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Abstract--The slow viscous flow through an array of rectangular fibers is solved by the efficient method 
of eigenfunction expansion and domain decomposition. In particular, the normalized permeability is 
determined for square fibers and strips in rectangular arrays. The limitations of the approximate capillary 
model and the obstacle model are shown. An empirical formula for the drag of a single square fiber is 
also given. 
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I N T R O D U C T I O N  

The study of  the flow through porous media is important  in numerous biological and engineering 
processes. Usually, satisfactory predictions can be obtained by Darcy's  law which treats the 
medium as a continuum. However, the necessary macroscopic parameters,  such as permeability, 
can only be theoretically predicted through microscopic analysis of  the fluid path through the pores 
of  the solid matrix. In this respect, two distinct approaches seem to have emerged. The first 
approach models the pores of  a porous medium as a bunch of capillary tubes which may be 
tortuous or interconnected in a network. Essentially, the resistance to flow is through Poiseuille 
drag in a tube. The second approach considers the solid matrix as a cluster of  immobile solid 
obstacles, which contribute a collective Stokes resistance to the flow. For  a review of these theories 
one may consult Scheidegger (1974), Dagan (1989), Adler (1992) and Dullien (1992). 

It  is evident that the capillary models would best describe pores and crevices which are indeed 
long and slender, while the obstacle models would be better suited for porous media with large 
void fractions. It  is, therefore, advisable to rigorously study a class of  matrix geometries which 
could link both capillary and obstacle extremes and thus quantify the limits of  their applicabilities. 

The most  rigorous microscopic analyses solve the Stokes equations for creeping flow between 
periodic bodies. The existing literature considers a porous medium only consisting of  arrays of  solid 
spheres or cylinders (Hasimoto 1959; Sangani & Acrivos 1982; Zick & Homsy 1982; Drummond  
& Tahir  1984). When the solids are dilute, the geometry may represent the obstacle approach. 
However,  small capillary channels cannot be formed with spheres and cylinders even when they 
are closely packed. 

In this paper, we shall solve the Stokes flow across an array of rectangular cylinders. This 
particular geometry has the advantage of  being able to represent both the capillary and the obstacle 
extremes. A practical application for rectangular fibers is in the modeling of rock fissures (Dagan 
1989). 

F O R M U L A T I O N  

Figure 1 (a) shows a porous medium composed of  a doubly periodic array of rectangular fibers. 
I f  the geometric ratios a, b and c are such that a ~> 1, b ~> 1 and c = 0(1), then a network of  channels 
exists and the capillary approach may be useful. I f a  ,~ 1, 0 < b - 1 ,~ 1 and c = 0(1), then the fibers 
are dilute and the obstacle approach may apply. However, if a, b and c are all order of  unity as 
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Figure 1. (a) Geometry and (b) partition into two regions. 

(b) 

shown, neither approach is valid, and the rsistance must be obtained by solving the Stokes 
equation. 

We assume a fluid of viscosity/~ is forced from the left, parallel to one of the axes of the rectangle, 
with an average macroscopic velocity C" = U/b. Then, the mass flux (per depth) through each 
horizontal pore is 2UH. The Strokes equation is 

Px = (V20)y,  [l] 

Py = --(V20)x, [21 

where p is the pressure normalized by #U/H, ~k is the stream function normalized by UH and x 
and y are Cartesian coordinates normalized by H. The stream function satisfies the biharmonic 

V'~k = 0. [31 

The boundary conditions are that on the solid rectangles, the stream function is constant (+  1) and 
that the normal derivative of ~ is zero. Our aim is to find the pressure drop or premeability to 
this forced flow. 

Previous literature which studied cylindrical or spherical inclusions used an expansion in 
cylindrical or spherical harmonics, which is inapplicable in the present case. We shall use an 
eigenfunction expansion and matching method, probably first used by Weil (1951) and extended 
by Dagan et al. (1982) and Wang (1993). In essence, the fluid domain is partitioned into simple 
regions, solved separately by eigenfunctions and matched along their common boundary. 

