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Summary. A concentrated heat source is situated at the tip of an otherwise adiabatic rotating cone. 
Due to centrifugal forces, velocity and thermal boundary layers spread on the surface. After a simi- 
larity transform, the governing equations reduce to a set of nonlinear, ordinary differential equations 
which are then integrated numerically. The related cases of rotating discs and other axisymmetric 
surfaces are considered. 

1 Introduction 

Forced convective heat transfer due to centrifugal forces is important  in the design of 
rotating mach inery .  Reviews on this topic were written by Dorfman [1] and Kreith [2]. 

The constant temperature  rotat ing disc, which yields an exact solution of the Navier- 
Stokes and energy equations, was solved by Millsaps and Pohlhausen [3], Sparrow and 
Gregg [4]. The boundary layer on rotating cones was studied by Tien [5], [6], t t a r tne t t  and 
Delang [7] for constant and variable surface temperatures.  Gels [8], H a y d a y  [9], Dorfman 

and Serazetdinov [10] extended the results to a family of curved surfaces of revolution which 
includes the disc and cone as special cases. The present note studies, for the first time, the 
convection on adiabatic rotat ing surfaces of revolution with a heat source at  the tip. Simi- 
larity boundary layer solutions will be sought. Similarity solutions are important  since 
t h e y  show the exact effects of parametric variations. 

2 General formulation 

The boundary layer equations on a body of revolution are (e.g. l~osenhead, [11]) 

w ~ dr 
uu~ + vuy - ruyy (1) 

r dx 

uw  dr 
uwx + v %  + r d x  - -~wYY (2) 

(ru)~ ~- (rv)y = 0  (3) 

~Tx + vT~ = -fi T~y.  (~) 

Here x, y are intrinsic coordinates along and normal to the surface and u, v are the corre- 
sponding velocity components. T is the temperature,  v is the kinematic viscosity, P is the 
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Fig. 1. The coordinate system 

Prandtl  number, w is the azimuthal velocity and r(x) is the surface distance to the axis 
of revolution. Let  the surface be described by 

r : A Z  (5) 

where A and s are positive constants. The heat source of strength Q is at  the tip r : x = 0 
(Fig. 1). Set 

u : A.(2ZF'(v) (6) 

x--~- (7) v =-v oo  + 

w : A.(2xSG(r]) (8) 

Q -38-1 
T = T o o ~ -  x 2 0(~) (9) 

2~%oCpA ]/ A.C2v 

~7 ~ yx 2 (10) 

Here /2 is the angular velocity of rotation, ~ is the density and Cp is the specific heat. 

Equations (1)--(4) then reduce to 

F ' "  ~ - ( 3 ~ ) F F "  ~ - s [ G 2 - - ( F ' ) 2 ] : O  (11) 

G " - ~ ( ~ ) F G ' - - 2 s F ' G = O  (12) 

O" + P - -  ( O F ) ' = O .  (13) 

The boundary conditions are 

F ( o )  = F ' ( 0 )  = 0 ' (0 )  = 0 ,  a ( 0 )  : 1 (14) 

F ' ( ~ )  : a ( ~ )  = 0 ( ~ )  : o .  (15) 

The total  heat flux through any x : constant surface, within the boundary layer approxi- 
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marion, is 

(30 

Q = oCp f 2 ru(T - T:) dr 
0 

which yields the condition 

r 

f F 'o  dr i = 1. 
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(16) 

(17) 

3 R o t a t i n g  cones  and discs 

These important  geometries have been studied previously, but  not  for the concentrated 
source case considered in this paper. The family of cones are obtained by setting s = 1, 
A = sin cr in Eq. (5). When the vertex angle 2~ becomes 2~, the surface is a f lat  disc. The 
governing equations are 

ie'" + 2 F F "  + G 2 - -  (F')~ = 0 

a "  + 2 F G '  - -  2 F ' G  = 0 

0" + 2P(OF)' = O. 

(18) 

(19) 

(20) 

Equations (18) and (19) are the fluid dynamic equations for Karman's  rotating disc prob- 
lem [12]. Accurate numerical solutions were given by Rogers and Lance [13], e,g. F"(0) 
-= 0.510233, G'(0) = --0.615922, F(~z) == 0.442235. After F(~]) is obtained, the solution 
to Eq. (20) is 

[ /  J 0 = c e x p  - - 2 P  Fb~) &] (21) 

where c is obtained from Eq. (17) by double quadrature. However, direct numerical inte- 
gration may be easier. Change Eq. (17) to a differential equation 

d K  
@ F'o,  K(0) = 0 .  (22) 

Choose 0(0) = 1 and integrate Eqs. (20), (22) numerically until K(V) converges to some 
value say k*. Then the true initial value is 

0(0) = 1/k*. (23) 

