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Abstract--Analytical and numerical solutions are presented for the problem of steady, natural convection 
from a sinusoidally heated and cooled horizontal surface which is embedded in a fluid saturated porous 
media which is maintained at a constant temperature T~. The plate is assumed to have a harmonic 
temperature variation, and at large distances from the plate we investigate two different boundary 
conditions, namely, when we enforce either a constant temperature T~ or an adiabatic boundary condition. 
For small values of the Rayleigh number an analytical solution has been obtained provided that the 
temperature at infinity is constant but depends on the Rayleigh number or there is zero heat flux at infmity. 
On specifying an arbitrary temperature T~ at infinity then no analytical solution could be obtained and 
the numerical solution procedure was not convergent. However, we were able to obtain an analytical 
solution in the situation when the constant temperature T~o is enforced at a finite distance, say y = d, from 
the plate and, as d ~  ~ ,  the solution approaches that obtained by enforcing the adiabatic condition at 
infinity. When the constant temperature T~ is enforced at the station y = d we found that the numerical 
solution is dependent on the value of d, but when the zero heat flux condition is enforced at y = d we 
obtained th at d = 4n is sufficiently large for the solution to be independent of the value of d. At very small 
values of Ra there is very good agreement between the analytical and numerical solutions and when Ra is 
very large the boundary-layer scalings for the Nusselt number and the mean fluid velocity along the plate 

are confirmed by the numerical calculations. 

11. I N T R O D U C T I O N  

Theoretical and experimental research on the mech- 
anism of  convective heat  transfer in porous media has 
been well established for many practical applications, 
such as geothermal reservoirs, insulation of  buildings 
and equipment, storage of  radioactive nuclear waste 
materials, engineering aspects o f  irrigation systems, 
separation processes in chemical industries and oil 
recovery techniques to name but a few. A very good 
and comprehensive review of  the state of  knowledge of  
convective heat transfer mechanism through porous 
media has recently been given by Nield and Bejan [1]. 
Most  of  these studies consider two kinds of  boundary 
conditions, namely, when the surface temperature or 
the heat flux from the surface are simple power func- 
tions of  the dista~.ce measured from the leading edge 

t On leave from Faculty of Mathematics, The University 
of Cluj, R-3400 Cluj, CP 253, Romania. 

of  a plane vertical or  horizontal surface which is 
embedded in a porous media. Cheng and Minkowycz 
[2] analysed the steady-state case of  a vertical wall at 
very large values of  the Rayleigh number. Using the 
boundary-layer approximations, the governing 
partial, non-linear differential equations were trans- 
formed into a set of  coupled ordinary differential 
equations which were integrated numerically using the 
Runge-Kut ta  method. Similarity solutions were also 
obtained by Cheng and Chang [3] for the free con- 
vection fluid flow in a saturated porous media above 
a heated horizontal impermeable surface. The reverse 
situation, namely that of  natural convection from a 
cooled plate facing upwards was analysed by Kimura  
et al. [4] by using a scale analysis and the K a r m a n -  
Pohlhausen integral method. Finite-difference solu- 
tions were also obtained for Rayleigh numbers as large 
as 700. Merkin and Zhang [5] considered the free 
convection fluid flow in an infinite horizontal porous 
channel with the bot tom wall being partially heated 
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NOMENCLATURE 

c constant, equation (49) x, y 
d non-dimensional distance from the 

plate 
D solution domain z 
g acceleration due to gravity 
H non-dimensional height of the cells 

formed along the heated and cooled 
horizontal surface ct 

K permeability of the porous media fl 
L a characteristic length v 
m +  1 number of nodal poins in the x 

direction 
n +  1 number of nodal points in the y e 

direction 
Nu Nusselt number 
p + 1 number of nodal points in the z 

direction 
Q heat flux 
Ra Rayleigh number 
T non-dimensional temperature 
Ta temperature 
u, v non-dimensional velocity components 

along x and y directions, respectively 
Uc a characteristic velocity 

non-dimensional Cartesian coordinates 
along and normal to the plate, 
respectively 
transformed coordinate, equation 
(51). 

Greek symbols 
thermal diffusivity 
coefficient of thermal expansion 
kinematic viscosity of the convective 
fluid 
non-dimensional streamfunction 
convergence parameter, equation (59). 

Superscripts 
dimensional variables 
average quantities 

~ 

boundary-layer variables 
s order of iterations. 

Subscripts 
i, j nodal points 
inf value at infinity 
oo condition at infinity. 

or cooled. For the heated case and at a certain value 
of the aspect ratio of the channel, they found a range 
of values of the Rayleigh number over which two 
different finite-difference solutions exist. 

