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Abstract--In an analytical way George and Capp (Int. J. Heat Mass Transfer 22, 813-826 (1979)) and 
Cheesewright ("The scaling of turbulent natural convection boundary layers in the asymptotic limit of 
infinite Grashof number", paper presented at Euromech Colloquium 207 (1986)) have derived wall 
functions for the natural convection boundary layer along a heated vertical plate. These wall functions are 
compared here with numerical calculations for air, using a k--s turbulence model with low-Reynolds number 
modifications. George and Capp's wall function for the temperature in the inner layer agrees with the 
calculations, but their wall function for the velocity does not. George and Capp's defect laws for the 
velocity and the temperature in the outer layer are also numerically found, but Cheesewright's wall function 

for the velocity in the (lower part of the) outer layer does not agree. 

1. INTRODUCTION 

A LARGE part of the velocity profile of  the turbulent 
boundary layer along a fiat plate placed in an 
oncoming flow can be described by a logarithmic wall 
function. Most numerical calculations of  turbulent 
flows use this wall function as a boundary condition. 
In this way the use of many computational grid points 
to describe the steep gradients in the turbulent flow 
close to a fixed wall can be avoided. The logarithmic 
wall function only approximately holds for forced 
convection boundary layers with small pressure gradi- 
ents ; it does not hold for natural convection boundary 
layers. In an analytical way George and Capp [1] and 
Cheesewright and Mirzai [2, 3] have given some ideas 
about the wall functions for the natural convection 
boundary layer along a heated vertical plate. 

George and Capp divided the boundary layer into 
an inner and outer layer. The inner layer starts at the 
wall and ends at the velocity maximum. This layer is 
further split in a conductive/thermo-viscous sublayer, 
directly touching the wall, and in a buoyant sublayer 
extending to the velocity maximum. A I/3-power wall 
function for the velocity and a - l/3-power wall func- 
tion for the temperature is proposed in this buoyant 
sublayer. A defect law is given in the outer layer, 
which extends from the velocity maximum up to the 
outer edge. 

Cheesewright's analysis differs from that of  George 
and Capp on some points. The form of the flow in 
the conductive/thermo-viscous sublayer remains 
unchanged. Cheesewright derived wall functions in 
the lower part of  the outer layer (i.e. the fully turbulent 
region between the maxima of the velocity and the 
turbulent viscosity). These wall functions do not show 
the l/3-power dependence, but have logarithmic 

terms. He did not formulate a defect law in the upper 
part of  the outer layer. 

This paper compares the proposed wall functions 
with existing experimental data and new numerical 
data for air. 

An important contribution to the experimental 
knowledge of  the natural convection boundary layer 
has recently been given by Tsuji and Nagano [4]. They 
accurately measured the velocity very close to the wall. 
With the help of  these data and the velocity and 
temperature data of others [2, 3, 5--10] we will verify 
the accuracy of  the numerical results. The numerical 
results are obtained by solving the boundary-layer 
equations along the heated vertical plate. The tur- 
bulence is modelled with a low-Reynolds number k -  

model. Several low-Reynolds number k ~  turbulence 
models are considered. Once we are convinced that 
the numerical model works well for the Grashof num- 
bers for which experiments are available, we also 
expect the model to be accurate for higher Grashof 
numbers. 

Calculations are performed for air (Prandti number 
0.71) up to a local Grashof number of  10 ~'. This 
enables us to study the asymptotic structure (i.e. the 
large Grashof number behaviour) of the turbulent 
natural convection boundary layer. The following 
quantities are examined for increasing Grashof num- 
ber : wall-heat transfer, wall-shear stress, the velocity 
maximum and its position, and the maximum of the 
turbulent viscosity and its position. All these quan- 
tities approximately show an asymptotic behaviour of 
the form r, Gf~x. The  power 7 turns out to be almost 
independent of  the model used, but the propor- 
tionality coefficient ~, shows a larger model depen- 
dence. The asymptotic behaviour of  the different 
quantities is related to possible similarity scalings (i.e. 
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NOMENCLATURE 

c:~ dimensionless wall-shear stress, 
2v(Ou/Oy)./u~ 

g gravitational acceleration 
Gr~ local Grashof number, g~ATx3/v ~ 
k turbulent kinetic energy 
Nu. local Nusselt number, 

- (x/AT)[O(T- T®)/Oy]w 
p pressure 
Pr Prandtl number 
Qr velocity scale, - (v/(Pr AT))(OT/Oy)w 
Rex local Reynolds number, u~x/v 
T temperature 
AT characteristic temperature difference, 

T.-T® 
u velocity component along the plate 
Uo velocity scale, (gpATv) u3 
Ub velocity scale, ~/(gpATx) 
u, velocity scale, ~/(v(Ou/Oy)w) 
v velocity component perpendicular to the 

plate 
x coordinate along the plate, beginning at 

the leading edge 
y coordinate perpendicular to, and 

beginning at, the plate 

y+ dimensionless length, yu,/v. 