Table I shows our results. We see that  the normalized surface temperature 0(0) increases 
with Prandtt  number. Figure 2 shows that  the normalized temperature profile 0(V) is quite 
different from constant temperature or constant flux cases. The thickness of the thermal 
boundary layer decreases with increased P.  Figure 3 shows two discs rotating with the 
same angular velocity, thus the radial velocities are the same. The isotherms for P -= 7 are 
more parallel than those of P = 0.7 due to the thinner thermal boundary layer for higher 
Prandtl  numbers. Both solutions are invalid near the origin, since our assumptions require 
the boundary layer thickness to be much smaller than the local radial distance r ( =  x). 
Note the vertical seale .~ can be contracted by increasing D, thus increasing the range of 
validity for the boundary layer solutions. The cone angle enters through A in Eqs. (6)--(10). 
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TabLe 1. Values for normalized maximum temperature 0(0) for s = 1 and various Prandt l  numbers 

P 0.07 0.2 0.7 2 7 20 70 200 

0(0) 2.3554 2.5224 3.0915 4.2706 7.4326 12.988 26.969 51.383 

0(, 

0 
0 2 4 6 

q. 

Fig. ~. Similarity temperature  function 0(~) for various Prandt l  numbers  (s = 1) 
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Fig. 8. Isotherms on rotat ing cones or discs. Values are for 2:~o~CpA VADv (T -- To~)/Q. Dashed lines 
show radial velocity profiles 
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4 Rotating axisymmetric surfaces 

For  s ~ 1 let �9 be the axial distance from the tip, The shape of the surface (~, r) can be 

found by  the parametric equations 

r = A x  8 (24) 

/V . . . .  fVl = t - -  ~ g x  = - -  A ~ s ~ x  ~ ' - ~  d x .  (25) 
0 0 

The form of Eqs. (6), (8) dictates tha t  the boundary layer necessarily starts at  r = 0. Thus 

Dorfman and Serazetdinov [10] are erroneous to assume a non-zero start ing radius. Since 
x ~ 0 Eq. (25) shows s ~ 1 for ~ to be real. Also, there exists a maximum arc length of 

- - I  

x = (As) *-1. Figure 4 shows the surfaces of revolution for s :> 1 are pointed, with zero slope 

at  t ip a t  x = 0. These concave surfaces are common for impellers. Increase in the constant 
A would not alter the cuspidal nature. For s ~ 2 even the second derivative is zero and 

the tip is too sharp to have practical significance. V 1 
An asymptot ic  analysis of Eqs. (11)--(15) for large ~ shows F ' ,  G decay as exp [ 2 

tion is as follows. We guess/?'"(0), G'(0) and integrate Eqs. (I 1), (12) as an initial value problem 

fX 

l~fg. 4. Geometric cuspidal shapes of revolution for s > 1 
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Table 2. Initial and final values for the flow field and maximum temperature 0(0) 
for various s and P 

S =  1.25 S =  1.5 s = - 2  
F"(0) ---- 0.5736 0.6307 0.7317 
G'(0) ----- --0.6864 --0.7503 --0.8641 
F(c~) ---- 0.4060 0.3777 0.3366 

P = 0(0) ---- 

0.2 2.742 4 2.944 7 3.308 0 
0.7 3.355 3 3.600 0 4.045 5 
2 4.6291 4.9631 5.5734 
7 8.0451 8.616 9 9.6642 
20 14.044 15.030 16.838 

b y  the  f i f th  o rder  R u n g e - K u t t a - F e h l b e r g  a lgor i thm.  The  :minimum value  of J : IF ' t  ~- IGI 

is noted.  Using  two d imens iona l  shooting,  a solut ion is found if J is min imized  to less t han  

10 -~. 0 u r  resul ts  for F" (0 ) ,  G'(0) agree wi th  I~ogers and Lance  [13] (s = 1) and  H a y d a y  

[9] (s • 1.25, 1.5, 2). Thus  F(~)  is ob ta ined .  

The  the rma l  p rob lem can be in t eg ra t ed  b y  a me thod  s imi lar  to  the  conical  case. The  

resul ts  are g iven in Table  2. We see t h a t  the  m a x i m u m  t e m p e r a t u r e  increases wi th  8. 

5 D i s c u s s i o n  

We f ind in the  case of concen t ra t ed  hea t  source a t  the  origin,  the  t e m p e r a t u r e  decreases as 

( - -1 .5s  - -  0.5) power  of arc  l eng th  x due to  conservat ion  of t o t a l  t he rma l  enei 'gy, F o r  cones 

and  discs the  t e m p e r a t u r e  decreases as x -2. I n  cont ras t ,  for hea ted  surfaces s tud ied  b y  

previous  authors ,  the  t e m p e r a t u r e  e i ther  is i n d e p e n d e n t  or increases wi th  x. 

S imi la r i ty  solut ions  also show the effects of var ious  pa ramete rs .  The influence of geo- 

metr ic  p a r a m e t e r  A, the  ro t a t ion  ra te  ~Q and  the  v iscos i ty  ~ are  ev iden t  f rom the  s imi l a r i t y  

t r ans fo rm Eqs.  (6)--(10).  
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