However, there has been very little work performed 
on convective flows from surfaces immersed in a 
porous media which are subject to other types of tem- 
perature boundary conditions. In this paper, we con- 
sider the steady, free convection flow induced by a 
harmonically (cosine function) heated and cooled 
infinite horizontal surface that delimits a semi-infinite 
porous media. The first paper to deal with this flow 
and heat transfer configuration was undertaken by 
Poulikakos and Bejan [6], who assumed that the 
porous media is maintained at a constant temperature 
To at very large distances from the plate and that the 
wall temperature distribution is of the form 

= Ta cos (fc/L)+ To (1) 

where Ta is the amplitude of the wall temperature 
variations, 2rrL is the period of the length scale oscil- 
lations and £ is the distance along the plate. This 
problem was studied from a finite penetration point 
of view, namely it was assumed that only a finite 
region of the porous media is affected by the spatial 
periodic temperature variations along the plate. 
Therefore, the boundary condition T =  To was 
imposed at a very large distance from the plate which 
increases as the Rayleigh number increases. Finite 
difference solutions were obtained and a scale analysis 
was performed to show that the natural circulation 

consists of a row of counter-rotating cells situated 
close to the horizontal surface. It was found that the 
cellular flow penetrates into the porous media ver- 
tically to a distance of approximately LRa 1/2, where 
Ra is the Rayleigh number. The effects of heated and 
cooled walls in porous media were also investigated 
by Poulikakos and Bejan [7], who described the free 
convection flow in a porous media enclosed by a rec- 
tangular domain having a temperature distribution on 
one vertical side of the step function form, the other 
three boundaries being insulated. A scale analysis and 
a finite-difference method were employed in two situ- 
ations, namely, when the side heating effect is posi- 
tioned above and below the side cooling effect. In this 
paper we consider the same problem considered by 
Poulikakos and Bejan [6], i.e. with the horizontal wall 
temperature distribution of the form (1), but at very 
large distances from the plate, 33 ~ oo, we analyse two 
situations, namely, when a given temperature T~ or 
an adiabatic boundary condition is enforced. We first 
present analytical solutions for the governing equa- 
tions using a series expansion method in terms of small 
Rayleigh number, Ra. When the temperature on the 
plate is specified by the cosine function, we found that 
the temperature at infinity is a non-zero constant and 
its value depends on the value of Ra. This analytical 
solution is physically consistent with having an aver- 
age zero heat flux both at 33 = 0 and at infinity. In 
order to investigate how the solution with an infinite 
domain is approached from the situation when there 
is a boundary condition at a large but finite distance 
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from the plate, an analytical solution of the governing 
equations has been also obtained when a prescribed 
constant temperatu~e boundary condition is enforced 
at a finite distance from the plate y = d. From this 
solution it is easily seen that as d ~  oo, the small 
Rayleigh number solution becomes identical to the 
solution obtained by enforcing 07~/Op --* 0 as )3 ~ oo. 
Therefore, it is concluded that the boundary condition 
of no heat transfer at an infinite distance from the 
plate is the appropriate physical boundary condition 
to enforce. Poulikakos and Bejan [6] have not con- 
sidered the adiabat:ic boundary condition at infinity, 
and specifying the temperature at infinity proves to be 
an erroneous interpretation of penetration. 

Detailed numerical solutions of the governing equa- 
tions using a finite-difference method are also 
obtained for a large range of values of the Rayleigh 
number 0 ~< Ra ~< 200/~. A comparison of the ana- 
lytical and numerical solutions of the streamline and 
isotherm patterns, the mean fluid velocity along the 
plate, the mean Nusselt number, the average heat flux 
at the plate and the temperature at an infinite distance 
from the plate show excellent agreement at small 
values of the Rayleigh number. 

2. GOVERNING EQUATIONS 

We consider an infinite horizontal surface which is 
embedded in a homogeneous fluid-saturated porous 
media of ambient temperature Too. It is assumed that 
the temperature of the surface varies harmonically 
about the mean value of To, as given by equation (1) 
and a Cartesian system of coordinates with the ~ and 
3~ axes taken along and normal to the surface, respec- 
tively, has been chosen. At large distances from the 
plate we consider two different physical boundary 
conditions, namely, either a constant temperature T~ 
or zero heat flux is enforced, i.e. 

7 ~ T ~  as )3--.oo - ~ < ~ < o o  (2) 

or 

~7~/0p-,0 as ~ o o  - o o < ~ < o o .  (3) 

The fluid velocity and the pores of the porous media 
are assumed to be small so that Darcy's model is valid. 
Under these assumptions and the application of the 
Boussinesq approximation, the governing equations 
can be written in non-dimensional form, see Nield and 
Bejan [1], as 

~21// ~2~ ~3T 
+ (4) 

ax z ay 2 OX 

O 2 T a 2 T  ( ~ d T a ~ , y ~  
dx 2 + ~y2= Ra Ox t~x (5) 

where Ra = gKflT~L/av is the Rayleigh number, ¢ is 
the streamfunction defined in the usual way, namely 
u = 8~/Oy and v = - 3~/ax, and the non-dimensional 

