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Abstract-This paper presents an original analytical method for calculating the value of the effective 
molecular diffusion coefficient of an inert tracer transported within a saturated porous medium, D,, in 
terms of the bulk diffusion constant, Do. A simple three-step sequence in the tracer core or packed-bed flood 
is proposed involving (i) a (convection-dominate) tracer slug injection, (ii) a shut in to allow the slug to 
spread by diffusion and, finally, (iii) a postflush of the tracer slug by tracer-free solvent. The effluent profile 
from this sequence can be compared with a profile where no diffusive step [stage (ii)] was present. The 
difference in the effluents-the diffusive case. will be more spread out in time-is purely due to the effects of 
molecular diffusion within the porous medium. The flood sequence is described by the convec- 
tion-dispersion equation in stages (i) and (iii) and by the diffusion equation for stage (ii). Green’s function 
propagator and anaIytica1 solutions for each step in the above process are well known for certain boundary 
conditions. We apply Green’s function method to propagate the solution through each stage of the process 
using the final solution to the previous stage as the initial conditions for the next. The final expression for 
the effluent profile is complex but can easily be evaluated in closed form, and we have confirmed this by 
comparison with numerical results. The method is applied to sample experimental tracer effluent results in 
order to evaluate D, of chloride within a sand pack. This comparison showed that a reasonable match to 
the effluent was found for D, x 0.75Do. 

INTRODUCI-ION 

Because of the influence of both diffusion and disoer- 
sion on miscible displacement processes in porous 
rocks, these phenomena are of interest in the oil in- 
dustry (Blackwell et al., 1959; Brigham et al., 1961; 
Perkins and Johnson, 1963; Gunn and Pryce, 1969, 
Fried and Combarnous, 1971; Dullien, 1979). Molecu- 
lar diffusion within porous media may be important 
in a variety of displacement mechanisms in enhanced 
oil recovery. This may be either through its indirect 
influence on the mixing zone behaviour or through its 
direct control of the oil recovery mechanism as is 
observed in the gas flooding of fractured reservoirs. 

The relative importance of dispersion and molecu- 
lar diffusion in flow through porous media has been 
discussed by several authors (Blackwell et al., 1959; 
Perkins and Johnson, 1963; Gunn and Pryce, 1969; 
Fried and Combarnous, 1971) although the two phe- 
nomena are closely coupled together at the pore scale 
[see Sorbie and Clifford (1991)]. Generally speaking, 
at flow rates of 20.3 m/day, the spreading in a core 
will primarily be due to dispersion. However, at very 
low flow rates, or when the fluids are not convecting, 
molecular diffusion may dominate and, if two miscible 
fluids are in contact with an initially sharp interface, 
they will slowly diffuse into one another. As time 
passes, the sharp interface between the two fluids will 
become a diffused mixed zone grading from one pure 
fluid to the other. This diffusion arises because of the 
random motion of the molecules. However, unlike in 
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a bulk fluid, the diffusion of the tracer species is 
affected by the presence of the porous medium. It is 
possible to represent diffusive behaviour approxim- 
ately by selecting an effective molecular diffusion con- 
stant, D,, which is often based on the average cross- 
sectional area open for diffusion and the overall 
length or tortuosity of the medium. Because of this 
hindered diffusion due to the presence of the porous 
medium, D, is less than the molecular diffusion con- 
stant, Do, as measured in the bulk fluid (Perkins and 
Johnson, 1963). The differences in the character of the 
mixing under flow (dispersion) and stagnant (dif- 
fusion) conditions may be modelled at the pore scale 
using network models as has been shown recently by 
Sorbie and Clifford (1991). 