Greek symbols 

V 

p 
O" T 

coefficient of thermal expansion 
length scale 
rate of dissipation of k 
dimensionless length, (yQr Pr)/v 
= (y NuD/x 
dimensionless length, Gr]/s 
molecular kinematic viscosity 
turbulent kinematic viscosity 
density 
turbulent Prandtl number for T. 

Superscripts 
i inner layer 
o outer layer. 

Subscripts 
max maximum of a quantity 
w wall condition 
oo environment condition. 

scalings for the temperature, velocity and length that 
lead to solutions that are independent of the Grashof 
number). In order to check that these scalings indeed 
lead to similarity solutions (wall functions, defect 
laws) we have plotted calculated velocity and tem- 
perature profiles for increasing Grashof number. We 
have also plotted the similarity profiles for the tur- 
bulent quantities: the turbulent viscosity, the kinetic 
energy of the turbulence and the rate of turbulent 
energy dissipation. 

We also give some reflections about the possibilities 
of practical use of wail functions in natural convection 
calculations. 

2. SIMILARITY SCALINGS 

The boundary-layer flow along a fixed wall 
can be described by the boundary-layer equations. 
For a turbulent, two-dimensional, incompressible, 
Boussinesq flow these equations read 

~u av 

0u 2 0uv 1 dp 
+ = - p r®) 

0 0u 
+ 

O (~ v,~or OuT Ovr= ~ Tr + (t) 

with the boundary conditions 

x = xb : u- and T-profile prescribed 

y = 0 :  u = v = O ,  T =  Tw 

y ~ o o :  u=u®, T =  T® = T . - A T .  

Here x is the coordinate along the plate. The solution 
of these equations for a forced convection flow (con- 
stant, non-zero u®) only depends on the Prandtl num- 
ber (Pr) and on the x-based Reynolds number 
(Rex= u~x/v). The natural convection solution 
(u® = 0) only depends on Pr and on the x-based 
Grashof number (Gr~ =g~ATx3/v'). Hence, for a 
fixed Prandtl number we have 

, 

(¢~ATv)'/3 

T-T®AT "-fr(Gr"Y)" (2) 

If the characteristic number (Gr. or Re.) becomes 
infinitely large, a rescaling might exist, which makes 
the solution independent of this characteristic 
number. In general, such a similarity solution is 
described by 

(g:ATv) ':~f' (Gr.) .= .I"2 f,(Gr.) 

AT f((Gr.) = fs f,(Gr.) . (3) 

For a laminar flow the similarity scalings are well 
known [11], namely with A = Gr; ~/~, A = A  = Gr~/4 
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and f ,  = 1. The laminar velocity scale (g[3ATv) t/3 
x GrtJ ~ (= ~/(g[JATx)) is here further referred to as 
Ub (buoyant velocity). The velocity (g/~ATv)~/3 is indi- 
cated as u0. The similarity scalings for the turbulent 
boundary layer are more complicated. In particular 
this is because for large Grx (or Rex) the solution 
across the boundary layer is split in several regions, 
where different scalings hold. For a forced convection 
turbulent boundary layer these scalings are well 
known (see, e.g. Cebeci and Bradshaw [12]) : a viscous 
sublayer close to the wall, an inertial sublayer where 
the logarithmic wall function holds, and an outer layer 
at the edge of the boundary layer where a defect law 
holds. Some first steps to detect the different regions 
and scalings in the turbulent natural convection 
boundary layer were made by George and Capp [1] 
and by Cheesewright and Mirzai [2, 3]. The main 
steps of their analyses are summarized here for a fixed 
Prandtl number. 

George and Capp assumed that the length scale 6 
and the velocity scales u, and Qr were important for 
the scaling 

5 = boundary-layer thickness 

u, = ~/ (v(au/ay).) 

, (or  Q r = p~ \-~y ). (4) 

In general (with Uo = (gflATv) to) 

U 
- -  = f~((, y*, 2, y/tS, Gr2/3) 
no 

T -  r~ = fr({,  Y+, it, y/6, Grff 3) (5) 
AT 

with the five dimensionless lengths 

yQr 
v/Pr 

Y+ = yu__~, 
V 

it = ~ - ' - ~ )  y = Gr~ ,3 

y/~ 

Gr2/, (gflATx3~ ''3 
= \ - S t - /  

In the inner layer the dependence on y[6 is neglected. 
Moreover, a local equilibrium state is assumed in this 
layer; in that case only u,/uo and Qr/uo depend on Gr~ 
and the explicit dependence on Grx can be removed 
from expressions (5). I f  it is further assumed that there 
is only one length scale in the inner layer (i.e. ~+3. 
and y+ +it) u,/uo and Qrluo are even independent of  
Grx. Under these assumptions the wall-shear stress 
law (with c/~ ffi 2v(Ou/Oy),/u~ and the wall-heat trans- 
fer law (Nu~ ffi - (x /AT)[O(T- T®)/ay],,) read 

c:~ + Gr~ v3 (6a) 