~ = 0  

q,=0 

and either 

variables are defined in the form 

x = .fc/L y = O/L t~ = ~/(UcL) T =  ( T -  To)/T~ 

(6) 

where U¢ = gKflTdv is a characteristic velocity. Since 
the problem is periodic in the x direction, we need 
only solve equations (4) and (5) in the domain 

D =  {(x,y)~E2:O<~x<~2~,O<~ y <  oo} (7) 

and we have 

~k(0,y) = ~k(2~z,y) T(O,y) = T(Z~z,y) (8) 

for all values of y E [0, ~ ) .  It can be easily shown 
that the temperature and the streamfunction are 
symmetrical about the plane x = ~z, i.e. T(x,y) 
= T ( 2 n - x , y )  and ~ ( x , y ) = - ~ k ( 2 n - x , y )  where 
0 ~< x ~< n and 0 ~< y < oo. Thus, the problem reduces 
to solving equations (4) and (5) in the domain 

Do={(x,y)~E2:O<<.x<~n,O<~y<oo} (9) 

subject to the following boundary conditions 

T = c o s ( x )  y = 0  0~<x~<~z (10) 

OT/8x=O x = 0 ,  n 0 ~ < y < ~  (11) 

~ 0  T ~ - -  y ~  0 ~ x ~  

or 

(12) 

~ 0  aT/Oy~O y ~ o o  O<~x<~n. (13) 

Further, we will initially seek solutions such that 
T ~ =  To. 

3. ANALYTICAL SOLUTION FOR SMALL 
VALUES OF THE RAYLEIGH NUMBER 

A regular perturbation method is employed to 
obtain approximate solutions of equations (4) and (5) 
subject to the boundary conditions (10)-(13), i.e. we 
look for solutions of these equations of the form 

0 = ~k0 (x, y) + (Ra)01 (x, y) + (ga2)Oz (x, y) + 0(ga  3) 

(14) 

T = To (x, y) + (Ra) T, (x, y) + (Ra 2) T2 (x, y) + O(Ra3). 

(15) 

By substituting expressions 04)  and (15) into equa- 
tions (4) and (5), and equating the same powers of Ra, 
we obtain the following partial differential equations 

02To 027o 
3x ~ + --Oy 2 = 0 (16) 

02~bo 02~bo c3To 
+ - -  (17) 

8x 2 Oy 2 Ox 
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632 T~ 

632T2 63~T~ 
+ 

63x 2 63y2 63y ax 

632T I 6300 63To 630//0 63To 

63x ~ Oy 2 Oy 63x 63x Oy 

63201 63201 63T l + - -  
ax 2 63y~ 63x 

800 63Tj 000 63T 1 

(18) 

(19) 

63x @ 

631//1 63To 630, 63To 
-t (20) 

63y 63x 63x 63y 

63202 020z 63T2 
+ - -  (21) 

63x 2 @2 63x 

which have to be solved subject to the boundary con- 
ditions (10)-(13) which become, on using of 
expressions (14) and (15), 

0 0 = Q  T 0 = c o s ( x )  y = 0  0~<x~<n (22) 

0 k = 0  T k = O  k = l , 2  . . . .  y = 0  0~<x~<n 

(23) 

0 k = 0  63T,/63x=O k = 0 , 1  . . . .  

x=0,7~ 0 ~ < y < ~  (24) 

k = 0 , 1 , . . ,  y ~  0~<x~<~ 

(25) 

k = 0 , 1  . . . .  

y ~  0~<x~<n. (26) 

and either 

0 k ~ 0  T k ~ 0  

o r  

Ok --' O 63Tk/63y --' O 

We first consider the situation in which the boundary 
condition (25) is enforced at infinity. Solving equa- 
tions (16) and (17) we obtain 

To - e -y cos (x) (27) 

00 = -½Y e-Y sin (x) (28) 

which on substitution into equation (18) gives 

632 T1 632 TI i --2y 1 --2y 
63x~ + - -  = ~(1 --2y) e --~e cos (2x). 

63y2 

(29) 

However, on solving this equation, we are unable to 
obtain a solution which satisfies both boundary con- 
ditions (22) and (25) for T~, and the only solution 
which satisfies the boundary condition (22) is found 
to be 

T, = --~6(1 + 2y) e -2y +~6Y e-2Y cos (2x) + ~ .  