Most investigators studying diffusion or dispersion 
in porous media analyse the process by measuring the 
concentration of the tracer at the core or pack outlet, 
Cerr, as a function of time, T(as pore volume); Ccrr vs 
Tis the effluent profile. Brigham et al. (1961) report an 
early graphical method for determining the dispersion 
coefficient from this type of data. However, more 
recently, investigators have used direct least-squares 
fits of the experimental data to analytical solutions of 
the convection-dispersion equation (van Genetichten, 
1981; Sorbie et al., 1987). This approach gives rather 
more information than the earlier method of Brigham 
et al. (1961) and also gives an estimate of the goodness 
of fit between the analytical solution and the experi- 
mental data. van Geneuchten and Alves (1982) pres- 
ent an extensive compendium of analytical solutions 
to the convection-dispersion equation. However, they 
do not present analytical solutions--or expressions in 
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closed quadrature form-which can be used to evalu- the convection-dominated parts of the flood [stages (i) 
ate the molecular diffusion coefficient within the por- and (iii)] to be determined. On comparing the effluent 
ous medium. In this paper, we present an analytical concentration profiles from the floods with and with- 
solution for a simple three-stage experimental tracer out stage (ii), the effective molecular diffusion con- 
flood which may be used to evaluate the effective stant, D,, was determined. Analytical results are de- 
molecular diffusion coefficient, D,, within the porous veloped in the next section which allow us to model 
medium. This is applied to some sample experimental the results from the experimental procedure described 
data for a tracer flood in a sand pack where, for this above in order to find D,. 
particular case, it is found that D, x 0.750,,. 

EQUATIONS FOR FLOW IN POROUS MEDIA 

DESCRIFCION OF EXPERIMENTAL PROCEDURE To analyse the above experimental sequence, it is 
In order to evaluate the effective molecular dif- necessary to produce a mathematical model for each 

fusion constant within a porous medium, D,, a staged stage of the experiment leading to an expression for 
experiment was carried out, as described below, and the effluent profile. The analytical form of the effluent 
illustrated schematically in Fig. 1: profile can then be matched with the experimental 

(i) 

(ii) 

(iii) 

A specified volume of tracer slug was injected 
into an effectively one-dimensional (1D) homo- 
geneous sand pack at a constant relatively high 
flow rate. At the end of this stage, the concen- 
tration profile along the core is denoted as 
CI(& 0. 
The resident in situ tracer slug-which has in- 
itial distribution given by c,(x, t)-was then 
allowed to spread out solely by molecular dif- 
fusion for a certain period of time, giving a con- 
centration profile denoted as cl(x, t). 
The slug was then flowed out of the end of the 
sand pack at the original flow rate giving 
a concentration profile which, during its trans- 
port through the porous medium, is denoted as 
c3(x, t). Samples of the tracer are assayed at the 
core exit in order to build up the effluent pro- 
file, Corr vs T. 

data by selecting the appropriate value for D,. The 
analytical solutions for the second and third stages of 
the experiment are obtained using propagating func- 
tions derived from the Fourier transforms of the con- 
vection-dispersion and the molecular diffusion equa- 
tions, as described below. 

The transport of an inert solute through a one- 
dimensional saturated porous medium is described by 
the convection-dispersion equation, 

!?2=DdZ”_u& 
at ax2 ax 

where c is the solute concentration (g/cm3), D is the 
dispersion coefficient (cm’/s) and u is the fluid super& 
cial velocity (cm/s). Equation (I) may be solved ana- 
lytically for a wide range of boundary conditions (van 
Geneuchten and Alves, 1982). 

In linear flow, the dispersion coefficient, D, is con- 
stant at a given flow rate, and is thought to be of the 

The same experiment was then performed without 
form (Perkins and Johnson, 1963) 

stage (ii), which allowed the dispersion coefficient for D=D,+D' 

Smge (i) injection of fT 
c, i i+timy‘” 

0 x=x/L - 1 

Sugc (ii) shut in, qmcding by diffusion; 

11 
no injection 

Stage (iii) pmtfhmh with trrcer-free solvm~ 
resume injection at race Q 

‘I 

Efflwmt pmfik 

(2) 

Fig. 1. Schematic sequence of tracer floods used to determine the effective molecular diffusion constant in 
stage (ii). 
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where D, is the effective molecular ditrusion constant 
and D' is the dispersive term which depends on the 
superficial velocity. 

For stage (i) of the flood, the initial conditions, inlet 
boundary condition and semi-infinite boundary con- 
dition are given by eqs (3a), (3b) and (3c), respectively, 

CI(X, 0) = 0, x > 0 

c1(0, t) = co, 2 > 0 

CI(X, t) --, 0, X-kCO. 

