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Boundary layers on rotating cones,
discs and axisymmetric surfaces with
a concentrated heat source
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Summary. A concentrated heat source is situated at the tip of an otherwise adiabatic rotating cone.
Due to centrifugal forces, velocity and thermal boundary layers spread on the surface. After a simi-
larity transform, the governing equations reduce to a set of nonlinear, ordinary differential equations
which are then integrated numerically. The related cases of rotating discs and other axisymmetric
surfaces are considered.

1 Introduction

Forced convective heat transfer due to centrifugal forces is important in the design of
rotating machinery. Reviews on this topic were written by Dorfman [1] and Kreith [2].
The constant temperature rotating dise, which yields an exact solution of the Navier-
Stokes and energy equations, was solved by Millsaps and Pohlhausen [3], Sparrow and
Gregg [4]. The boundary layer on rotating cones was studied by Tien [5], [6], Hartnett and
Delang [7] for constant and variable surface temperatures. Geis [8], Hayday [9], Dorfman
and Serazetdinov [10] extended the results to a family of curved surfaces of revolution which
includes the disc and cone as special cases. The present note studies, for the first time, the
convection on adiabatic rotating surfaces of revolution with a heat source at the tip. Simi-
larity boundary layer solutions will be sought. Similarity solutions are important since
they show the exact effects of parametric variations.

2 General formulation

The boundary layer equations on a body of revolution are (e.g. Rosenhead, [11])

w? dr
Uy + VUy — g =Vl (1)
uw dr
ww, + vw, + g = (2)
(ru), + (rv), =0 (3)
v
uly, + T, = i T,,. 4)

Here x, y are intrinsic coordinates along and normal to the surface and u, v are the corre-
sponding velocity components. 7' is the temperature, » is the kinematic viscosity, P is the
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Fig. 1. The coordinate system

Prandtl number, w is the azimuthal velocity and r(x) is the surface distance to the axis
of revolution. Let the surface be described by

r = Az (3)

where 4 and s are positive constants. The heat source of strength @ is at the tipr =x =0
(Fig. 1). Set

u = AQz°F'(n) (6)
§—1 [ J—
v = —VA.QV x 2 [(38 ; 1) F -+ (s 2 1) nF’:| (7)
w = AQr'G(x) (8)
Q —3s—1
2moC, A Y A0y
A0 s—1
n=122 v (10)

P

Here Q is the angular velocity of rotation, g is the density and (), is the specific heat.
Equations (1) —(4) then reduce to

Fr + (38 + 1) FF" + S[GZ . (F’)2] =0 (11)
1

@+ (38 + )m, 9@ — 0 (12)

6 4 P (38 - 1) (6FY = 0. (13)

The boundary conditions are
F0y = F'(0) =0(0) =0, G0) =1 (14)
F'(00) == G(o0) = O(c0) == 0. (1)

The total heat flux through any x = constant surface, within the boundary layer approxi-
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mation, is
Q = o0 [ 2mru(T — T'y) dr (16)
o

which yields the condition

o

[Fody =1. )

3 Rotating cones and dises

These important geometries have been studied previously, but not for the concentrated
source case considered in this paper. The family of cones are obtained by setting s = 1,
A =sin x in Eq. (5). When the vertex angle 2« becomes 2z, the surface is a flat dise. The
governing equations are

P 4 9FF" + G2 — (F') =0 (18)
G L 2FG — 2F'G =0 (19)
g 4 2P(OF) = 0. (20)

Equations (18) and (19) are the flnid dynamic equations for Karman’s rotating disc prob-
lem [12]. Accurate numerical solutions were given by Rogers and Lance [13], e.g. F/'{0)

== 0.510233, G"(0) = —0.616922, F(co) = 0.442235. After F(z) is obtained, the solution
to Eq. (20) is

6 = ¢ exp {—zp [ Fin) dﬁJ (21

where ¢ is obtained from Eq. (17) by double quadrature. However, direct numeriecal inte-
gration may be easier. Change Eq. (17) to a differential equation
dK

e == 0, K(0) =0. (22
)
dn

Choose 6(0) = 1 and integrate Eqgs. (20), (22) numerically until K(5) converges to some
value say k*. Then the true initial value is

