0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0,995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.995 
0.965 
0.965 
0.975 
0.955 
0.975 
0.965 
0.955 
0.920 
0.920 
0.920 
0.920 
0.920 

13.5  
13.5 
13.5 
3.02 
3.02 
3.02 
1.30 
1.30 
1.30 
0.72 
0.72 
0.72 
045 

0.45 
0.3 1 
0.3 1 
0.3 1 
0.45 
0.56 

0.94 
1.89 
1.89 
342 

13.53 

3.89 
1 5 2  
1.34 
0.84 
0.58 
0.53 

6.80 
2.91 
1.61 
1.02 

0.45 

0.56 

174 

29. 1 

16.5 
7.27 
7.51 
1.57 
8.3 1 
2.6') 
1 . i l  
1.2.5 
1.29 

0.80 
0.93 
0 4 4  
0.54 
0.51 
0.37 
0.40 
0.5 1 
0.40 
0.57 
047 
0.79 
1.80 
1.64 
2.48 
6.12 

11.5 
4.05 
1.65 
1.90 
0.73 
0.57 
0.50 

7.93 
3.78 
1.58 
0.99 

0.89 

43.3 

1.00 
1.26 

square root of the reciprocal or the logarithmic transformation 
of the response time is used to homogenize the variance 
in the data for the purposes of model fitting or  statistical 
evaluation. However, it has not yet been shown clearly, which 
distribution, if either, is most appropriate (Ratkowsky et a / .  
1991; Alber and Schaffner 1903; Zwietering et al. 1994; 
Schaffner 1994) and in practice the difference may be slight 
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(Ratkowksy el ul. 1996). Thus ,  the logarithmic transformation 
employed in the calculation of the performance factors also 
has the effect of, at least partly, homogenizing the variance 
in the data. A further property of Gamma distributions is that 
the standard deviation is proportional to the mean response. 
Thus, the ratio will be independent of the conditions under 
which it was measured and the accuracy factor will reliably 
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Table 3 Evaluation of a model for Stnphy/ococrrrs aweus 3b generation time (G’I’) by comparison with independent food-based data 

Food type Temperature N ,  Predicted G T  Observed GT Reference 

Sterile baby food 

Shrimp slurry 

Potato dough 

Sterilized milk 

U H T  milk plus glucose 

U H T  milk + NaCl 

Egg noodles 

12.0 

12.0 
20.0 

12.0 
12.0 

20.0 
20.0 
2041 
354 
35.0 
3.54 
3.5.0 
37.0 
37.0 
37.0 
37.0 
2.50 

33.0 
37.0 
23.2 
2 0 4  
164 
12.3 
23.2 
20.0 
I 6 4  
12.3 
26.2 
20.0 
20.0 
16.4 
20.0 
1 6 4  
12.3 
19.0 
19.0 
19.0 
28.0 
2 8 4  
28.0 
37.0 
37.0 
37.0 
15.0 

25.0 
30.0 
37.0 

3o.n 

20.0 

0.993 
0493 

0.965 
0.993 
0.993 
0.924 
0.924 
0.993 
0.993 

0.924 
0,991 
0.950 

0.93 1 

0.997 

0497 

0.965 

0.924 

0.970 

0.997 

n.997 

0.980 
0.980 
0.980 

0.960 

0.960 

0.980 

0.960 

0.960 
0.000 
0.900 

0.880 
0930 
oml 

0.997 
0.994 
0,970 
0.997 
0.994 

0,997 
0994 
0.970 
0.997 
0.997 
0.997 
0.997 
0,997 

o m 0  

0.930 

0.970 

17.5 
17.5 

22.0 
22.0 

1.93 
1.93 
3.99 
3.99 
0.38 
0.38 
0.79 
0.79 
0.33 
049 

0.61 
0.40 

0.93 
0.5.5 
0.43 
0.32 
1.33 
2.13 
4.35 

16.7 
1.59 
2.55 
5.22 

2.77 
6.39 

12.8 
26.1 

2 0 4  

3.65 
746  

2.22 
2.27 
2.76 
0.67 
0.69 
0.83 
0.32 
0.33 

549 
1.87 
0.93 

0.32 
* bias  factor 

28.6 

0.40 

0.55 

9.50 Walls (unpublished) 
6.35 
8.18 
8.81 
1.65 
1.79 
3.60 
3.67 

0.54 
1 4 8  
1.11 
0 . 5 0  tTroller and Stinson 1075 

2 4 4  
2.30 
0.63 tYotis and ‘I’eodoro 10.57 
0.5 1 

0.39 
1.12 Broughall rf a/.  1083 
1.24 
3.04 
6.41 

1.60 
3.3 1 
8.61 
2.74 

w.50 

1 .on 

0.44 

I 4 2  

12.2 
15.3 
34.4 
4.95 
9 4 5  

34.4 
2.44 Rajhowski KI t i / .  1994 
1.82 
2.08 
0.30 
0.55 
0.65 
0.3 1 
0 . 5  1 