(30) 

This solution does not satisfy the boundary condition 
at infinity (25), since T l ~ 1/16 as y ~ o¢. A singular 

perturbation method was sought but we were unable 
to match the inner and outer solutions. However, it 
should be observed that the functions To, 00 and T~ 
satisfy the boundary condition (26) as y ~ oo. There- 
fore, we shall obtain higher-order approximations for 
the streamfunction and temperature in the regular 
perturbation method but using the boundary con- 
dition (26) at infinity. The solutions of equations (19)- 
(21) are found to be given by 

01  = 1 1 2 - g ~ ( ~ y + y  ) e-2y sin (2x) (31) 

1 3 --y 3 2 T2 =2~g[--~e +(~- -y  )e-3y]cos(x) 

+~84(Ty+ y2)e-3y cos(3x)  (32) 

= 1 l 3 --y 02 ~ [ ( ~ + ~ y )  e - (½+3y+y2) e-3y] sin (x) 

1 I1 11 2 3 ~ ( - i i y + ~ y  +2y )e-3ysin(3x).  (33) 

Further terms in the expansion equations (14) and 
(15) have been found but the lengths of these 
expressions become excessively large and therefore 
are not presented here. From this solution, analytical 
expressions for the mean velocity along the plate tT, 
the mean Nusselt number Nu, the average heat flux at 
the plate Q and the temperature at infinity T~nf are 
obtained in the form 

ft = u(x, O) dx = - 1 + 4~472Ra 2 + 0(Ra 3) 
0 

(34) 

_ _  63 

(35) 

0 

1 19 3 Tin f = i ~ R a - - ~ 3 ~ R a  +0(Ra4). (37) 

We now consider the situation in which the boundary 
condition (25) is enforced at a finite distance, namely 
y = d, rather than at infinity. The problem now 
reduces to solving equations (16)-(21) subject to the 
boundary conditions (22) and 

0 k = 0  63Tk/63x=O k = 0 , 1 ,  

x = 0 ,  Tz O < ~ y < d  (38) 

0 k = 0  T k = 0  k = 0 , 1  . . . .  y = d  O~<x~<~ 

(39) 

and we obtain 

1 

To - 2(1 --e -2d) ( e - y  - -  eY-2d)  COS (X) ( 4 0 )  

Y - - sin(x) (41) ~ko 2( l_e_2d) (  e y _ e  y 2d) 
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TI 1 { _  (~+~y) e_2y 4(1-e-2a)  2 + (  l+½Y) e2Y_4d 

--y2 e-2a + I - -  l~  + (~d + d )  e-Za-  l e - ~ ] y  

1 -4a l l [  1 +½Y)e_2ycos(2x ) 

+ 2 1 +e  2a 2Y' e2y-4d COS (2x)--¼e 2d COS (2X) 

(42) 

~ ] 1  - -  16(l_e_2a)2 - Y e  - 2 y  

1 
- -  2 y  - -  4 d  1 - -  2 d  1 1 2 - -  2 y  

+ l+e_2dYe +~e - (~y+~y )e 

12 . , ~  [- d 
+(gY--aY ) e'y- +L(l+~2a)2 

(l--d2) e-Za-  1] [ d 
+ 2(e /a-e  --2") e -2y-  (1 +e2d) 2 

(1--d2) e -za -e -4a]  2y'~ in '2 " + ~ ~  ]e ; s  t x,. (43) 

Using expressions (40)-(43), the mean velocity along 
the plate, the mean Nusselt number and the average 
heat flux at y = 0 are found to be given by 

a = - 1 +0(Ra 2) (44) 

Nu 1 - e  - 2 ~  + 8(1-e-2d)2 - + e-2a 

1 4a-] 2 
+ ~ e -  J R a + O ( R a  ) (45) 

0 : 4 ( 1  2_2d)2 [ 1 - -  ( 1  + d )  e-2d 

+le-4a]Ra+O(Ra2).  (46) 

It is important to note that as d ~  ~ ,  the second 
approximation for the temperature given by expres- 
sion (42), which salisfies TI = 0 at y = d, tends to the 
solution of equation (29) given by expression (30), for 
which T~ = 1/16 a! infinity. In fact, in the limit d 
~ ,  all of the expressions (40)-(46) reduce to those 

given by (27), (28), (30)-(37). 

4. NUMERICAL SOLUTION 

In order to solve numerically equations (4) and 
(5) along with the boundary conditions (10)-(13), 
we divide the solution domain Do into two regions, 
namely, 

Da={(x,y)~-~E2:O~x<~rc, O<~y~d}  (47) 

Db = {(x,y)~E2:O<~x<~ rc, d<~ y <  oo} (48) 

where d is a positive constant to be specified and 
Do = Da u Db. By using the transformation proposed 
by Zeldin and Schmidt [8], namely, 

1 
z = 1 (49) 

l + c ( y - d )  

where c is a parameter to be determined, the semi- 
infinite domain Db is transformed into the finite 
domain Dc given by 

Dc= {(x,z)eE2:O<<.x<<. ~z,O<~z<~ 1}. (50) 

Using the transformation (49), equations (4) and (5) 
can be transformed in the domain Dc as 

O20 -[-C2(1 --Z) 4 02~ _2c2(1 - z )  3 ~ = _ __ 
OX 2 OZ 2 O7. 

dT 
Ox 

(51) 

~b(x,y) = 0 OT/Ox(x,y) = 0 x = 0,~ 

¢(x ,  z) = 0 OT/Ox(x, z) = 0 x = O, 

and either 

~0(x, z) = 0 

o r  

0 ( x ,  z) = 0 

~k(x,y)=O T(x ,y )=cos(x )  y = 0  O ~ x ~ x  

(53) 

O ~ y ~ d  

(54)  

O ~ z ~ l  

(55) 

T(x,z) = O z = l  O <~ x <~ n 

(56) 

OT/Oz(x,z) = O z = l O <<. x <~ x. 

