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Abstract. This paper describes a crossed hot-wire technique for the 
measurement of all components of mean velocity, Reynolds stresses, 
and triple products in a complex turbulent flow. The accuracy of 
various assumptions usually implicit in the use of crossed hot-wire 
anemometers is examined. It is shown that significant errors can 
result in flow with gradients in mean velocity or Reynolds stress, but 
that a first order correction for these errors can be made using 
available data. It is also shown how corrections can be made for 
high turbulence levels using available data. 

1 Introduction 

Hot-wire  anemometry  continues to be the technique of 
choice for measurement  of turbulence quantit ies in non-hos-  
tile flow environments,  provided the relative levels of turbu-  
lence fluctuations are not  too large. Hot-wire  techniques 
have been used with great success for many years in relative- 
ly simple flow situations, such as two-dimensional  boundary  
layers and shear layers. In order  to satisfy the demands  of 
computa t iona l  fluid dynamics,  experimental  da ta  are re- 
quired in more  complex flows, such as three-dimensional  
bounda ry  layers and vortical  flows. Modelers  typically re- 
quire, as a minimum, distr ibut ions of mean velocity and 
Reynolds stresses for the development  and val idat ion of 
codes. 

One of the most  common techniques for making such 
measurements  uses the crossed hot-wire anemometer .  Typi- 
cally, the probe must  be aligned with the mean flow direc- 
tion. Measurements  are then made of the two mean velocity 
components ,  the three Reynolds stresses, and the four triple 
products  which lie in the plane of the wires. If the procedure  
is repeated three more times, after rolling the probe  about  its 
axis to posi t ions 45 ~ , 90 ~ , and 135 ~ with respect to the start, 
the results can be combined to obta in  all three mean velocity 
components ,  six Reynolds stresses, and the ten triple prod-  
ucts. 

When  using a crossed hot-wire anemometer  to make 
measurements  in a turbulent  flow a number  of simplifying 
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assumptions usually have to be made. The instantaneous 
velocity is assumed uniform over the volume defined by the 
active por t ion of the two wires. Hi ro ta  et al. (1988) investi- 
gated the accuracy of this assumpt ion by compar ison of the 
results from a pair  of crossed hot-wire probes,  one of which 
was the mir ror  image of the other. They showed that  signif- 
icant errors could be produced  by gradients,  but  that  the 
error  could be reduced by combining the results from the 
two probes. Another  common assumption is that  the veloc- 
ity fluctuations are a small fraction of the mean velocity. This 
leads to substantial  errors in flows where the turbulence 
intensities exceed about  20% (Bruun, 1972). Techniques are 
described for estimating, and correcting, both  types of errors. 

2 Analysis 

In the discussion below we shall use three sets of coordinates  
(Fig. 1 and 2): tunnel axes in which the final results are to be 
presented; probe axes, with xp along the probe roll axis and 
yp and zp perpendicular  to this; and wire axes, with x w the 
same as xp but  with yw and z~ parallel  and normal  to the 
plane of the wires (the probe axes and the wire axes are 
coincident at zero roll angle). The wires are a distance A 
apart .  I t  is assumed that  a cosine cooling law is applicable,  
so that  the heat  transfer from a given wire of the probe is 
dependent  only on the component  of velocity normal  to the 
wire. This is a good assumption provided that  the wire angle 
used is an effective (best fit) wire angle, determined by a yaw 
cal ibrat ion (Bradshaw, 1971), rather  than the geometric an- 
gle. F o r  the sake of the present discussion it is assumed that  
the wire angles relative to the roll axis are _+ 45~ it would be 
a simple mat ter  to extend the analysis to other angles. Thus, 
the heat  transfer from wire I of the probe  is a function of 

2 2 
vw) +ww at z w = - A / 2 ,  while the heat transfer 

from wire 2 is a function of x/�89 2 at zw=A/2. 
These effective cooling velocities can be detemined from the 
hot-wire voltages by calibration.  