Due to symmetry, we need to consider only the T-shaped domain in figure l(a). Figure l(b) shows 
the partition of the domain into two regions, I and II, each with their respective Cartesian axes 
at their respective symmetry points. The boundary conditions for ¢ ~ ( x ,  y )  are 

O.(x, _+l)= __1, 

Ov(x, _ 1) =0 ,  

0 , x ( 0 , y )  = 0, O,x,~(0,y)  = 0 

The boundary conditions for ~k.(x,y) are 

~/ll(X, - t - b ) =  -~-1, 

~k.,, (x, +b )  = 0, 

O.. ( 0 , y ) =  0, ~/nxx~ (0, Y) = 0, 

[4] 

[5] 

[6] 

[7] 

[8] 
[9] 
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~bn( - c ,y )  =s ign(y) ,  1 < lYl < b ,  

~ . x ( - C , y ) = O ,  1 < l Y l < b .  

Furthermore,  ~kl and ~b~l match continuously at their common boundary  

~ . ( - c , y ) = ~ i ( a , y ) ,  [y[ < 1, 

~kiix ( - c ,  y)  = ~klx (a, y),  [y[ < 1, 

~bnxx ( -C ,  y)  = ~blxx (a, y),  [y[ < 1, 

~lllxxx(--c,Y) =~k~xxx(a,Y), lYl < 1. 
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E I G E N F U N C T I O N  E X P A N S I O N S  

The general solution of  ~l satisfying [3], [4] and [6] is 

g/~ = ~ [A.Q.(x)  + B.R.(x)]sin ct.y + ~ C.S . (y )  cos fl .x + Co(y - y3) + ½(3y - y3), 
n = l  n = l  

where or,, = nrq fin = nn/a and 

Q.(x)  = e ".(x-a) + e -~. O'+a), 

R n ( X )  = x ( e  ~ " ( x - a ) -  e-~.(x+a)), 

( l i - e -2#" \  ' _  S.(y)  = e#.~Y- ° - e -#.ty+ ° 7 e_-7~)y(eP.tr-l)+fl-a.°'+l)). 

Equat ion [5] is equivalent to 

~" [A.Q.(x)  + B.R.(x)]~.(--  1)" + ~, C.S;(1)  cos fl#x - 2(70 = O. 
n = l  n = l  

[16] 

[17] 

[181 

[191 

[201 

Thus, the coefficients C. can be found by Fourier inversion of  [20] 

where 

{ I( " " '  ]} = - -  + a  Co 1 ( 1)m Am(1 - -  e-2a=") + Bm a + -~nJe- . mn ' 

2rc ~. (AmQim.+Q,,. .+BmR,m.)m(__l)m, 
C . -  aS.(1) m= ~ 

[211 

[22] 

I 
a 

Ql,,~ = Q,. cos fl .x dx - ( -  1)"ma2 (1 - e - ~ " ) ,  [23] 
,)o r~( a2m2 + n2) 

f f  ( -  1)"a 2 [(a:m 2 n 2 + amn2~)e -2~" Rlm n = R m cos fl .x dx = g ( a 2 m 2  + n2  ) - + a3malt  

+ n 2 -- a2m: + a3m31t + amrtETz]. [24] 

The form of  [16] is complete since ~b~ is left with two independent series solutions represented 
by A. and B. on the fourth boundary  at x = a. The form of  ~O n is similar, but somewhat different: 

d/l~ (x, y )  = Z [D. T. (x)  + E. U.(x)]sin y.y + y/b, [25] 
n = l  

where y. = n/b and 

T~(x) = e ~(~=° + e =~.(~+°, 

u~ (x) = x(e~. ~ -  ~) - e~. (~ + % 

[26] 

[27] 
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Equation [25] satisfies [5], [7], [8] and [9]. Next, we multiply [10] and [12] by sin y.y and integrate 
f r o m y = 0  t o y = b .  

b [ D . T . ( _ c ) + E  n 1 f o, fh  U . ( - c ) ]  + ~ y sin y.y dy = sin y.y dy 
I 