(57) 

The problem now reduces to solving equations (4) 
and (5) in the domain Da subject to the boundary 
conditions (53) and (54), and equations (51) and (52) 
in the domain Dc subject to the boundary conditions 
(55) and (56) or (57). The central-difference method 
was used to solve these equations numerically, and in 
order to match the grids in the domains D a and De, 
which contain m + l  points in the x direction 
{xl = 0, x2 . . . . .  Xm+l = ~}, n+  1 points in the y direc- 
tion {Yl = 0,y2 . . . . .  Y.+1 = d} and p + 1 points in the 
z direction {z.+l = 0, z.+2 . . . . .  z.+p+l = 1 }, we found 
that 

n 

c d ( p -  1)' (58) 

02T 2 ,*02T__2cZ(l_z)30T 
~x ~ + c (1 - z) Oz ~ Oz 

=Rae(1 - - z )2 (~  OTOx OIP'O-zz90x (52) 

while the boundary conditions (10)-(13) become 
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The resulting system of  non-linear algebraic equations 
is solved using the Succesive Over Relaxation iterative 
method, which is terminated when 

Atp (~) = max { l ~  ) -,/~ (~ ') ~-i,/ : i =  1,2 . . . . .  m + l ,  

j =  1,2 . . . . .  n + p + l }  < e  (59) 

AT (~) = max {1T~ ) -- T (~-') --u : i =  1 , 2 , . . . , m + l ,  

j =  1,2 . . . . .  n + p + l }  < ~  (60) 

where the notat ion ( )u means the value of  the func- 
tion at the grid point (xl, yj) or (x~, zj), the subscript s 
denotes the order of  the iteration and ~ is some pre- 
scribed small value, say e = 10 -9 .  Numerical  cal- 
culations were obtained for the Rayleigh number Ra 
ranging from 0 to 200/n and for the two boundary 
conditions at infinity as given by (12) and (13). These 
boundary conditions were first imposed at various 
finite locations y = d where 3n ~< d < oo and we have 
investigated the dependence of  the solution on the 
value of  d for different values of  Ra. Then we numeri- 
cally obtained results by imposing the boundary con- 
ditions (12) and (13) exactly at infinity using the trans- 
formation (49). Numerical  results were obtained for 
two grids of  step sizes n/20 and ~/40 in the x and y 
directions, and 1/30 and 1/60 in the z direction. We 
found that the mean velocity along the plate and the 
mean Nusselt number calculated using these grids 

agree within 0.3% for R a =  lhz and 1% for 
Ra = 200/n and for all locations d considered. There- 
fore all the results presented in this paper are for a 
step size of  g/40 in the x and y directions and 1/60 in 
the z direction. 

5. RESULTS A N D  DISCUSSION 

In order to illustrate the nature of  the numerical 
solution, the streamline and isotherm patterns are 
plotted in Figs. 1-7 for different values of  Ra and 
for both boundary conditions (12) and (13) imposed 
either at a finite distance, y = d, from the plate or at 
infinity. Since the temperature on the plate differs 
from that of  the surrounding fluid, i.e. T~, a vertical 
density gradient is generated in the fluid adjacent to 
the plate and this induces a longitudinal pressure 
gradient. A convective movement  sets up in the fluid 
along the plate in the direction of  decreasing pressure, 
i.e. increasing temperature along the plate. Therefore, 
streams of  opposite directions develop just above the 
plate between cold and hot locations. Two adjacent 
streams meet at a hot  location and give rise to an 
upward vertical stream, which turns to fill the vacuum 
created near the cold locations. Thus a row of  counter 
rotating cells develop near the plate. Since the fluid 
near the hot  locations rises and the fluid near the cold 
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Fig. 1. Streamlines (a) and isotherms (b) for Ra = 1/n plotted in the region {0 ,N< x ~< n, 0 ~< y ~< 2n} using 

the fixed temperature boundary condition (12) at y = d = 7~. 
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Fig. 3. Streamlines (a), (b) and isotherms (c), (d) for Ra  = 100/~ plotted in the region {0 ~< x ~< ~, 
2n ~< y ~< d} using the fixed temperature boundary condition (12) at y = d = 6n and 8n, respectively. 
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Table 1. Comparison of the analytical (A) and numerical (N) flow characteristics for 
/~a --- 1/n and different values of d when the fixed temperature boundary condition (12) 

is enforced at y = d 

d 4n 5n 6n 7n 

A - 1.0000 - 1.0000 - 1.0000 - 1.0000 
N -0.9985 -0.9985 -0.9985 -0.9985 
A 1.0025 1.0020 1.0017 1.0014 Nu N 1.0024 1.0019 1.0016 1.0013 
A --0.0050 -0.0040 -0.0033 -0.0028 
N -0.0043 -0.0033 -0.0026 -0.0021 
A 0.0050 0.0040 0.0033 0.0028 

T(0, d - n )  N 0.0051 0.0040 0.0033 0.0028 
A 0.0049 0.0040 0.0033 0.0028 

T(~, d - n )  N 0.0049 0.0040 0.0033 0.0028 

locations is trapped near the wall, the temperature of  
one cell resemble, s more closely some hot temperature 
rather than the constant temperature considered at 
large distances from the plate. 