Assumptions  usually made in the implementa t ion of the 
crossed hot-wire technique include: (i) the variat ion of in- 
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s tantaneous velocity between the two wires is negligible; (ii) 
the variat ion of instantaneous velocity along the active re- 
gion of a given wire is negligible; (iii) the mean velocity vector 
is roughly aligned with the axis of the probe; and (iv) velocity 
fluctuations are a small fraction of the mean velocity. The 
effects of var ia t ion of velocity along a given wire are of a 
higher order  than the effects of wire-to-wire variations, so 
need not  be considered in the present discussion. Assump- 
tions (iii) and (iv) allow us to set ww = 0 in the equations for 
the effective cooling velocity. I t  is then a simple mat ter  to 
solve for u w and v w in terms of the effective cooling velocities 
for wire 1 and wire 2 of the probe.  

The instantaneous velocity pairs Uw and v w are sampled, 
and the mean velocities, the Reynolds stresses, and the triple 
products  are formed. Measurements  are obtained in four roll 
posi t ions as shown in Fig. 1 (b), denoted by suffixes 1 to 4 in 
the equations.  The results are then combined to give the full 
set of velocity components ,  Reynolds stresses, and triple 

products  in probe axes: 

- -  1 
Up = ~ (Uwl  "~ Uw2 + Uw3 "[- Uw4 ) (1) 

Up = Uwl  

Wp ~ Vw3 

12 1 I r2 t2 t2 I2 
Up = ~ [ U w l  Jr- Uw2 ~- Uw3 ~- /'gw4) 

t2 12 
Vp = Vwl 

12 --  12 
Wp - -  Vw3 

! ! t t 
Up Up ~- U w l  V w l  

! t ! t 
Up Wp = Uw3 Uw3 

~ l r r2 ~2 x 
Up Wp - -  ~ ~Vw2 - -  Vw4 ) 

r3 __ 1 [ t3 ~3 ,3 r3 
Up - - ~ U w l  + Zgw2 + l, lw3 + Uw4 ) 

~3 t3 
Vp ~ V w l  

,3 __ ,3 
Wp - -  Vw3 

U ,p2 , ~ 2 , 
Vp : Uwl Uwl 

hip2 , - -  ,2 , Wp - -  t tw3 Vw3 

t t2 i J2 
ttp Vp ~ U w l  Vwl  

i 12 I t2 
Up Wp = Uw3 Vw3 

U 'p 2 ,3 
' + V w 4 ) -  vw3)  

upw = ( (C2 ,3 .  ' __ U w 4 ) - - U w l  ) 

, t ~ 1 t ,2 , t2 
Up Up W p  = 2  (/~/w2 Vw2 - -  Uw4 Vw4) 

The equivalence of the left and the right hand side of Eq. (1) 
is easily demonstra ted by transforming the terms on the 
right hand side from wire to probe axes. This is done with the 
following equations, expressed in tensor nota t ion (i.e. repeat- 
ed indices are summed from 1 to 3, where x i = x ,  x 2 = y ,  

X 3 ~ Z  , U l ~ / A  , /A2~U , /A3 ~ W ) :  

(Ui)w = aij  (uj)p (2) 

(U i ) t  (b l j )w ~- a ik  a j l  ( U k ) ;  ( U , ) ;  

t 
( l~i)w (Igj)w (b lk )~v~-a i l  a j m  akn ( U l ) ;  (Urn);  (bln)p 

where a ~ = l ,  a 1 2 = 0  , a 1 3 = 0  , a21  = 0 ,  a22  = C O S 0 r ,  

a23 =s in0 r ,  a31 =0,  a32 = --s in  0,, a33 = c o s 0 , ,  and 0, is the 
roll angle (0 ~ for posit ion 1, 45 ~ for posit ion 2, etc.). Estimates 
and correction of errors due to the assumption that  the 
instantaneous velocity at both wires is the same, and that  
w w = 0, can then be made. 