+ ~ [AmQm(a) + B,.Rm(a)]I.,. + ~ Cm(- 1)"J,.. 
m = l  m = l  

;0' ';0 +Co (y - y3)sin y.y dy + ~  (3y - y 3 )  s iny.y dy, [28] 

where 

IbZrn( 1) m sin 7. 
fo 1 l ~  2 ~ 2 ~ n ~ b m  

I~m = sin u~y sin 7.Y dy = , [29] 
- n =bin 

fo' J.,. = Sm(y)sin 7~Y dy = { -2a3b3mn(1 - e 2~)2c0s y. + ab 2 sin ~,.[a(a2n 2 - b2rn2)e 4~m 

+ 4m~(b2m 2 + a2n2)e 2~ + a(b2rn2 _ a2n2)]}/[(1 + e-2~)(b2m2 + a2n2)2~2]. [30] 

Equation [28] is simplified to 

5 [D.(1 + e 2c-~.) + cE.(1 - e 2,v.)] = [hmQm(a) + O,,,Rrn(a)]Inm 
r a = l  

+ ~ Cm(-- l)mJ.,. -- 2(70[3?. COS 7. + (7. 2 -- 3)sin 7.]/74 + 3(sin ?. -- 7. cos 7n)/? 4. [31] 
m =  1 

Similarly, [11] and [13] are inverted 

b{D~?.(e  - l ) + E . [ e  -2C'~" - -c~. (1  + e  2,7.)]} = ~ [A,.Q',,,(a)+B,,,R~(a)]I.,,,. [32] 2~7n 1 
m = l  

Now [14] is multiplied by sin ~.y and integrated from y = 0 to y = 1. The result is 

m = l  

{Dmy2(1 + e -2~/m) + Em[27m(1 + e 2,v.) + c7~( 1 _ e-Cr.)]}Im. 

l It tt ' ~  2 m =~[A.Q.(a)+ B .R . (a )] -  ~ Cmflm(-1 ) K,... [33] 
m = l  

Note that Im. is the transpose of I.m and 

Kin. = [-2a3mn(1 - e-2")2( - 1)"]/[(1 + e-Z'm)(m z + a2n2)2n2]. [34] 

Lastly, [15] is inverted 

{Dmy3(e 2,v. 1) + E,.[3y,.(e -2'vm- 1)-- c73(1 + e ,vm)]}i,.. 1 . . . . . .  - -  = ~ [ A , Q ,  ( a )  + B , R ,  (a)] .  
m s ]  

[35] 

Equations [22], [31]-[33] and [35] represent five sets of equations and five sets of unknowns: A., 
B., C., D. and E.. The problem is, in principle, solved. We truncate D. and E. to N terms and, 
due to a shorter width, A., B., C. to M = integer (N/b) terms. Together with Co, there are 
2N + 3M + 1 equations and unknowns. The error is decreased by increasing N normally N -~ 10 
gives 1% error. Since Fourier series is absolutely and uniformly convergent, and Stokes flow is 
highly diffusive, convergence is very fast. 



STOKES FLOW THROUGH RECTANGULAR FIBERS 189 

T H E  P R E S S U R E  D I S T R I B U T I O N  

After the stream function is determined, one can solve for the pressure from [1] and [2] 

pi(x,y)= ~ B.2ot.(C"(x-")--e-"(x+"))cosa.y - ~ 2fl.C.( 1-e-2"'~ 
. = t . = l 1 + e - 2 ~ . ] "  

x (e a.cv- i) + e-a.~+ 1))sin fl.x -- (6C0 + 3)x +Po.  [36] 

pH(x, y) = ~ E.2y.(e ~"(x-c) -- e-~"(x+c))cos Y.y + P l .  [37] 
n = l  

Here Po and Pt are the pressures at the two coordinate origins. Matching the pressures at the 
boundary yields 

p, (a. y)  = p,, ( -  c, y). [38] 

Integrating [38] from y = 0 to y = 1 gives 

- 3a (2C 0  + 1) +P0 = ~ E.2( e-z'v" -- 1)sin 7. +P~. [39] 
n = l  

The mean pressure drop per unit distance is thus 

G=Ap=(P°-Pl--)= I ~ [  (a + c) (a + c) . =, E.(e-2q.-1)sin,.+3a(2Co+l)l. [40] 

Since the average velocity is U/b, Darcy 's  law is 

8 = U _ K A p p  U 
b # Ax H 2'  [41] 

where K is the permeability. The normalized permeability is thus 

K 1 
H 2 bG' 

where G is from [40]. 