For  small values of  Ra we found good agreement 
between the ana]Lytical and numerical solutions in the 
situation in wl~ich the boundary condit ion (12) is 
enforced at a finite distance y = d from the wall. This 
agreement is presented in Table 1, which contains the 
values o f  the mean velocity along the plate tT, the mean 
Nusselt number  Nu and the average heat flux at the 
plate Q for Ra = 1/n and d = 4n, 5n, 6n and 7~. The 
values of  the temperature at x = 0 and n for y = d -  n, 
i.e. at the location where the zero temperature boun- 
dary condit ion was previously enforced, have also 
been included in this table. We observe that the tem- 
perature at x = 0 and ~ has small positive values, 
which are almost equal. However,  the agreement 
between the analytical and numerical solutions as the 
distance d increases indicates that the slight depen- 
dence of  the nuraerical solution on the parameter d is 
not  an error introduced by enforcing the boundary 
condit ion (12) at y = d rather than at infinity, since in 
the limit d - ,  oo the analytical temperature solution 
gives a non-zero constant temperature, namely T~ 
1/16. The streamline and isotherm patterns for 
Ra = 1/n and d = 7n are plotted in Figs. l(a) and (b), 
respectively, anti we found that at very small values 
of  Ra the strearaline and isotherm patterns obtained 
for different values of  d ~< 4n are almost indis- 
tinguishable. However,  as Ra increases, the numerical 
solution becomes more dependent on the parameter 
d, see Table 2 for Ra = 100/n. The effect of  increasing 

the value of  d on the streamline and isotherm patterns 
is best illustrated in Figs. 2 and 3 for Ra = lO0/n and 
d = 6~ and 8n. It is seen that as d increases the flow 
changes from a situation in which a cell occupies the 
entire domain Da into a situation in which the cell 
occupies only a part of  the region of  the domain Da, 
which is o f  a height H < d, see Fig. 3. For  Ra = 100/n 
the critical distance d = de, up to which the flow occu- 
pies the entire domain D,, is in the range 6n < dc < 7n. 
Numerical  results obtained for different values of  Ra 

showed that dc increases with increasing Ra. As d 
increases above de, the velocity along the plate and the 
height H of  the cell decreases according to a very small 
horizontal temperature gradient for y > H. However,  
the temperature calculated at the location y = d -  
clearly shows that the hot  temperature is convected 
to larger and larger distances from the plate as d 
increases. 

When the Rayleigh number is increased above a 
value of  about  150/~, we found range of  values of  
d in the range 3z~ ~< d ~< 8n for which two different 
numerical solutions exist. Merkin and Zhang [5] also 
obtained two finite-difference solutions, i.e. a uni- 
cellular and a bicellular solution, for the free con- 
vection in a horizontal porous channel with the bot- 
tom wall being heated, by considering two different 
initial guesses for the Successive Over Relaxation 
method. However,  for the problem under consider- 
ation, the two numerical solutions were obtained by 
numbering the grid points in the iterative method in 
two ways in the x direction. We found that the flow is 
unicellular when the grid points are numbered from 
the cold to the hot  locations on the plate, see Figs. 4(a) 

Table 2. Variation of the flow characteristics with d for Ra = 100/~ using the fixed 
temperature boundary condition (12) imposed at y = d 

d 5~ 6~ 77z 8~ 

z7 --0.7396 -0.7262 --0.7188 -0.7171 
Nu 2.1725 2.0709 2.0151 2.0028 

-0.3251 -0.1595 -0.0712 -0.0520 
T(0, d-- ~z) 0.2843 0.1989 0.1104 0.0864 
T(n, d-zr) 0.1354 0.1159 0.1001 0.0861 
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Table 3. The mean flow characteristics for the unicellular 
(U) and bicellular (B) flow for Ra = 150/n and 200/n using 
the fixed temperature boundary condition (12) enforced at 

y = d = 3 ~  
m 

Ra a Nu 0 

150 U -0.718 3.103 - 1.297 
~ -  B -0.676 2.622 -0.490 

200 U -0.671 3.587 - 1.636 
n B - 0.631 2.998 - 0.646 

and (b) which contain the streamlines and isotherms, 
respectively, for Ra = 200/1t and d = 3n, whereas in 
the reverse situation when they are numbered from 
the hot to the cold locations on the plate the flow 
consists of  two counter rotating cells situated one 
above another, see Figs. 4(c) and (d) in which the 
streamlines and isotherms, respectively, are plotted for 
Ra = 200/~ and d = 3~z. Table 3 presents the values of  
the mean velocity, the mean Nusselt number and the 
average heat flux at the plate for Ra = 150/1r and 
200/7r and d = 37r and shows that for the unicellular 
solution the velocity along the plate is greater and the 
heat transfer near the plate intensified than for the 
bicellular solution. For  any other values of  Ra and d 
the numerical solution does not  depend on the num- 
bering of  the grid points in the iterative method, and 
the solution is unicellular. 