2.1  G r a d i e n t  e r r o r s  

We shall consider first the error  incurred when the instanta- 
neous velocity vector is different at the two wires due to 
gradients normal  to the plane of the wire, assuming for now 
that  ww = 0. The analysis is similar to that of Hiro ta  et al. 
(1988). Let us define the measured (suffix m) velocities as the 
velocities calculated on the assumption that  A =0.  If the 
velocities and their gradients are referred to zw = 0, and a 
locally linear variat ion of velocity is assumed, then the effec- 
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tive cooling velocities are: 

1 ( U w m + V w m )  1 A O(u~+%) for wire 1; 

1 1 A O ( u w - % )  
(Uwm--Vwm)=~ (U~--Vw)+ for wire 2. 

x//2 x/2 2x/~ OZw 

Solving separately for u~m and Vwm we get: 

A ~vw. 
Uwm=Uw 2 ~Z w' 

A ~Uw 
Vwm=Vw 2 ~z w" 

Then, forming the mean velocities and Reynolds stresses in 
wire axes (neglecting terms of order A2): 

n ~v-~ (3) 
U~m=Uw 2 ~Z w 

A e ~  
vwm=vw 2 ~z w 

,2 _ ,2 _ A u" OV'w 
Uwm - -  U w 

Oz w 

t ! t t 
Uwm l)w m = U w V w 4 Oz,, 

,~ ,z v" ~u" 
Vwm = V w - -  ,4 - -  

Oz~, 

The error terms in the measured quantities are the terms of 
order A on the right hand side of Eq. (3). These equations can 
then be transformed to probe axes using Eq. (2) and the 
following tensor relations: 

~(u~)~ ~(u~)~ 
(xj)~ = aia ajz ~ (Xl)p (4) 

( U i ) w  ~ ( U j ) w  ( U l ) p  O ( U m ) p  

O(Xk)~ =au ajm ak, O(Xn)p 

The results from the different roll positions are then substi- 
tuted into the right-hand-side of Eq. (1) to obtain expres- 
sions in probe axes for the errors in the mean velocities and 
Reynolds stresses. 

The gradient error terms in the equations for up,,, Vpm, 
and Wpm are 

4 \~yp OZpJ 20zp '  2 ~yp 

(the error defined in the sense: suffix m value = true val- 
ue +error).  The error terms consist of derivatives with re- 
spect to yv or zp of mean velocity. The gradient error terms 
in U'pm l)'pm and u~,, w~m are 

A (O(u~+ v'p2!) and A (~(u~ 2 +w;2! ) ,  

4 \ OZp 4 \ Oyp J 

and consist of derivatives of Reynolds normal stresses. If 
data are obtained at a number of points in space, these errors 
can be estimated by direct differentiation of the data and a 
correction applied. The errors in u ~ ,  v ~  and ~ are 

2 \  ~yp ~zp ,1 ~ a n d A w p  ' ' Oyp ' 

and cannot be determined from the measurements available. 
However, these errors are zero by symmetry in a 2-D mean 
flow. Measurements by Hirota et al. (1988) have shown that 
for the turbulent flow in a square duct these errors are small 
everywhere. In general, it appears that the errors in U~Tm, V~ 
and ~2~p~, as a percentage of the quantity being measured, are 

t t t t much smaller than for Uvm vp,,, or up.• Wpm. The error in the 
equation for V'pm W'pm is 

(w,.au,.!) 
2 \ 0yp ~z v J '  

and cannot be estimated either, al though experimental re- 
sults discussed in Sect. 3 suggest it also may be small. It 
should be remembered that v'p,, w'v, . is already a rather un- 
certain quantity since it is obtained as the difference between 
two relatively large, experimentally determined quantities. 

2.2 High turbulence errors 

Let us consider now the effect of the assumption that w w = 0. 
Since we shall be finding the first term in a series expansion 
of the error, it is acceptable to assume A = 0 for this analysis. 
In flows with both high turbulence levels and significant 
gradients, errors from the two sources will be additive. If the 
suffix rn now refers to those quantities determined assuming 
Ww = 0, then the effective cooling velocity for wire 1 is: 

1 
- -  1 2 

- -  ( U w m + V w m ) - - , / ~ ( U w + V w )  +Ww,2" 

while the effective cooling velocity for wire 2 is: 

1 
. / 21  ,/  2 2 U w m - - % m ) =  ~(Uw--Vw) Ww. 

