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Abstract--Turbulence fields are predicted with the aid of a (K-e) model supplemented with algebraic 
relations deduced from a second-order closure scheme. Then, the dispersion of discrete particles 
transported by the turbulence fields predicted above is computed. Modelling of the discrete particle 
dispersion is based on an Eulerian approach. The (monodispersed) particles are considered as a 
continuous field for which a transport equation is written. The transport equation contains a 
dispersion tensor which is computed in the framework of the (slightly extended) Tchen theory, 
assuming a two-parameter family of Lagrangian correlation functions for the fluid particles. 
Modifications can be included to account for crossing-trajectory effects. Predictions are compared 
with experiments from Snyder & Lumley (1971), Wells (1982, 1984) and Arnason (1982). 

I. I N T R O D U C T I O N  

The knowledge and understanding of multiphase flows has increasingly caught the interest 
of researchers and engineers in recent years. In this paper, the discussion is limited to the 
simple case of turbulent two-phase flows where a dispersed phase is transported in the limit 
of a volume fraction tending to zero. The understanding and prediction of the dispersion of 
the discrete phase represent a thrilling challenge for the researcher who must face some 
fundamental and difficult problems such as, among a large collection of examples, the 
relation between Eulerian and Lagrangian spectral densities or the computation of particle 
turbulent transport coefficients. Furthermore, such a topic is essential for controlling and 
predicting certain processes and phenomena often closely connected with the present crisis of 
energy supply and also with care of the environment. Some examples are dispersive behavior 
of fuel droplets in energy conversion devices, or transport of particulate pollutants in the 
atmosphere, or in oceans, lakes, rivers. 

The traditional approach for predicting the dispersion of discrete particles in turbulent 
flows is the so-called tracking method which uses a statistical simulation where the 
trajectories of the particles are computed with the aid of the equation of motion (Saffman 
1965; Neilson & Gilchrist 1969; Domingos & Roziz 1974-1975, Base 1975, Swithenbank & 
Boyson 1978; among others). But the equations of motion are generally oversimplified. In a 
lot of cases, Newton's law is expressed with the drag force alone, given usually by the Stokes 
law. Furthermore this drag force is usually written as a function of the difference between 
the mean fluid and mean particle velocities, meaning that the basic equation used to describe 
the phenomenon is a purely deterministic one. The fundamental stochastic aspect of the 
turbulence is wiped out in such a model and a cloud of discrete particles with the same initial 
conditions does not disperse. Nevertheless, the phenomenon of particle dispersion through 
turbulent mechanisms can be reintroduced by a rather phenomenological attempt, using for 
instance, an equivalent random force leading to an extra-term in the particle momentum 
equation (Jurewicz & Stock 1976). The equivalent random particle force can be deduced 
from the turbulent kinetic energy K using a "diffusion approximation" or a "random force 
approximation" to use Dukowicz's terminology (1979). See also Lockwood et al. (1977); 
Abbas et ai. (1980); and Crowe et al. (1977). But a fundamental analysis shows that the 
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behavior of the particles does not really depend only on K but rather on all the harmonics of a 
Lagrangian spectral tensor. Furthermore, the possible introduction of dispersion through a 
dispersion term in the equations is linked to the problem of computing dispersion coefficients 
which are strongly dependent on particle inertia. This dependence could be deduced from 
experiments and empirically introduced in the model, but a better approach from a 
fundamental point of view would be to attempt theoretical predictions. The foregoing 
considerations have motivated the authors to develop an alternative to the tracking 
approach, evaluating the dispersion coefficients analytically from basic principles. The 
alternative is an Eulerian approach which is worthwhile in itself and also expected to provide 
valuable information for further advances of the tracking approach which is very far from 
being fully developed. 

In the Eulerian approach, the discrete particles are considered as a continuous field ~, or 
a set of continuous fields, depending on whether the (spherical) particles are monosized, or 
not. Only monodispersed clouds will be discussed here. The continuous field ~ can be taken as 
the mean number of particles per unit volume. It complies with a transport equation in which 
the dispersion term contains a dispersion tensor depending on some fluid and turbulence 
characteristics, and on particle properties. 

This paper reports on the computer program DISCO-2 (DISpersion COmputing) which 
aims at predicting turbulence fields and discrete particle dispersion in the framework of an 
Eulerian approach. The structure of the present work is basically the same as the structure of 
the associated code. The (K-~) model and the supplemented algebraic relations for turbulent 
field predictions, the transport equation for ~, the dispersion tensor prediction, and some 
modifications required to account for some special effects such as the crossing trajectories, 
will be successively discussed. Finally, predictions from the code DISCO-2 will be compared 
with predictions from the code DISCO-1 (a previous, more costly and time-consuming version) 
and with experiments of Snyder & Lumley (1971), Wells 0982,  1984) and Arnason 
(1982). 