(3a) 

(3b) 

(34 

This outlet boundary condition, eq. (3c), is not strictly 
appropriate for a finite system, but, as long as the 
Peclet number is fairly large, the effect of the actual 
boundary conditions of zero diffusion flow at the 
outlet is negligible (Brigham, 1974). The solution to 
eq. (1) for the above initial and boundary conditions is 
well known and is given by (van Geneuchten and 
Alves, 1982) 

cdx, t) = ?[erfc(s) 

+ exp(F)erfc(s)] (4) 

which is the appropriate solution for stage (i) of the 
proposed experimental sequence in Fig. 1 [see Appen- 
dix A for the derivation of eq. (4)]. The initial slug is 
injected up to time t,, at which point the core is shut 
in (u = 0) and stage (ii) begins. 

In dimensionless variables, eq. (1) takes the follow- 
ing form: 

ac i a% ac _=---_ 
aT ~~.a~2 ax (5) 

where the various dimensionless quantities are given 
by 

concentration: 

C=C 
co 

fractional system length: 

&a) 

x=; 
time in pore volumes: 

Peclet numer: 

Npe=$ 

and the analytical solution in dimensionless variables 
corresponding to eq. (4) is 

+ exp (NpcX) erfc 
[ P~?~>1). JN 

(7) 

Under diffusion alone, as occurs in stage (ii), the 
movement of the effluent is governed by the molecular 
diffusion equation where the effective molecular dif- 
fusion coefficient is used: 

ac 
- = D-2. 
at (8) 

The initial condition for this stage is C&C, 0) = 
c1(x, L). 

The formal solution for the in situ concentration 
profile as it has evolved at the end of stage (ii), C&C, O), 
is then given in Green’s function notation as 

cz(x, r) = 
s 

m 
ci(s, t,) Gz(x, s, r)ds (9) 

cl 

where G,(x, s, t) is Green’s function which propagates 
the initial slug after tracer injection during the dif- 
fusive stage and is given by 

Gz(x, s, t) = 

+ exp[ e~~ts’z]}. 

Note that the second term in eq. (10) accounts for the 
reflection boundary condition at the inlet (see Appen- 
dix B for this derivation). 

Since the solution of eq. (8) will be used in conjunc- 
tion with the solution of the convection-dispersion 
equation, it is necessary to apply the same variable 
transformation giving the pseudo-dimensionless mo- 
lecular diffusion equation 

ac I a2c 
dT=N,,dX2 (11) 

where the quantity 

N 
VL 

Porn = - 
RI 

(12) 

is denoted as the “molecular” Peclet number. In fact, 
u = 0 during stage (ii) but the value of u taken in eq. 
(12) is that during the convection-dominated stages (i) 
and (iii). 

Finally, during stage (iii) of the sequence, the gov- 
erning equation is again the convection-dispersion 
equation, but the initial condition is now c3(x, 0) 
= c2(x, ts), where tL was the time allowed for the 

tracer slug to diffuse. This is written as follows: 
m 

c&L C) = c2(s’, tb) G3(x, s’, t) ds’ (13) 
0 
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where 

1 
G,(x, s’, t) = - exp 

- (s’ - x + Vf)’ 

2&i% 1 4Dt * 

(14) 

G&c, s’, t) is the propagating function for the convec- 
tion4ispersion equation (see Appendix A for this 
derivation). However, the integral with respect to s’ 
can be evaluated giving the following expression: 

sDt + (vt - x)D,,& 

(D,tbDt)“2(D,t~ + Dt)l” 

(sDt - (ut - x)Dmtd2 
4(D,t,Dt)(Dt + D&J 

sDt - (vt - x)D&, 

(DmtbDt)“2(D,tb + Dt)“’ 

In order to compare this analytical solution with the 
experimental data, c~(x, t) is evaluated at the end of 
the core (x = L), where the effluent concentration is 
measured as a function of time (pore volume through- 
put). 

NUMERICAL CONFIRMATION OF ANALYTICAL 

SOLUTIONS 

In order to check the analytical solutions used in 
this work, they were compared with the equivalent 
finite difference solutions to the convection+&per- 
sion equation and the molecular diffusion equation. 
There is, of course, little doubt about the solutions to 
the convection-dispersion equation or the diffusion 
equation, it is mainly eq. (15) which we wish to check. 
The Crank-Nicolson finite difference method was 
used with the appropriate initial and boundary condi- 
tions. All numerical calculations were carried out with 
sufficiently fine spatial grids and small time steps to 
ensure that convergence had been achieved. 