Following the analysis of, for example, Bruun (1972), we 
perform a series expansion for uw, . and %", assuming v w, 
ww ~ uw, getting: 

W w 
Uwm+Vw~=(Uw+Vw) 1 + (Uw+%) 2 + 0(4) 

W w  
Uwm--%,,=(Uw--Vw) l+(Uw__Vw)2+q)(4) ; 

and solving for Uwm and Vwm: 

( 2 ) 
w~ + 0(4) ~ = ~  1+ ( u ~ - ~ )  

w~ + 0 (4) %m=v~ 1 (u~-v~)  
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The mean velocity and Reynolds stresses are calculated as- 
suming u ' ,  v ' ,  w~ ~ uw, and v~, ww = 0: 

W w 
Uwm=Uw 1 +  ~ - + $ ( 3 )  

U w 

(5) 

~wm = ~ Vw w;~ + hw $(4) 

,~ ,~ <~ w;~ 
Uwm=Uw + 2  _ --2 +U~ 0(4) 

U w  

,z _ , 2 + - z  0(4)  
V w m  - -  V w - -  U w 

t t 2  
t * , , IAw W w  - -2  

Uw,. Vwm=Uw vw+ - +u~, $(4) 
1A w 

The error in mean velocity or Reynolds stress which results 
from assuming that ww=0 is thus the second term on the 
right-hand-side of Eq. (5). The assumption in obtaining the 
error that v~, w ~ 0  is a good one in the experiment we shall 
describe where the probe is accurately aligned with the mean 
flow direction. It would however be a simple matter to gen- 
eralize the analysis to non-zero lAw, ww and thereby correct 
for probe misalignment. In the present technique, where all 
components of mean velocity, Reynolds stresses, and triple 
products at a given point are measured, the error terms for 
the mean velocity and the Reynolds stresses can be evaluated 
explicitly. Equation (5) are transformed from the wire to the 
probe axes using Eq. (2) and are then substituted into the 
right-hand-side of Eq. (1) to obtain expressions for the errors 
in the mean velocities and the Reynolds stresses. The resul- 

"2  r 2  t 2  , , t , tant errors in up,,, vp,~, %, , ,  up,., lAp,,, w,,., up,, Vp,,, u,,, %,,,, 
and v' m W'pm respectively are: 

1 , , 2 .  L -  1 , t , 2  , , 2  . 1 (lA7 + w~) ; - :~  lA. w . ,  - ~ lA;~ % ;  _- ~u. lA. + u.  w.  ), 
2up Up u v up 

t r2 t2 t 

zero; zero; lAewP ; vpwp; and zero. 
Up Up 

Note that the error terms in vp,.'2, Wpm'2, and %,.' w~,., which are 
zero to the order of accuracy to which we are working, 
actually involve quadruple and higher order products. 

3 Exper iment  

As part of the study of vortex/boundary-layer interactions 
described by Cutler and Bradshaw (1987, 1989), extensive 
measurements were obtained using the technique described 
above. Probes were calibrated in the free stream of the tunnel 
in which the experiments were conducted with the vortex 
generator absent. The dependence of bridge voltage on effec- 
tive cooling velocity was least-squares fitted to a King's law 
function with the exponent a parameter of the fit. The effec- 
tive wire angles were determined by a yaw calibration. Data  
acquisition and real-time data analysis were performed us- 
ing a microcomputer  with external analog-to-digital con- 
verter and sample-and-hold unit. Probe manipulations were 

performed by a traversing mechanism similar to that de- 
scribed by Shayesteh and Bradshaw (1987) which provided 
motorized linear, yaw, pitch, and roll movements. The mech- 
anism was designed such that the center of the probe mea- 
suring volume remained fixed during yaw, pitch, and roll. 
During data acquisition, the probe roll axis was aligned with 
the mean flow to within a degree at each point in the flow. 
Data  acquisition was then as described previously, with 
mean velocity, Reynolds stress, and triple product data ac- 
quired in each of four positions in roll, and combined to give 
results in probe axes. 

During later analysis of the results, the data were trans- 
formed from probe to tunnel axes and the error corrections 
described above were applied. The transformation was sim- 
ilar to the transformation from the probe to the wire axes. 
We used Eq. (2), modified by dropping the suffix w from the 
left-hand-side and replacing the tensor a u with the tensor b u 
on the right, where: bl 1 = cos 0= cos 0y, bl 2 = - sin 0= cos O r, 
bta=sinOy, b21 = sin0~, b22 = cos 0z, b23 =0,  
b31=-cosO=sinOr, b32=sinO=sinOy, and b33=cOS0y. 
These transformation equations are tedious to evaluate if 
written in long form, but it is a simple matter to evaluate 
them for particular numerical values of the data by using 
DO loops in the data analysis program to perform the sum- 
mations implied by the repeated indices. 