Nu# + Gr~/3. (6b) 

In the lower part of the inner layer, the con- 
ductive/thermo-viscous sublayer, both convection 
and turbulence can be neglected. Using series expan- 
sions in equations (1) gives 

u f f i u ; i t _  ,l Uo u~ T 1 - ~  er  +- - .  (7a) 

T - T =  
AT "- l - - ~ + . . . .  (76) 

The assumption of one length scale gives wall func- 
tions in the upper part of the inner layer, the buoyant 
sublayer 

U 
- = f~(O 
Uo 

T-Too 
AT = f~r(0- (8) 

In the outer layer the dependence on y+, { and 2 is 
neglected in expressions (5). In order to remove the 
Grx dependence as well, an equilibrium state is 
assumed: the velocity scale and temperature scale in 
the outer layer are assumed to depend on 6, gfl and 
QrAT only. This gives the following defect laws in the 
outer layer: 

Uo(J/3 = f*  

---~) ~6-~ -- "" k~)" (9) 

Here ~s = (6Qr Pr)/v and Gr6 = gflAT63/v "-. For a 
smooth matching of the conductive/thermo-viscous 
sublayer with the outer layer, expressions (8) and 
(9) must hold in an intermediate layer, the  buoyant 
sublayer. This gives George and Capp's wall functions 
in the buoyant sublayer 

U 
- -  = c,~t/3 +c2 (10a) 
U0 

T -  T® = c3(- t/3 +c4. (10b) 
AT 

These !/3- and -1/3-power  laws in the buoyant 
sublayer should be the natural convection counterpart 
of the log-law in the inertial sublayer of the forced 
convection boundary layer. 

Cbeesewright has proposed a different wall 
function. The conductive/thermo-viscons sublayer in 
his analysis remains, of  course, the same as 
expressions (7). He assumes that relation (8) still holds 
in the lower part of the outer layer (i.e. the region 
between the positions of the maxima of the velocity 
and the turbulent viscosity, see also Section 4) and 
that there is no dependence on v, which leads to 
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T-T~ 
AT 

Neglecting convection 
equations (I) gives (taking ~r = 1) 

ffi coln~+c~. (11) 

and molecular diffusion in 

2 ~" T-T® 
Ou u,-g~ATJo ~ - ~ d y  

Oy vl 

~y\ ~ r  / , i" 
(12) 

Substitution ofequation (1 ! ) into equations (12) gives 

u2 V U 2 ~  
t /  0 l ~  : ~ T ,  v 

- -  = --c0 ~_%-F-A-~/rr ..--?.~--m~, 
Uo r r ~ r l  Uo 

--(c~--2Co)~--co~ln~]+c~. (13) 

Cheesewright proposed equations (11) and (13) as 
wall functions in the lower part of  the outer layer. He 
did not formulate a defect law in the upper part of  the 
outer layer. 

3. EXISTING EXPERIMENTAL DATA 

Wall-heat transfer measurements for air were 
obtained by Siebers et aL [10], Miyamoto et al. [8] 
and Cheescwright and Ierokipiotis [6]. Comparison 
of their data leads to the best-fit curve (for air) 

Nux = 0.106Gr~/3. (14) 

Miyamoto et al. [9] measured velocity and tem- 
perature profiles for air in the boundary layer along 
a vertical plate with a constant wall-heat flux. Because 
Nu~/x is (approximately) independent of  x according 
to equation (14), these measurements are also valid 
for the vertical plate with constant wall temperature. 
Cheesewright and co-workers [2, 5-7] and Tsuji and 
Nagano [4] measured velocity and temperature pro- 
files for air along a vertical plate with constant wall 
temperature. Measured velocity and temperature pro- 
files are plotted in Fig. 1. We note that the profiles 
for different Grx are only expected to coincide if 
the quantities are non-dimensionalized with the right 
scalings. The measured temperature profiles almost 
coincide, but the deviation between the velocity pro- 
files is larger. 

Tsuji and Nagano [4] were able to measure the 
velocity very close t o the wall, leading to the following 
best-fit curve for the wall-shear stress 

c/., == 1.368Gr~ "°' ' '9. 05)  

The wall-shear stress data of  Cheesewright and Mirzai 
[3] are more scattered, but they derived a best-fit curve 
with a power dependence close to equation (15), 
namely c/~ = 2GrF °''6. 