2. TURBULENCE PREDICTIONS: THE (K-e) MODEL 

The first section of DISCO-2 is devoted to the turbulence predictions. Although assump- 
tions concerning the particles will be later stated, we must here insist on the fact that this 
section strictly concerns the continuous phase in the absence of particles as our analysis is 
restricted to the case where the particle number-densities are small enough to avoid a 
significant modification of the fluid field by the discrete phase. This implies, for instance, 
that the viscosity # presently used is a fluid molecular viscosity, not taking into account the 
presence of particles by a supplementary law like the classical Einstein one. Turbulence 
predictions are achieved by a (K-e) model (present section) supplemented with algebraic 
relations from a second-order closure scheme (next section). The (K-e) predictions are 
carried out with the aid of a parabolic version (boundary-later assumption in Spaiding's 
terminology) (Patankar & Spalding 1972) of the TEACH-T computer program from the 
London Imperial College of Science and Technology (Gosman & Ideriah 1976). The 
notations are defined in figure I. In the cylindrical (x, r, ~) coordinate system, the governing 
axisymmetric equations are, for steady flows, 

• Continuity equation: 

Ox ( rpU, )  + ( rp t / , )  - o, [11 

where p is the fluid specific mass. 
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Figure 1. Cylindrical coordinates system. 

• Momentum equations: 

7 ~ (rpGU,) + ~ (rpu, G) [2] 

- -  o-7 + + " ' "  + 

where P is the mean pressure. 

; -~x (rpGU,) + ~ (rpU, U,) [31 

aP ,[a( au, 1 a[ au,\] u, 
-~r + - r " ~  + r ~ ~ /  ~ r ~ - g ; - / j  " 7  + S~. 

Terms involving OK/Ox~ in the r.h.s, of [2] and [3] have been neglected since they 
produce only quite minor modifications in the results. Furthermore, we have 

s ~ - ~ / ' . ~ ; ] + ; ~  r'~ , t41 

a[ OVAl o( ou, I v, su,-~x~'"Tx] + ;T, r ' " 7 7 / -  ""7" [51 

The source terms Su. and Su, are additional terms corresponding to the spatial variation 
of the effective viscosity "¢. The effective viscosity is 

" ~  - u + U r ,  [ 6 ]  

where u and Ur are the molecular and turbulent viscosities, respectively. 

• Transport equation for K, the turbulence energy per unit of mass: 

7 ~ x ( r p U ' K ) + ~  (rpU'K) -7 [~  k ~}+~k ~-~x-ff;]J +S"" [7] 

The source term Sx is 

s ,  - v - cook, [8] 
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where ¢ is the rate of energy dissipation and G is the production term which reads 

G = ~ r  2 +Jar /  + +Jar + ax / l -3 t~ r  r-~r(rU') +-~-~x]. [91 

• Transport equation for ~, the rate ofd#sipation of K: 

( / [ " - '  0( 1 0 0 1 0 [ r # . . O , \ +  
r ~x (rpU~¢) +~r (rpU,~) = r  ~x~ a, Ox/ -~r a, Or/J +So [10] 

where the source term S, is derived from a closure hypothesis: 

eG E 2 
S, = C , ~ -  Go~- [ll]  

Finally, the turbulent viscosity #r is given by 

K 2 
/Zr = C # - - .  [121 

E 

The closure constants are C,, C2, Co, C~, ax and a,, which are obtained empirically. 
We are only concerned here with parabolic flows leading to 

0-~ r lzeer =-~X r #ar Ox ] O, 

d (r#arOK) c9 (r#enO¢) 
[13] 

The computer program is then simplified by using a marching procedure, which means 
that computations are achieved, step by step, without requiring any grid sweeping. The 
equations are solved using a finite difference technique with standard boundary conditions as 
described in Gosman & Ideriah (1976). 

The above set of equations can easily be specified for Cartesian coordinate systems by 
making r --* y, ( I / r )  0/0,--* 0/0y and U,/r --, O. 

The (K-~) section thus predicts the mean velocities U, the turbulence energy per unit of 
mass K, the rate of energy dissipation ~, and the production of turbulence P, or G, depending 
on whether it is specified per unit of mass or per unit of volume. These quantities will be used 
as inputs in the second section devoted to algebraic relations deduced from a second-order 
closure scheme. 

3. TURBULENCE PREDICTIONS: SECOND-ORDER ALGEBRAIC RELATIONS 

The (K-e) model predicts the turbulent energy K but does not give any precise 
information on its repartition according to the directions. It is necessary to know this here 
since we want to account for the nonisotropic character of the turbulence. The aim of this 
part is thus to predict the correlations of the fluctuating velocities. They can be computed 
from algebraic relations deduced from a second-order closure scheme. According to Rodi 
(1979) these algebraic relations read, in Cartesian coordinates, 

[14] 
/ou, + oval 
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au, auj\ 
PO = - usu~, ~xk + U, Uk-~Xk), [15] 

[ auk 
[16] 

where u; and U,. are the Eulerian fluctuating and mean velocity, respectively, in the ith 
direction, and C't, 3"j, 3"2, 3"3 are new closure constants. Note that P and K are scalars. 