In the experiments of Cutler and Bradshaw (1987, 1989) 
a pair of counter-rotating stream-wise vortices was generat- 
ed by a 76 ~ delta wing at an angle of attack, and the vortices 
interacted with the boundary layer developing on a flat test 
plate mounted downstream. The common flow between the 
vortices was towards the surface of the plate so that the 
boundary layer in this region, although fully turbulent, was 
diverging and relatively thin. Two cases were studied in de- 
tail which differed only in the height above the plate at which 
the vortices were generated. Figure 3 is a contour and arrow 
plot showing some of the Reynolds stress and triple product 
data for Case 2, at x =  1778 mm from the leading edge of the 
pla!e. The contours are of constant turbulent kinetic energy 
1 t 2  I 12 (~ q = ~(u + v '2+ w'2)), and the arrows are of the diffusion 

velocity 

(V~ = (v' u'Z +v'3 +v ' w'Z)/q '2, Wq = (w' u'2 +w ' v'2 +w'3)/q'2). 

The results are non-dimensionalized on Uror, the nominal 
free stream velocity. The triple products have been plotted in 
this way to show the lateral diffusion of the turbulent kinetic 
energy. The arrows have their base at the y, z position of the 
data, and the displacement of the arrow is such that Ay/ 
s = V q / O r e  f and Az/s= Wq/Urcf (the references length s is 
267 mm). Only a fraction of the data used in generating the 
contours has been plotted as vectors, and vectors have not 
been plotted where q'2/U2~f<O.O001. It is seen that the data 
are smooth and should be amenable to numerical differenti- 
ation. The somewhat irregular appearance of the vortex core 
can be attributed to an insufficient number of points in the 
grid and the manner in which the contour-plotting al- 
gorithm interpolates between the points. 
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Fig. 3. Contours of turbulent kinetic energy and vectors of diffusion 
velocity for Case 2 of Cutler and Bradshaw (1987, 1989), at 
x = 1778 mm 

Initially, no error  corrections were applied, and it was 
noticed that  hot-wire measurements  of w and u' w' were 
consistently non-zero close to the wall at the plane of sym- 
metry (three-hole pi tot  probe yaw meter measurements  con- 
firmed that  the mean flow was symmetrical). Measurements  
of other velocity components  and Reynolds stresses were, 
however, plausible, including v' w' which was very close to 
zero as expected. I t  seemed probable  that  these experimental  
errors could be a t t r ibuted to the steep gradients of mean 
velocity and Reynolds stresses in the inner par t  of the 
boundary  layer. As previously shown, such errors can be 
corrected by use of mean velocity and Reynolds stress data. 

t ! ! Correct ions for the errors in up, vp, wp, up vp, and up w~, were 
applied in a plane of data. The errors in mean velocity were 
found by first obtaining the nine terms of the second order  
tensor  8ui/Sx i in tunnel axes, assuming the 0/0x terms to be 
zero and A = 0, and t ransforming the tensor  to probe axes. 
The mean velocity errors were then evaluated and trans- 
formed back to the tunnel axes to be applied as a correct ion 
to the mean velocity data. The error  in the Reynolds stresses 
were found by first obtaining the terms of the third order  
tensor  8u'i U~/SXk in tunnel axes, then transforming these to 
the probe axes. The errors in u'o v~, and u~, w~ were evaluated 

while the errors i n  u ; 2 ,  /)pt2 , W;2, and vp' w~ were assumed to 
be zero for reasons discussed previously. The error  tensor 
was then t ransformed back to tunnel axes, and applied as a 
correct ion to the Reynolds stresses. 