It is difficult to .judge the accuracy of the measure- 
ments. It has to be realized that the experimental 
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FIG. 1. Comparison between measured and calculated pro- 
files: (a) velocity; (b) temperature. 

situation is never the semi-infinite vertical plate in an 
infinitely large, isothermal environment. The plate is 
placed in a box with finite dimensions, introducing a 
temperature stratification along the outer edge of the 
boundary layer. Tsuji and Nagano [4] suggested that 
their measurements have a good accuracy, because 
they used a hot-wire technique. The other experiments 
mentioned all used laser-Doppler anemometry; this 
technique seems to give a too large measuring volume 
close to the wall, leading to inaccurate results in the 
near-wall region. 

The relevance of the wall functions summarized in 
the preceding section is difficult to check on the 
grounds of the existing experimental data alone. In 
particular the experiments are restricted to Grx = 
2 × I 0 '  ~, which might be too low for the asymptotic 
scaling laws to appear. Therefore, the details of  the 
natural convection boundary layer up to Grx = 10 ~2 
are examined with a numerical model. 

4. NUMERICAL RESULTS 

The wall functions are compared with the numerical 
solution of the turbulent natural convection boun- 
dary-layer equations (1). The turbulence models and 
numerical procedure are described in detail in ref. [13]. 
The numerical calculations are performed with a low- 
Reynolds number k-8 model for turbulence. Different 
models were tested, and the models of Jones and 
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Launder [14], Chien [15, 16] and Lam and Bremhorst 
[17] turned out to give the best wall-heat transfer 
results. These best models are used here. Although 
leading to a too high wall-heat transfer, we will also 
give the results for the standard k-~ model (i.e. with- 
out low-Reynolds number modifications), because 
this model is still most commonly used in numerical 
calculations. 

The boundary-layer flow for air along a heated 
vertical plate was calculated in the Gr~ range 109-10 tz, 
using the Boussinesq approximation. The calculation 
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FIG. 2. Turbulent asymptotic behaviour of different quan- 
tities: (a) wall-heat transfer; (b) wall-shear stress; (c) vel- 
ocity maximum ; (d) position of the velocity maximum; (e) 
turbulent viscosity maximum ; (f) position of the turbulent 
viscosity maximum, ke, standard k-8 model ; LB, Lam and 
Bremhorst model ; CH, Chien model ; JL, Jones and Launder 
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was started with the laminar solution at Grx = 10 9, 
and an amount of turbulent kinetic energy was intro- 
duced at Grx -- 2 x 10 9 to obtain a transition to the 
turbulent solution. 

Figure 1 shows that the Chien model closely pre- 
dicts the experimental velocity and temperature pro- 
files in the range up to Grx ~ 2 x 10 '1 (see also Figs. 
2(a)-(c)). As discussed in ref. [13] the models of Jones 
and Launder, Lam and Bremhorst and (to some 
extent) the standard k-8 model closely calculate these 
profiles also. Because the models work well in the 
experimental Grashof number range, it is reasonable 
to expect that they also give good predictions for 
higher Grashof numbers, where no experimental data 
are available. The numerical results for these larger 
Grashof numbers will be used to derive wall functions. 



1092 R . A . W . M .  HeN~ "s 

The calculated Grx dependence of the wall-heat 
transfer, the wall-shear stress, the velocity maximum 
and its position, and the maximum of the turbulent 
viscosity and its position are shown in Fig. 2. The 
transition from the laminar asymptote to the tur- 
bulent asymptote largely depends on the turbulence 
model used. This transition is illustrated for the Chien 
model in Fig. 2(a). The turbulent solution between 
Grx = 10 ~ and 10 ~2 is fitted to an asymptotic curve 
of the form ,,Gr~ with a least-squares numerical 
method. These fitted curves are shown in Fig. 2. We 
suggest that these curves are asymptotic, but we only 
checked it up to Grx = 10 ~ 2. All the turbulence models 
approximately give the same GG power dependencies, 
namely 

Nu. + Gr  '~ / 

c/~ + Gr; t/4 

Uma~ ÷ Uo Gr~/6( = Ub) 

Y,.m~ ÷ xGrf  1is 

v~ m,~ + v Gr~/2(= UbX) 

yv,.max ÷X. (16) 

The proportionality coefficients show some model 
dependence. In ref. [13] we concluded that the Jones 
and Launder model gives the best wall-beat transfer 
results for air, whereas the standard Ice model gives 
a value which is much too high. Comparison with the 
recent data of Tsuji and Nagano [4] leads to the same 
conclusion for the wall-shear stress. However, it is 
important that all the models approximately predict 
the experimentally found - 1/4-power dependence in 
the wall-shear stress and the l/3-power dependence in 
the wall-heat transfer. Further, the experiments seem 
to confirm the numerical result that the velocity 
maximum approximately scales with ub. 

Now we compare the wall functions as proposed by 
George and Capp with both the existing experimental 
data and the new numerical data. 