[42] 

S O M E  A P P R O X I M A T I O N S  

I f  a >> l, we may assume almost all resistance is due to Poiseuille flow through the narrow 
horizontal channels. This is the capillary approach. The normalized pressure drop through a 
channel of  width 2H and length aH is 3a. The pressure drop per period is 3a/(a + c). Thus, the 
equivalent permeability is 

K a+c 
H 2-  3ab [43] 

On the other hand, if a ~ 0  and c >> 1, the solid matrix can be regarded as a series of  vertical 
screens. The case for a single vertical screen with zero thickness (a = 0, c = ~ )  was solved 
analytically by Hasimoto  (1958). He found the conductance (in our variables) of  one slit is 

f lOW _b2H2 in ( l z )  
pressure drop n/~ cos ~ . [44] 

Thus, for a series of  screens spaced 2cH apart,  the permeability is 

K Cbln (~b) - -  = - -  cos . [45] H 2 

I f  a ~ 1, 0 < b -  1 ~ l, c ~>0(1), the solid fibers are sparsely distributed, and the obstacle 
approach may be considered. For  a circular cylinder, various analytical approximations using 
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Figure 2. Extrapolation to the flow across a single square clinder A: a = 0.01, E = 0.00098; B: a = 0.02, 
E = 0.00038; C: a = 0.05, E = 0.00227; and E: a = 0.1, E =0.00826. 

cyl indr ical  ha rmonics  by H a s i m o t o  (1959), H a p p e l  (1959) and K u w a b a r a  (1959) yield the d rag  on 
a single cyl inder  in the form 

F 4~ 
[46] 

~ln - b~ 

Here ,  F i s  the d rag  per  uni t  length o f  a cylinder,  ~ is the solid fract ion and  61 is a constant ,  depending  
on the model ,  vary ing  between 0.5 and  0.75. F o r  the rec tangula r  cyl inders  s tudied here, s imilar  
analyses  do  not  exist. However ,  an empir ica l  law similar  to [46] can be ob ta ined  by ex t rapola t ion .  
We shall  i l lustrate  using square  cylinders.  

Cons ider ing  a square  cell enclosing the square  cyl inder  (a = b - 1) with equal  gap width (c = 1), 
the solid f rac t ion is (a2/b2). Similar  to [46], the non-d imens iona l  d rag  is wri t ten as 

g K [47] 

The  cons tan t s  x and 3 are  to be de te rmined  as E = a2(a + 1) 2~0 .  F o r  a given a, the factor  D is 
c o m p u t e d  f rom our  series so lu t ion  

D = 4b2(po - Pl ). [48] 

W e  rewri te  [47] as 

D l n ( ! )  = K +D6. [49] 

Then,  D ln(1/E) is p lo t t ed  agains t  D in figure 2. In  o rder  to increase accuracy,  up to 50 terms are  
re ta ined  in [40]. Ex t r apo la t ing  to D = 0, we find ~c = 24.0 and 6 = 1.89. Using  [47], the pe rmeabi l i ty  
for  sparse ly-spaced  square  cyl inders  can be a p p r o x i m a t e d  by 

I ( ' t  l _ K K _ ( a + l ) ( a + c )  2 In l + a  - 1 ' 8 9  
H 2 6.0 

[50] 
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Figure 3. Permeability of square fibers in a rectangular array. --- , [43]; - - - - - , [50]. 

The limits of validity of this formula will be determined by comparison with the exact computation 
in the next section. 

RESULTS AND DISCUSSION 

The extreme cases a $= 1 and a 4 1 have been discussed in the previous section. For a = O(I) 
no analytical formulae exist. However, we have successfully computed permeability using 

0 1 I I # 

0 1 a 
2 3 4 

Figure 4. Permeability for an array of strips parallel to flow. --- , [43]. 
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Figure  5. Permeabi l i ty  for an  a r ray  of  s tr ips perpendicu la r  to flow. - - - -  , [45]. 

eigenfunction expansions introduced earlier. The results for a = 0(1) are presented in the following 
discussion. 