Results of these corrections are shown in Fig. 4 a ,b  for 
Case 2 of Cutler  and Bradshaw (1987, 1989) at the plane of 
symmetry (z=0) ,  at x =  1778 mm. The Reynolds number  of 
the boundary  layer based on momen tum thickness and local 
edge velocity is 1050 and the 99.5% thickness is about  
16 mm. The probe, which is constructed of 0.005 mm diame- 
ter p la t inum core Wollaston wires, has an etched active 
length of 0.8 mm and a wire spacing (A) of 1.6 mm. The 
effective wire angles relative to the roll axis were between 45 ~ 
and 48 ~ It  is seen that  the correct ion in w and u' w' in the 
region near the wall (y/A < 10) is substantial ,  <0.015 in w/ 
U, of, and < 0.0002 in u' w'/U~f. No yaw meter  measurements  
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Fig. 4 a and b. The effect of  the gradient  correct ion on the da ta  at 
x=1778  mm, at the plane of symmetry  (z=0):  a ~ ;  b u' w' 

were made at z = 0, but  a l inear in terpolat ion of the results 
at z = - 2 5 . 4  mm and z =25.4  mm to z = 0  indicate a smooth  
variat ion of w/Urcf from - 0.0006 (y = 0.6 mm) to - 0.0017 
(y = 25.4 mm). Corrected hot-wire results agree with the yaw 
meter results much better than the uncorrected results. The 
slight discrepancy at the edge of the bounda ry  layer ( <  0.004 
in w/Uref) is consistent with normal  cal ibrat ion errors. The 
corrections in u, v, u '2 , v '2, w '2, u' v', and v' w' were relatively 
small, as expected. The magnitudes of the errors indicated by 
Fig. 4 are typical  of the gradient  errors encountered in the 
boundary  layer region of the vor tex /boundary  layer interac- 
tions we studied. The effect of gradient  corrections in the 
vortex core could not  be determined accurately since our 
da ta  was too sparse there to allow us to determine the 
derivatives accurately. However,  velocity gradients ap- 
peared to be very steep at the center of the vortex, suggesting 
that  the gradient  errors were substantial .  

The high turbulence errors were calculated for Case 2 of 
Cutler  and Bradshaw. (1987, 1989) at x = 1 7 7 8  mm. They 
were relatively small in the bounda ry  layer re~ion: u was 
< 0.5% high; errors in v and w were negligible; u '2 was < 1% 
low; errors in v '2 and w '2 were negligible; u' v' was < 1.5% 
low; errors in u' w'/U2f were less than 4-2 • 10-s ;  and errors 
were negligible in v' w' (percentages calculated on the basis 
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Fig. 5. The effect of the high turbulence correction on a profile o f f  
through the center of the vortex at x =864 mm, z= -108 mm 

of local values). However, close to the center of the vortices, 
where ~ / ~ / U r e f < 0 . 2 7  , the high turbulence errors were 
much larger. Figure 5 shows the effect of the correction on a 
profile of u '2 at x = 864 mm, z = -  108 mm, which passed 
through the center of a vortex. We found that u was < 8% 
high; errors in v/Uref and w/Uref were < +0.03; /2 '2 was 
< 2 5 %  low; v '2 and w '2 were < 1 5 %  low; errors in u' V/Ure f '  2 
and ' ' 2 u w/Uie f were < +0.01; and errors in ' ' 2 v W lUre f were 
smaller. High turbulence error corrections were not applied 
by Cutler and Bradshaw (1987, 1989) because these correc- 
tions were small, except near the center of the vortex where 
the gradient errors were also significant but could not be 
accurately determined. 

4 Conclusions 

A crossed hot-wire technique for the measurement of all 
components of mean velocity, Reynolds stress, and triple 
products in a complex turbulent  flow has been described. 
The accuracy of the assumption, usually implicit in the use 
of crossed hot-wire anemometers, that the instantaneous 
velocity is uniform over the volume defined by the active 
portion of the two wires, was examined. The magnitude of 
the errors resulting from this assumption was found to be 
significant (<  0.015 in W/Ure f and < 0.0002 in u' w'/UEf) close 
to the wall (y/A < 10) in the diverging boundary layer be- 
neath a vortex pair with common flow downwards. A pro- 
posed correction brings the results at the plane of symmetry 
of the flow into line with what was expected on the basis of 
yaw meter measurement and symmetry arguments. High 
turbulence errors were found to be small, except near the 
cores of the vortices where X/~ /Ure f<0 .27  and the errors 
were large. 
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