4.1. Conduetive/ thermo-viscous sublayer 
Substitution of the experimental relation for the 

wall-heat transfer (14) and the wall-shear stress (15) 
into expressions (7) gives (we take the power 0.25 
instead of 0.249) 

~bbU = 0 . 6 8 4 ( ) ( )  yGr:/" --0.5 ~ Gr~/'2 
y 3 

+O.O177Gr~/"(xGr~/" I +. . .  

T - ~  
= 1--~+'". (17) 

AT 

The first two terms in the series expansion of the 
velocity show the laminar velocity and length scale, 
ub and xGr; m/4, respectively. This scaling is slightly 

and C. J. HOO~ENDOOP~ 
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Flo. 3. Calculated similarity profiles in the conductive/ 
thermo-viscous sublayer (Chien model): (a) velocity; (b) 

temperature. 

disturbed in the third term, having a Gr~ "2 contri- 
bution. Because the numerical results also give the 
- l /4-power  dependence for the wall-shear stress 
(Fig. 2(b)), the numerical velocity profiles will also 
give the laminar scalings for the velocity close to the 
wall. This is illustrated with the Chien model in Fig. 
3(a). The laminar scalings hold until close to the vel- 
ocity maximum. The wall-shear stress in the for- 
mulation of George and Capp (6a) shows a - l / 3 -  
power dependence on Grx, instead of both the exper- 
imentally and numerically found value of -1/4.  
Therefore, the velocity in the sublayer of George and 
Capp does not show the laminar scaling. The 1/3- 
power dependence on Grx of the wall-heat transfer in 
the model of George and Capp is confirmed by both 
the experimental and numerical results. Therefore 
~÷(y/x)Gr~/3, implying that the temperature in 
expressions (17) does not show the laminar length 
scale. The calculated temperature for increasing Gr, in 
Fig. 3(b) shows that ~ is the right similarity coordinate 
until far beyond the velocity maximum. 

4.2. Buoyant sublayer 
This is the layer between the conductive/thermo- 

viscous sublayer and, say, the position of the velocity 
maximum. George and Capp proposed the wall func- 
tion (! 0a) for the velocity in the buoyant sublayer. As 
illustrated in Fig. 4(a) indeed both the experiments of 
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between experiments and calculations; (b) erroneous simi- 

larity scalings (Chien model). 
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Tsuji and Nagano [4] at Grx = 8.44x 10 '° and the 
numerical results at Grx = 10" can be fitted to 

U 
- -  = 45( I/3-16.3. (18) 
Uo 

However, the numerical results in Fig. 4(b) for 
increasing Grx show that U/Uo and ( are not properly 
scaled in the buoyant sublayer; the numerical results 
disagree with George and Capp's velocity wall func- 
tion. The numerical results in Fig. 3(a) show that the 
laminar scalings ub and x Gr~ t/4 are the right scalings 
in the buoyant sublayer. George and Capp proposed 
the wall function (10b) for the temperature in the 
buoyant sublayer. As illustrated in Fig. 5(a) both the 
experiments (in the Gr~ range 2 x 10'°-2 x 10") and 
the numerical results (at Gr~ = 10' ~) can be fitted to 

T -  T~ _- 0.63(- ,/3 -0.23.  (19) 
AT 

Moreover, the numerical results for increasing Gr~ in 
Fig. 5(b) show that plotting (T-T~o)/AT vs ( gives a 
similarity profile in the buoyant sublayer; the numeri- 
cal results agree with George and Capp's temperature 
wall function. 

4.3. Outer layer 
The outer layer extends from the position of  the 

velocity maximum up to the edge of  the boundary 
layer. George and Capp proposed equations (9) as 

similarity functions (defect laws) in the outer layer. 
They did not derive how t~/x in the outer layer depends 
on Grx. Our numerical calculations in Fig. 2(f) show 
that y,,.m,/X is independent of  Gr, (see expressions 
(16)). Therefore, if there is indeed one length scale in 
the outer layer, this implies that also 6+x.  Sub- 
stitution of & + x  and Nux +Gr~/~ into equations (9) 
gives 

ub Gr7 ,/,s ffi fo  

T -  T ~  , /9 
(20) 

Increasing Grx in the numerical Chien model in Fig. 
6 shows that both the velocity and temperature are 
properly scaled in the outer layer by equations (20) ; 
the numerical calculations confirm George and 
Capp's defect laws. George and Capp did not derive 
how Um,JUo depends on Gr x. Urn,, is positioned 
between the thermo-viscous sublayer and the outer 
layer. Therefore, it is expected that the velocity 
maximum scales with a velocity somewhere between 
the velocity scaling ub in the thermo-viscous sublayer 
and the outer velocity scaling ubGrfUta; say we 
expect that u,~ +ub Gr7 u36. In analogy we expect 
that the position of Um,x scales with a length scale 
between xGr7 u4 and x;  say we expect that 