8(0) = 1/k*. 23)

Table 1 shows our results, We see that the normalized surface temperature 6{0) increases
with Prandtl number. Figure 2 shows that the normalized temperature profile 8(5) is quite
different from constant temperature or constant flux cases. The thickness of the thermal
boundary layer decreases with increaged P. Figure 3 shows two dises rotating with the
same angular velocity, thus the radial velocities are the same. The isotherms for P = 7 are
more parallel than those of P = 0.7 due to the thinner thermal boundary layer for higher
Prandtl numbers. Both solutions are invalid near the origin, since our assumptions require
the boundary layer thickness to be much smaller than the local radial distance 7 (= ).
Note the vertical scale y can be contracted by increasing 2, thus inereasing the range of
validity for the boundary layer solutions. The eone angle enfers through 4 in Bgs. (6)—(10).
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Table 1. Values for normalized maximum temperature 6(0) for ¢ = 1 and various Prandtl numbers

P 0.07 0.2 0.7 2 7 20 70 200

0(0) 2.3554 2.5224 3.0915 4.2706 7.4326 12.988 26.969 51.383
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Fig. 8. Isotherms on rotating cones or discs. Values are for 27pC, 4 ]/A.Qv (I — T,)/Q. Dashed lines
show radial velocity profiles
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4 Rotating axisymmetric surfaces

For s == 1 let & be the axial distance from the tip. The shape of the surface (%, r) can be
found by the parametrie equations

r = Az* 24

_ ’ dr\? : — e
z :fVl — (:i;) dx zf]/I — 4250750 (25)
0

0

The form of Eqgs. (8), (8) dictates that the boundary layer necessarily starts at » = 0. Thus
Dorfman and Serazetdinov [10] are erroneous to assume s non-zero starting radius. Sinee

z = 0 Eq. (25) shows s = 1 for % fo be real. Also, there exists a maximum arc length of
—1

% == (A&};:_‘. Figure 4 shows the surfaces of revolution for s > 1 are pointed, with zero slope

at tip at » = 0. These concave surfaces are common for impellers. Increase in the constant
A would not alter the cuspidal nature, For s = 2 even the second derivative is zero and
the tip is too sharp to have practical significance. 1
An agymptotic analysis of Eqgs. (11)—(15) for large n shows I, G decay as exp {«——5

’ 1
X (35 + 1) Flo0) 77} and 8 decay as exp [ —5 (3s -+ 1) PF{cc) 1;:]. The numerical integra-

tion is asfollows. We guess (0}, ' (0) and integrate Eqgs. (11),{12} as an initial value problem

Fig. 4. Geometric cuspidal shapes of revolution for s > 1
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Table 2. Initial and final values for the flow field and maximum temperature 6(0)
for various s and P

s == 1.25 s= 1.0 s =2
F(0) = 0.5736 0.6307 0.7317
G'(0) = —0.6864 —0.7503 —0.8641
F{oo) = (.4060 0.3777 (.33686
P = 6(0) =
0.2 2.7424 2.9447 3.3080
0.7 3.3553 3.6000 4.0455
2 4.6291 4.9631 5.5734
7 8.0451 8.6169 9,664 2
20 14.044 15.030 16.838

by the fifth order Runge-Kutta-Fehlberg algorithm. The minimum value of J = |F'| 4 |G|
is noted. Using two dimensional shooting, a solution is found if J is minimized to less than
107% Our results for F7(0), G'(0) agree with Rogers and Lance [13] (s = 1) and Hayday
[9] (s = 1.25, 1.5, 2). Thus #(z) is obtained.

The thermal problem can be integrated by a method similar to the conical case. The
results are given in Table 2. We see that the maximum temperature increases with s.

5 Diseussion

We find in the case of concentrated heat source at the origin, the temperature decreases as
{(—1.5s — 0.5) power of arc length x due to conservation of total thermal energy. For cones
and discs the temperature decreases as 22 In contrast, for heated surfaces studied by
previous authors, the temperature either is independent or increases with .

Similarity solutions also show the effects of various parameters. The influence of geo-
metric parameter A, the rotation rate 2 and the viscosity » are evident from the similarity
transform Hgs. (6)—(10).
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