Our results shall be presented in terms of  normalized permeability K/H 2, which is more useful 
than the normalized force per length D. The relation is D = 4b(a + c)/(K/H2). Also, we shall use 
the geometric ratios a, b and c instead of volume fraction as independent variables, since for zero 
thickness strips, the solid fraction, always being zero, ceases to be an index. Figure 3 shows the 
permeability for square fibers (a = b -  1) and various constant c. For  c = 0, the fibers are 
horizontally stacked such that infinite parallel channels conduct the flow with permeability 
1/3(a + 1). For a > c, the difference in permeability is small, showing the vertical channels have 
little effect. But, for c > a, the permeability is greatly increased. Also shown in figure 3 are the 
asymptotic approximations [43] and [50]. It is seen that the capillary model, which ignores entrance 
and exit effects, is valid only for channels whose length is at least five times its width, while the 

(a) 

Figure  6(a) and  (b). Caption opposite. 
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Figure 6(c)  

Figure 6. Streamlines past square fibers (a  = c = 1, b = 2).  (a)  Mean velocity horizontal, (b) mean velocity 
tilted 22.5 ° and (c) mean velocity tilted 45 °. 

obstacle  model ,  if  applicable,  is valid for fiber sizes at mos t  0.1 o f  distance to its nearest neighbors.  
Figure 4 shows  the permeabil i ty for hor izonta l  (zero-thickness)  strips (b = 1). W h e n  c = 0, we have 
parallel channels  with K/H 2 = 1/3. The case o f  the vertical stips (a = 0) is s h o w n  in figure 5. Again,  
when  c = 0, the strips are horizontal ly  stacked into channels  (K/H2= 1/3b). Our approx imat ion  
[45], modif ied from H a s i m o t o ' s  (1958) single screen result, becomes  more  applicable for large c. 
Results  for rectangular fiber o f  other aspect ratios are similar and will not  be presented here. 

An i so tropy  is evident from figures 4 and 5. The geometry  a = 0, b = 2, c = 1, if  turned 90 °, is 

(c) 
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Figure 7. Normalized drag D as a function of solid fraction ~. Solid lines are square fibers in a 
s q u a r e  array (from figure 3), dashed lines are circular fibers in  a square array (from Sangani & Acrivos 

1982) .  
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the same as that of  a = 1, b = 1, c = 1. We find that the permeability of flow parallel to the strips 
is much higher than that normal to the strips. In a coordinate system coinciding with the principle 
axes of an orthotropic material, the permeability tensor is diagonalized to the values shown in our 
figures (Scheidegger 1974). 

Our method also yields detailed streamlines. Figure 6(a) shows the horizontal flow through 
square fibers in a square array (a = 1 = c, b = 2). The flow in the vertical channels is almost 
stagnant. By superposition, one can obtain flows not parallel to the principle axes of the solid 
matrix. Figure 6(b) shows the result for the same mean velocity, but tilted 22.5°; while figure 6(c) 
shows the stramlines if velocity is tilted 45 °. The detailed flow fields are necessary for the prediction 
of  transport properties. 

Figure 7 shows a comparison between square arrays of circular and square fibers. For low solid 
fraction ( (less than about 0.39), the circular fibers have slightly less drag (8% less) probably due 
to its more rounded shape. For high solid fractions the circular fibers have much larger drag due 
to obstruction of the passages. In fact, circular fiber drag becomes infinity as E --+n 2/4 = 0.7854 while 
the square fiber drag would not become infinity until ~ ~1 .  

Since Stokes flow is linear, the assumption of zero Reynolds number necessarily leads to Darcy's 
law (see, for example, Scheidegger 1974). The condition for low Reynolds number is pObH/p ~ 1 
where p is the density and 2bH is the transverse period. Notice, as in channel flow, the height of 
each stream tube is fixed and the streamwise parameters a, c do not alter the order of  magnitude 
of  the inertial effects. 

By using the method of eigenfunction expansions and matching contiguous regions, we are 
successful in solving the Stokes flow through an array of rectangular fibers. The method is as 
efficient as using boundary integrals and is superior to using finite differences. Our permeability 
results should be quite useful in the prediction of the Darcy constant for porous media. 
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