3.39 tGockler rt  n / .  1988 
2.19 
1.17 
1.13 
0.58 
1.01 

0.38 

- accuracy factor 1.53 

t Reported in Sutherland c f  r i / .  (1994). 
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‘ fail-dangerous ‘ / 

’ fail-safe’ 

-1 0 1 2 
Log (observed GT Ihl) 

Fig. 1 Predictions of the model of Ross (1993) for the generation 
time of Sfup/!~,//,c.oi.I-iIs mirrus 3b compared to independently 
derived data for thc growth of S/uph. NU)YZIS in foods. The 
diagonal line is the line of identity. Points above this line 
represent predictions which are longer than thc obscrvcd 
generation time and arc thus ‘fail-dangerous’. Convcrsely, points 
below the line of identity are ‘fail-safe’ predictions. The data are 
detailed in Table 3. Data of: Troller and Stinson (1975) (0); Yotis 
and Teodoro (1957) (m); Walls (unpublished) (a); Broughall 
et a/. (1993) (0); Rajkowski rt d. (19Y4) (+); Gockler KI ul. (1988) 
(A, 

represent an average proportional deviation between model 
predictions and observed responses throughout the response 
surface. 

Taken together, eqns 2 and 3 can be used to compare 
objectively the performance of different models to different 
data sets. It must be remembered, however, that eqns 2 and 
3 do not generate absolute measures of performance: unless 
perfectly representative ‘test’ data sets can be collated, the 
values of the indices will be specific to the data sets used to 
evaluate them. This raises the issue of whether comparison 
to literature data is an appropriate means of model validation. 
Sutherland rt u/ .  (1994) discussed the limitations and dif- 
ficulty of using growth rate data obtained from the literature, 
and Fig. 1 suggests that some data sets are ‘anomalous’. The  
predictions of the model used in this paper agree closely with 
those of the model assessed by Sutherland et d. (1994) even 
though the models were derived completely independently 
and using different strains of S t ~ p h .  niirrus and different 
experimental approaches. Neither model, however, per- 
formed well when assessed against the literature data set 
collated by those authors. T o  evaluatc model performance it 
may be more appropriate to use data derived under well 
controlled conditions, so that the model’s performance is not 
unfairly prejudiced by comparison to unrepresentative data 
or data collected under inadequately controlled or defined 
conditions. Cole et d. (1994) observed that validation with 
literature data can be useful but often reveals marked 
deficiencies in that literature itself. In this context, the indices 

may also have utility as a measure of ‘cleanness’ of data or to 
compare methods of data collection. 

The  accuracy values calculated in this exercise are con- 
sistcnt in magnitude with the experience of other workers 
(Walker and Jones 1994; Sutherland rt d. 1994) but the 
tabulated data suggest that some predictions (e.g. lower tem- 
peratures in Table 3 )  appear to be dangerously erroneous. 
The  poorer predictions may simply be a consequence of 
the inherently greater variability in responses as conditions 
become less favourable for growth, i.e. those points may 
represent the extremes of the distribution of possible response 
times. Alternatively, a weakness in the measures proposed is 
that the bias factor may fail to reveal some forms of systematic 
bias, e.g. systematic overprediction in one region of the 
response surface may be balanced by systematic under- 
prediction in another region. Other means of assessment, 
such as examination of the signs of the residuals, are needed 
to verify the bias factor. 

Plots of observed us predicted responses, such as Fig. 1, 
may reveal systematic deviations. While Fig. 1 reveals poor 
agreement of the model to specific data sets, overall there is 
no evidence of systematic over- or underprediction as a func- 
tion of the response time. More searching analysis could be 
undertaken by plotting the ratio as a function of temperature, 
or as a function of water activity, to ascertain whether there 
is a systematic error in different regions of the response 
surface. Useful methods of examination and analysis of 
residuals, in the context of predictive microbiology, were 
presented by Bratchell rt a/. (1990). If there are no trends in 
the pattern of the residuals, however, the bias factor will be 
a reliable measure. 

The  bias and accuracy factors provide an objcctive sum- 
mary of the performance of predictive models in food micro- 
biology. They are insufficient on their own because the bias 
factor, as an average, may obscure systematic deviations 
between predicted and observed responses in one part of the 
response surface if they are ‘balanced’ by deviations in another 
part of the response surface. Such behaviour might be sig- 
nalled by a larger accuracy factor, but it is still important to 
plot the predicted and observed values to guard against such 
systematic deviations. Similarly, higher values of nr in eqn 
4 may prove to generate more useful indices of accuracy. 
Nonetheless, though imperfect, the bias and accuracy factors 
are suggested as a first step towards the development of an 
objcctive and useful definition of the term ‘validated model’. 
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