A tracer flood in a sand pack was used both as 
a basis for the analytical/numerical comparison and 
the evaluation of D,. The rectangular sandpack used 
in the experiments had the following dimensions: 
length L = 30 cm; cross-sectional area A = 11.25 cm2; 
and porosity 6 = 0.44. In this experiment, 0.33 pore 
volumes of chlorine-36 labelled brine were injected 
into a brine-saturated sand pack at a rate of 60cm3/h 
(u = 3.367 x lo-‘cm/s). It was left to diffuse for 887 h, 
before being flushed out at the original rate of 
60 cm”/h. The Peclet number for the convection-dom- 
inated part of the flood [stages (i) and (iii)] was found 
to be 78 using the approach described elsewhere (van 

Geneuchten, 1981; Sorbie et al., 1987). The bulk mo- 
lecular diffusion constant, D,,, of chloride was taken to 
be 2.0 x 10e5 cm’/s. For the purpose of verifying the 
accuracy of the analytical solutions, the above values 
were used in both the analytical equations and in the 
finite difference equations. The analytical solutions 
were evaluated using MathematicaTM, a mathematics 
package capable of accurate numerical integrations 
which runs on a number of computer systems 
(Wolfram, 1988). 

For the purpose of initially validating the analytical 
solutions, D, is taken to have the same value as the 
bulk molecular diffusion constant, Do. The concentra- 
tion profiles were generated using the dimensionless 
forms of the above equations with 

T, cc > = f, Tb = $ = 358.38 

N 
VL 

P&?rn = - = 5050.5. 
D, 

Figure 2 shows that there is an excellent match for 
stages (i) and (ii), respectively, between the analytical 
and numerical solutions for the in situ concentration 

1.0 .-.\ c a/ Stage (i) at T = T. 

\ 
I ‘. 

. . \ ‘0.. 

I L , 5 . l -._&-.-A 

0 0.2 0.4 0.6 0.8 1.0 
Dimensionless length, X 

Fig. 2. Analytical and numerical solutions for stages (i) and 
(ii) in Fig. 1. 
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Fig. 3. Analytical and numerical solutions for the eflluent 
profile from stage (iii) in Fig. 1. 
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distributions within the system. Figure 3 shows the 
comparison between the analytical and numerical ef- 
fluent profiles for stage (iii) of the model case. Clearly, 
these are in excellent agreement, confirming that eq. 
(15) is the correct analytical solution to this problem. 

APPLICATION OF THE METHOD TO EXPERIMENTAL 

DATA 

We now wish to apply the analytical solution of eq. 
(15) to the evaluation of the effective diffusion coeffi- 
cient for the experimental case, where dispersion 
D and D, are no longer equal as in the above example. 
The effective molecular diffusion constant, D,, may be 
established by plotting analytical effluent profiles for 
a range of values of D, and type curve match them 
with the experimental data. Figure 4 shows the experi- 
mental profile, as measured when the effluent left the 
sand pack, compared with five such evaluations, with 
the value of D, ranging from 0.0 to 1.5 times the bulk 
molecular diffusion constant (Do = 2.0 x lo-’ cm’/s). 
Note that the time origin for eq. (15) is taken as the 
start of the postflush period as indicated in Fig. 4. The 
case where D, = 0 is equivalent to a flood where there 
is no stage (ii) and, as expected, this shows the highest 
peak in the effluent in Fig. 4. Clearly, the timescale of 
the experiment is such that the effluent profile is 
sensitive to D,. The value of D, which appears to give 
the best fit to experiment for this case is approxim- 
ately 0.75 of the bulk diffusion constant value, Do. We 
stress that this is not a general result and is presented 
here as an example application of our analytical 
method. The relatively high value of the effective mo- 
lecular diffusion constant in this pack reflects the fact 
that the sand pack is quite homogeneous and has 
a well-connected pore space with a tortuosity close to 
unity. 