As we have mentioned before, Poulikakos and 
Bejan [6] have presented numerical solutions and a 
scale analysis for this problem. However,  they 
obtained numerical solutions using only the boundary 
condition (12) enforced at a finite distance d from the 
plate and a rigorous study of  the dependence of  the 
solution on the parameter d and on the convergence 
parameter e given in equations (59) and (60) was not 
considered. In order to show the critical dependence 
of  the numerical results on the value of  e, the stream- 
line and isotherm patterns are given in Fig. 5 for 
Ra = 100/n, d = 7n and e = 10  - 3  and 10 -9 .  It should 
be noted that for e = 10 -3 we have obtained stream- 
lines and isotherms of  a similar form to those reported 
in [6], see Fig. 3 from [6], and the accompanying Fig. 
5. However,  these flow patterns change significantly 
as e decreases to a value of  10 -9. It has been found 
that any further decrease in the value of  e produces 
results which are graphically indistinguishable from 

those obtained with e = 10 -9. Therefore, it is likely 
that if  the iterative method of  Poulikakos and Bejan 
[6] is extended until the results were more accurate 
then their results would agree more closely with our 
convergent results as shown in Figs. 1-5. 

Further,  we have performed numerical calculations 
when the boundary condition (12) is enforced at infinity. 
Thus, equations (4) and (5) were solved in the domain 
Da and equations (51) and (52) were solved in the 
domain De. In this case we were able to investigate the 
numerical solution at very large distances from the 
plate provided that the mesh points near z = 1 in the 
domain Dc are transformed in the domain Db into 
points situated at a distance from the plate greater 
than y = 280. However,  we found that the iterative 
method for this situation could not be considered to 
have converged, the values of  A~k and AT being 
0(10 -6 ) after 0(105 ) iterations. The streamlines and 
isotherms obtained in the domains Da and Dc are 
plotted in Fig. 6 for Ra = 100/n, d = 3~ and 100000 
iterations. The difficulty in obtaining convergent 
results occurs near z = 1, i.e. at very large values of  y, 
and the numerical results obtained show that as the 
number of  iterations increases the solution appears to 
settle to an almost convergent solution in the domain 
Da. Further,  the mean velocity along the plate and the 
mean Nusselt number also appear to be converging 
as the number of  iterations increases, see Table 4. On 
the other hand, the temperature appears to approach 
a constant value for values of  z in the range 
0 ~< z ~< 1/2. As the value of  z increases above about  
one half, the temperature decreases rapidly to zero 
near z = 1. The effect of  increasing the number of  
iterations is that the constant temperature solution in 
the domain Dc expands to larger values of  z and the 
temperature falls more rapidly near z = 1, i.e. the solu- 
tion appears to be tending towards the one with a 
boundary-layer at infinity. 

According to the analytical solution for small values 
of  Ra, we now consider the case of  the boundary 
condit ion (13), i.e. when dT/dy = 0 is enforced at 
y = d. Numerical  solutions were obtained for various 
values of  d in order to investigate the dependence of  
this solution on the values of  d. It was obtained that 
for the range of  values of  Ra considered, the value of  
d = 47r appears to be sufficiently large for the solution 
to be independent of  the choice of  d. When the boun- 
dary condition (13) is enforced at infinity and d = 4~, 

Table 4. The mean velocity, the mean Nusselt number and the temperature at the locations 
x = 0 and ~z and y = 3~ for Ra = 100/Tt obtained after different numbers of iterations using the 

fixed temperature boundary condition (12) at infinity and d = 3rr 
m 

Iterations AT ~ Nu T(0, 3n) T(n, 3~z) 

5000 1.2 × 10 -5 -0.7157 1.9919 0.4702 0.4674 
20 000 7.3 × 10 -6 -0.7128 1.9708 0.5390 0.5384 
50000 3.0× 10 -6 -0.7118 1.9629 0.5682 0.5680 

100000 1.5 x 10 -6 --0.7112 1.9589 0.5834 0.5832 
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Table 5. Comparison between the analytical (A) and numeri- 
cal (N) solutions for different values of Ra using the adiabatic 

boundary condition (13) enforced at infinity 

Ra A N 

a - 0.9999 - 0.9984 
1 Nu 1.0003 1.0000 

(7 0 0.0007 
l~f 0.0199 0.0199 

~ -0.9979 -0.9930 
5 Nu 1.0087 1.0124 

!7 0 0.0033 
Ti,f 0.0989 0.0975 

-0.9914 -0.9781 
10 Nu 1.0348 1.0479 
-n- ~ 0 0.0065 

Tinf 0.1943 0.1848 

the numerical solution in the domain Da is identical 
to within four decimal places to the solution obtained 
by enforcing the boundary condition (13) at y = 4n. 
In the domain Dc it is also obtained that the stream- 
function is zero and the temperature is a constant 
(which depends on the Rayleigh number) to within 
four decimal places. 