t44T 33;6-0 
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y . . . .  ÷ x Gr~ :/s. This length scale also approximately 
follows from the calculations in Fig. 2(d) (see also 
expressions (16))• But, the expected 1/36-power 
dependence in the velocity maximum is so small that 
on the grounds of the numerical calculations in Fig. 
3(b) we cannot conclude whether uml~ scales with Ub 
or with ub Gr.;" m/36. Moreover, the difference between 
the outer scaling Ub GrF ,/ns .and the laminar velocity 
scale Ub is small. For example, the use of  ub as the 
outer velocity scale in Fig. 6(a) only leads to a slightly 
worse similarity in the outer layer. Because the differ- 
ence between the velocity scale in the thermo-viscous 
sublayer, the scaling for the velocity maximum and 
the outer velocity scale is small, we can conclude that 
the laminar velocity scale u~ is approximately the right 
velocity scale over the whole boundary-layer thick- 
ness. We checked that scaling the turbulent quantities 
vt, k and 8 in the outer layer with the outer velocity 
scale u~ Gr~ ~/n8 and the outer length scale x approxi- 
mately leads to similarity profiles. But, the use of um~ 
as the velocity scale in Fig. 7 leads to the best similarity 
profiles. Figure 7 shows that the turbulent viscosity is 
very small up to the position of the velocity maximum. 
Beyond the position of the velocity maximum the 
turbulent viscosity grows and reaches a maximum, 
after which it falls back to zero at the outer edge of 
the boundary layer. 

Cheesewright proposed equation (11) as a wall 
function for the temperature in the lower part of the 
outer layer (i.e. the fully turbulent region between the 
maxima of the velocity and the turbulent viscosity). 

0.68 
G - 3.4 |8 :a 

, ,, , ~ , .  Gr.  - 1.4 t i l  s l  
g ~ X  ......... G e .  - I . ; "  t g  t t  

i:_iiiiiiii! iiii A 
. . . .  Ge~ - | . 0  l a  tx  1 /  '~ 

M 

0.681 - 

Fxo. 7. Calculated similarity profiles for the turbulent quan- 
tities in the outer layer: (a) turbulent kinetic energy; (b) rate 

of turbulent energy dissipation; (c) turbulent viscosity. 

He fitted the constants to the experiments (all around 
Grx ~ 10' '), yielding 

T - ~  
= 0.28-0.08 In ~. (21) 

AT 

This curve is compared with the numerical results for 
increasing Gr~ in Fig• 8(a). Comparison of the results 
around Grx ~ 10 :~ (see also Fig. l(b)) shows that the 
numerical values for the temperature in the lower part 
of the outer layer are above the experimental values. 
It is unclear whether this is a shortcoming of the 
turbulence model or that there was a slight strati- 
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FIG. 8. Cheesewright’s wall functions compared with cal- 
culations (Chien model) : (a) temperature; (b) velocity. 

fication in the experiments causing a suppression of 
the development of the boundary layer. Although not 
very convincing, the numerical results for large Gr, in 
part of the outer layer can be fitted to 

T- T, 
- = 0.28 -0.05 In i. 

AT (22) 

Hence the numerical results can also be approximately 
fitted to a logarithmic shape in part of the outer layer, 
in line with Cheesewright’s suggestion. Cheesewright 
proposed equation (13) as a wall function for the 
velocity in the lower part of the outer layer. The terms 
Qr/uO and u,/u,, can depend on Gr,. The l/3-power 
dependence on Gr, of Nu, and the - l/Cpower depen- 
dence on Gr, of c,~ imply that QT/uo actually is inde- 
pendent of Gr, and u,/~,+Gr~“~. Hence, except for 
the last very weak Gr, dependence, equation (13) 
states that u0 only depends on [ in the lower part of 
the outer layer. With a reasonable accuracy we were 
able to fit the coefficients in equation (13) with the 
existing velocity data (which were all obtained not too 
far from Gr, = 10’ ‘, see Fig. l(a)) by 

U 
- = 4.34In{-3.131;+0.57CIn[+24.3. 
UO 

(23) 

The numerical results for increasing Gr, in Fig. 8(b) 
show that u/u0 and [ are not properly scaled in the 
(lower part of the) outer layer; according to the 
numerical results, equation (23) describes the velocity 
only close to Gr, = 10 , ” but it is not a wall function. 

Cheesewright’s assumption of negligible convection 
in the (lower part of the) outer layer might account 
for this discrepancy. 

5. PRACTICAL USE OF WALL FUNCTIONS 

In the preceding we have verified the existence of the 
following similarity shapes in the natural convection 
boundary layer for air (with a fixed Prandtl number 
of 0.71) : 

inner layer 

U 
-= 

Ub 
I(- -> c Gri!' CW 

Wb) 

buoyant sublayer (wall function) 

(254 

T- T, 
L\T = c3c -l’,+c,; Wb) 

outer layer (defect laws) 

(26) 

Equation (25a) is found from equation (24a) after 
substitution of the wall-shear stress law c,, + Gr; v4 
(equation (15) or (16)). 