SUMMARY AND CONCLUSIONS 

An analytical solution to the combined convec- 
tion-dispersion and diffusion equations based on 

1 
Time (PV) 

Fig. 4. Evaluation of the effective molecular diffusion coef- 
ficient, D, within the porous medium 

Green’s function formalism is presented in this paper. 
This gives a novel and convenient way of evaluating 
the effective molecular diffusion coefficient, D,, within 
a porous medium. The method has been confirmed 
numerically and has been applied to the analysis of an 
experimental three-stage tracer flood in order to find 
D,. For the experimental case studied, it was found 
that D,,, z 0.750,, but this is not a general finding. 
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NOTATION 

cross-sectional area of system, cm’ 
concentration of tracer, g/cm” 
input concentration of tracer, g/cm3 
dimensionless normalised concentration 
(= c/co) 
dimensionless effluent concentration 
[= C(X = 1; T)] 
concentration of tracer in stage (i) 
concentration of tracer in stage (ii) 
concentration of tracer in stage (iii) 
Laplace transform of c w.r.t. t 
Fourier transform of c w.r.t. x 

dispersion coefficient (= D’ + D,), cm2/s 
velocity dispersion term, cm’/s 
effective molecular diffusion coefficient, 
cm’/s 
bulk molecular diffusion coefficient, cm2/s 
Green’s function propagator for stage i 
length of system, cm 
system Peclet number ( = yL/D) 
“molecular” Peclet number defined relative 
to the convection dominated stages (i) and 
(iii) (= vL/D,) 
pore volume 
volumetric injection rate into core, cm’/h 
transform variables 
time, s 
time taken for tracer slug to be in- 
jected during stage (i), s 
time allowed for tracer slug to diffuse during 
stage (ii), s 
dimensionless time in pore volumes (= ut/L) 
number of pore volumes of tracer slug in- 
jected 
time allowed for tracer slug to diffuse using 
same timescale as pore volume dimension- 
less time 
superficial velocity [ = Q/(36OOA $)I, cm/s 
distance, cm 
dimensionless distance along the system 
(= x/L) 

Greek letter 

i porosity as a fraction 
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APPENDIX A: ANALYTICAL SOLUTION AND 
PROPAGATOR FOR THE CONVECTION-DISPERSION 

FXJUATION 

Although the solution to the convection-dispersion equa- 
tion is quite well known, it is presented here for complete- 
ness. Taking the Laplace transforms with respect to time in 
cq. (1) gives 

(Al) 

On taking the boundary conditions into consideration, the 
solution to this second-order ordinary differential equation 
is 

+, p) = F exp 
X+-J- 

20 I. W) 
Taking the inverse Laplace transform then yields the solu- 
tion given in eq. (4) or, in dimensionless variables, eq. (7). 

Taking the Fourier transform of the convection&@%- 
sion equation with respect to the spatial variable, x, gives 

dC 
dt = - (Ds”C - is&). (A3) 

Integrating eq. (A3) gives 

?(s, t) = a(s) exp [ - (Ds2 - isu)r] 

where 
(A4) 

‘%) = FC&41. WI 

The solution of the convectionAispersion equation is the 
inverse Fourier transform of eq. (A4) and, therefore, by the 
convolution theorem: 

c(x, t) = ~~~~s)exp[-(s;~t+vt)*]ds. 

(446) 

In the same dimensionless units as used above, the solution 
becomes 

where 

(A7) 

cp(s) = C (&O), (A8) 

APPENDIX Bc DEWATION OF THE PROPAGATOR *OR 
THE MOLECULAR DIFFUSION EQUATION 

Equation (8) may be solved subject to the initial condi- 
tions 

cix, 0) = O(x), -uJcx<co (Bl) 

where 

+(x) = 0, x < 0. (B2) 

Taking the Fourier transform of the molecular diffusion 
equation with respect to the spatial variable gives 

Integrating eq. (B3) gives the solution 

8, t) = @(s) exp (- s*D,t) (B4) 

where 

@(s) = ~C&41. (B5) 

The solution of the molecular diffusion equation is the in- 
verse Fourier transform of eq. (B4) and, so, by convolution: 

This is the case when the slug has been flowed into the core 
sufficiently far from its ends such that it is not affected by the 
boundaries. However, in the experiment, the tracer was 
placed in the core such that the rear edge of the slug was 
against the inlet boundary. Since there is no flow across this 
boundary, this is equivalent to having an image slug diffus- 
ing in the region x -z 0, that is, #( - x) = N(x)_ Thus, with this 
reflection boundary condition the propagating function is 

giving a final solution 

(B7) 

dx, 0 = 

+ exp[ -E:r)2]}ds. WJ) 

The corresponding expression in dimensionless form incor- 
porating the “molecular” Peclet number as defined in eq. (12) 
is as follows: 

c(X, T) = 

(B9) 

where 

cds) = C(S, 0). (Blo) 