Table 5 shows the values of a, Nu,  Q_. and Tinf cal- 
culated both analytically and numerically for 
R a  = I /n ,  5 /n  and lO/n. It is found that for small 
values of Ra,  e.g. R a  = 1/n, there is good agreement 
between these solutions. However, they become less 
consistent as R a  increases since the terms in the ana- 
lytical solution which are 0(Ra 3) cannot be neglected. 
In order to check 1:hat the numerical solution is physi- 
cally consistent, we examine the values of Q from 
Table 5. As no heat is being taken out of the system 
as y ~ oo and at x = 0 and n, then there should be no 
heat being put into the system at y = 0, i.e. Q = 0, 
which is in agreement with the results presented in 
Table 5. It is also obtained that the magnitude of ~ is 
always less than 2% of the mean Nusselt number for 
all of the values of R a  considered. 

The streamline and isotherm patterns for values of 
R a  = 1/n and 200/n are shown in Fig. 7 using the 
boundary condition (13) at infinity. It is seen that the 
flow consists of a row of counter rotating cells situated 
near the wall whose heights slightly decrease as R a  
increases, see Figs. 7(a) and (b). However, an impor- 
tant feature of this problem is the temperature asym- 

metry of one cell, see Figs. 7(c) and (d), which is due 
to the fact that the fluid in contact with the cold region 
is trapped near the wall. Table 6 presents the values 
of the Nusselt number, the mean velocity along the 
plate and the temperature at infinity, for R a  = 40/n,  
60/n,  80/n ,  100/n, 120/~z, 160/n and 200/n. It is 
observed that, as the Rayleigh number increases, the 
ability of one cell to transfer heat into and out of the 
porous media increases despite the decrease in the 
velocity along the plate. 

Finally, at large values of the Rayleigh number the 
boundary-layer scalings suggest that the mean velocity 
along the plate and the mean Nusselt number should 
be scaled as 

a = f iRa ]/3 N u  = -~u /Ra  1/3 (61) 

where ~ denotes the boundary-layer approximation. 
The values of a and Nu are presented in Table 6 for 
R a  = 40/n,  60/n,  80/n,  100/n, 120/n, 160/n and 200/n 
and the results indicate that the scaling laws are 
obeyed by the numerical calculations. It should be 
noted that the velocity along the plate decreases as the 
heat transfer processes intensifies and this is confirmed 
by the scaling laws. 

6. CONCLUSIONS 

In this study we have examined the steady free con- 
vection fluid flow through a semi-infinite porous 
media due to a heated and cooled horizontal surface, 
by considering two situations, namely when a given 
temperature T~ or a zero heat flux is enforced at 
infinity. We could not obtain analytical solutions for 
small values of R a  when an arbitrary constant tem- 
perature T~ is enforced at infinity but only when there 
is a zero heat flux boundary condition. However, this 
solution is approached by the solution obtained 
enforcing the temperature Too at a finite distance from 
the plate y = d, as d ~ oo. Therefore, it is concluded 
that the appropriate boundary condition for the pre- 
sent problem is that of no heat transfer at an infinite 
distance from the plate. Numerically, we were unable 
to obtain a convergent solution when the temperature 
T~ is enforced at infinity, but only when it is enforced 
at y = d and this solution is dependent on d. The 
analytical and numerical results obtained enforcing 
zero heat flux at infinity are found to be in very good 
agreement for small Ra,  and showed that near the 

Table 6. Values of the mean and boundary-layer flow characteristics for different values 
of Ra using the adiabatic boundary condition (13) imposed at infinity 

Ra 40/n 80In 120/~z 160/n 200/n 

a -0.8551 -0.7470 -0.680 -0.632 -0.596 
a - 1.9967 -2.1977 -2.290 --2.343 -2.380 

Nu 1.3952 1.7904 2.090 2.332 2.537 
~Tu 0.5975 0.6086 0.621 0.629 0.635 
Ti, r 0.4639 0.5878 0.644 0.677 0.699 
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heated and  cooled hor izonta l  surface the na tura l  cir- 
culat ion consists of  a row of  counter  ro ta t ing  cells 
whose heights decrease as the Rayleigh n u m b e r  
increases. The abili ty of  one cell to t ransfer  heat  into  
and  out  of  the porous  media  increases as Ra  increases, 
despite the decrease in the velocity a long the plate. 
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