For comparison, the similarity shapes for a forced 
convection boundary layer are : 

inner layer 

;=f(Y+); (27) 

inertial sublayer (wall function) 

outer layer (defect law) 

u, -lJ Y 
-= 

4 f0 ii 

(28) 

The wall functions for the forced and natural con- 
vection flow hold for equilibrium flows : no pressure 
gradient along the outer edge in the case of forced 
convection and no stratification along the outer edge 
in the case of natural convection. In computational 
practice, wall functions are used as boundary con- 
ditions to calculate non-equilibrium flows. For exam- 
ple, the forced convection flow in an enclosure can 
be calculated by solving the time-averaged Navier- 
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Stokes equations, using a k--~ model for the turbu- 
lence. At the first computational grid point from the 
wall the logarithmic wall function (28) is applied. This 
wall function has one degree of freedom, namely u,; 
its value is calculated by smoothly matching the wall 
function to the numerical solution. In a natural con- 
vection calculation in an enclosure, differentially 
heated over the vertical sides, one might use George 
and Capp's temperature wall function (25b). This wall 
function has two degrees of  freedom, namely T® and 
the wall-heat transfer [c~T/c3y]w appearing in the ~ co- 
ordinate. The wall function for the velocity, equation 
(25a), as found in this numerical study, also has two 
degrees of freedom T~ (or AT) and u~. 

There are two remarkable differences between the 
wall functions for the forced and natural convection 
boundary layer. 

(1) The inertial sublayer is fully turbulent, whereas 
the turbulent viscosity is very small in the buoyant 
sublayer. 

(2) The log-law in the inertial sublayer gives a 
good approximation until close to the outer edge 
(y+ > 1000), while the extension of the buoyant sub- 
layer is restricted to the velocity maximum at ~ ~ 1.0, 
which corresponds to y + ~  25 (we have taken 
Gr, = l0 s i). 

Because of the last difference, the application of wall 
functions in natural convection calculations can save 
only a few computational grid points in comparison 
with forced convection calculations. In natural con- 
vection calculations it seems to be more logical to 
use the defect laws, equations (26), as boundary 
conditions. This is because in natural convection the 
defect law turns out to be the similarity function over 
most of  the boundary-layer thickness. Unfortunately 
these defect laws have more degrees of  freedom, 
namely u . . . .  T®, 6 and the wall-heat transfer [OT/~y]w 
appearing in ~. This will complicate the matching 
between the wall function and the numerical solution. 

Therefore, the practical use of  similarity functions 
in natural convection flows is much less straight- 
forward than in forced convection flows. Much re- 
search is still required to establish their practical value. 
At the moment we suggest that it is safer to calculate 
natural convection flows up to the wall with a low- 
Reynolds number k - 8  model for turbulence, instead 
of using similarity functions. 

be fitted to ~ Gr~ for large Grashof numbers, in which 
~, is almost independent of  the model. 

The inner layer, in which the turbulent viscosity is 
negligibly small, extends from the wall up to the vel- 
ocity maximum. The calculations show that the wall- 
shear stress and wall-heat transfer behave as c /x-  
Grf 5/4 and 5/3 Nux-  GG , respectively. Both powers 
agree with experiments. The power for the wall- 
heat transfer agrees with the theory of George and 
Capp, but the power for the wall-shear stress does 
not:  they found - 1/3 instead of - 1/4. The numerical 
results show that the velocity profile scales with the 
laminar scalings in the conductive/thermo-viscous 
sublayer; ub--x/(g/3ATx) for the velocity and 
xGr~ ~/4 for the length. On the contrary, for the 
temperature ( T - T ~ ) / A T  the similarity length is 

= (y Nux)/x (+y/(x Grf i/3)). The buoyant sublayer 
is the intermediate layer between the conductive/ 
thermo-viscous sublayer and the outer layer. 
George and Capp's wall function in the buoyant 
sublayer for the temperature is confirmed by the 
numerical results. Their wall function in the buoyant 
sublayer for the velocity is not found; we calculate 
that the laminar scalings Ub and x Gr~ ~/' are the right 
scalings, instead of their velocity uo ffi (g~ATv) t/3 and 
coordinate ~. 

The outer layer extends from the velocity maximum 
up to the edge of the boundary layer. In this layer 
the turbulent viscosity grows from almost zero at the 
velocity maximum, reaches a maximum and falls back 
to zero at the outer edge. The length scale 6 is cal- 
culated to be almost independent of Gr~, namely 6 - x .  
George and Capp's defect laws for the velocity and 
the temperature agree perfectly with the calculations. 
In particular the velocity scale is us Grf ,/ts, which is 
close to the laminar velocity scale Ub as found numeri- 
cally in the inner layer. Therefore, the laminar velocity 
scale is approximately the right velocity scale over 
the whole thickness of the boundary layer. Using the 
outer length scale x and the velocity scale urn, (which 
is close to the outer scaling us Gr~ ,/,s) leads to the 
best similarity profiles (defect laws) for the turbulent 
quantities v,, k and e. Cheesewright's wall function 
for the temperature in the (lower part of the) outer 
layer can only be approximately recognized in the 
numerical results. His wall function for the velocity 
disagrees with the computational results. 

6. CONCLUSION 

By numerically solving the boundary-layer equa- 
tions for air, with different low-Reynolds number k -  
s models for the turbulence, the similarity scalings 
for the turbulent natural convection boundary layer 
along a heated vertical plate were derived. Some sca- 
lings (giving wall functions and defect laws) agree 
with the analytical results of  George and Capp, others 
do not. All the turbulence models approximately pre- 
dict the same scalings, i.e. characteristic quantities can 
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DETERMINATION NUMERIQUE DES FONCTIONS DE PAROI POUR LA COUCHE 
LIMITE TURBULENTE DE CONVECTION NATURELLE 

R~samt--Par une voie analytique, George et Capp (Int. J. Heat Mass Transfer 22, 813-826 (1979)) et 
Cheesewright ("Couches limites turbulentes de convection laminaire asymptotiques ~i nombre de Grashof 
infini", pr~'sent~ au colioque Euromech 207 (1986)) ont obtenu des fonctions de paroi pour la couche limite 
laminaire le long d'ane plaque chaude verticale. On compare ici ees fonctions ~ des calculs num~riques 
pour Fair avec le module k-~ modifi(~ pour un faible nombre de Reynolds. La fonction de paroi pour la 
temI~rature dans la couehe interne de George et Capp s'accorde bien avec les calculs mais pas la fonction 
de paroi pour la vitesse. On retrouve num~riquement ins lois d(~ficitaires de George et Capp pour la vitesse 
et la teml~rature dans la couche externe, mais la fonction de paroi de Cheesewright pour la vitesse ne 

convient pas pour la partie basse de la couche externe. 

NUMERISCHE BESTIMMUNG VON WANDFUNKTIONEN FOR DIE GRENZSCHICHT 
IN TURBULENTER NATORLICHER KONVEKTION 

Zusammenfassang--George und Capp (Int. J. Heat Mass Transfer 22, 813-826 (1979)) sowie Cbeesewright 
(Euromech Colloquium 207 (1986)) haben Wandfunktionen f'fir die Grenzschicht bei natfirlicher Kon- 
vektion an einer beheizten senkrechten Platte entwickelt. Diese Funktionen werden bier mit numerischen 
Berechnungen ffir Luft vergiichen, wobei ein ffir Heine Reynolds-Zahlen modiflziertes k-~-Turbulenz- 
modell angewandt wird. Die Wandfunktion nach George und Capp ffir die Temperatur der inneren 
Schicht stimmt gut mit den Berechnungen fiberein, dies gilt jedoch nicht ffir ihre Wandfunktion ffir 
die Geschwindigkeit. Die GesetzmfiBigkeiten yon George und Capp f'6r die Geschwindigkeit und die 
Temperatur in der ~uBeren Schicht wurden enbenfalls numerisch best~tigt, hingegen ergab sieh ffir die 
Wandfunktion der Geschwindigkeit nach Cbeesewright ffir den unteren Teii der 5u~ren Schicht keine 

Obereinstimmung. 

qHCSIEHHOE O I I P ~ E H H E  ~YI-IKIJJ4ITI CTEHKH ~ TYPI;Y3IEHTHOFO 
ECTECTBEHHOKOHBEKTHBHOFO HOI 'PAHHqHOFO C3IO,q 

Amorams--21xopztx x K3nn (Int. J. Heat Mass Transfer 22, 813-826 (1979)), a xaxxe q~pagT ('The 
scaling of turbulent natural convection boundary layers in the uymptotic fimit of infinite Grashof 
number', ~orama, npe~"mnaenmatt na Euromech Colloquium 207 (1986)) asaneaM al~mtzrasec,uua eno- 
co6ou (I)yk.,:.~ cremm ~ ecrecTee~o~oseerr~noro norpaawmoro caoJ a~om, .arporog eepT~a- 
mmoit ~ a c r m ~  B ammoit pa6oTe ~ ~)~.rm-, cpanm~nmTe~ c ,mcneam.~m pacqeT~m -.~ 
Bo~rxa, sbmoJmemm,~ sa OCHO~ k--e Mo~eam Typ6ynen-mocra c MO~lI~)m[almIMH npa mr~sx 

P e k o ~ b ~ a .  B i a ~ m s l a e  )]~opZDm:M s I~nUOM ~ ) ~  cremm ~ TeMnepaTyp~, Bo asyr- 
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nero anon, He cornacyeTcn c pac~eTaMa. 