In the rigorous framework of the model, the constants 3"~, 3"2 and 3"3 are not independent 
but given by 

(C2 + 8)  
3"1 1--m-i - -  , [17] 

(30C 2 - 2) 
3"2 , [18] 

55 

(8C2 - 2 )  
3"3 11 ' [19] 

where the constant C2 is usually taken as 0.4, leading to 3"1 = 0.76, 3"2 = 0.18 and 3"3 = 0.11. 
The set [14]-[16] can easily be specified for Cartesian 2D-flows, leading to a set of four 
equations with four unknown terms which are the four independent components of the 
symmetric tensor u~u'j since all the other terms involved are constants or have been 
previously computed with the aid of the (K-c) model. The set [14]-[16] can also be expressed 
for 2D-axisymmetric flows in the cylindrical coordinate system (x,r,40, leading to (Berle- 
mont & Gouesbet 1981; Gouesbet & Berlemont 1981) 

P~, = P,~ = D,~ = 0 [20] 

u~u~ = u,u¢ = O, [21] 

u 2 - K  + P - e + C ' ~ e  ( 1 - 3 " 0  P ~ - ~ P  - 2 3 ' 2 ~ - 3 " 3  D x x - - ~ P  , [22] 

u , - K  + P - e + C ] e  ( 1 - 3 " . )  P , . , - - ~ P  -23 '2K -3"3 D , . , - . ~ P  , [23] 

u ~ = K  + P - , +  C',, (1 -3" , )  P * * - s P  - 23"2K--r - 3", O , - 3 P  , t241 

u,,u, P - ,  + C',~ (1 - v,)Px, - 3'2K/--~'- r + ~ x ]  - 3',Dx, , [25] 

e x x - -  \ -- if+ [26] 

( P,., - - 2  u-'~,, ~-~ + "~r ] " [27] 

P** = - 2u-~, 2U' , [28] 
r 
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e~" L Ox + -g ; ]  + [291 

[30]  

D,, = - 2 (u--~-~, -.~r* + u'~,2 -~r'), [311 

D ~  = - 2 u - ~  U" , [321 
r 

Dx, = - L a, + u~, + Or/+ ax J' [331 

The corresponding system for 2D-Cartesian flows can be readily obtained from the above 
equations by making x ---, y ,  ¢ ~ z ,  ( 1 / r ) ( O / d r )  ---+ d / S y  and U , / r  - - ,  O. 

Two ways of solving the system [20]-[33] have been examined. The first way is to use a 
prediction-correction method (PCM). The basic idea is first to approximate the fluctuating 
velocity correlations with the aid of the (K-0 gradient hypothesis equation, and then to 
correct them using the above second-order formalism. The precise procedure is as follows: 

(i) Compute all the correlations u l u  s with the aid of the (K-0 gradient hypothesis: 

or, / 2 
,,,u,= - 7  ~ + ox,] + -~,,~x, [34] 

which becomes, for axisymmetric flows, 

-'~ 2 Ur OUx 2 
u ~ , = -  - -  + K, [35] 

o ax -3 

u"7 = - 2 ~ r  OU, 2 
,o -g;  + ~ r ,  [361 

;u --~ - 2 ~ r U "  2 
= ~ - -  + K,  

p r 
[37] 

u.,. ,z(ov. I 
[381 

The tangential correlation is rather well predicted even at that stage. But the normal 
correlations depart significantly from experiments, and for a fully developed pipe flow (for 
instance), the tree normal correlations are found to be equal, an unacceptable result. 

(ii) All the above approximate values are introduced in the r.h.s, of the set [20]-[33] to 
produce new values of the components u ju j .  

(iii) It would be possible to repeat the above process, namely by putting the new values in 
the r.h.s, of the equations to produce new estimates, and so on, thus carrying out an iterative 
procedure. Indeed, such a procedure does not converge in the cases we studied but gave birth 
to oscillatory diverging behavior for the tangential correlations. To avoid this problem, the 
iterations are carried out until convergence is obtained for the normal correlations, and after 
that, the tangential correlations are obtained by a single step. Actually, single step of this 
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kind carried out on all the correlations has been found to give quite satisfactory results. Note 
that the above mentioned divergence of the whole iterative procedure is not an alarming 
feature since the results can be anyway obtained by the below discussed MPS having a 
well-defined and firm mathematical basis and leading to quite similar computed values. 

(iv) When computing the tangential correlation, it has been found useful to include the 
hypothesis P = e in the relation [25], leading to 

uxu, = CI¢L 1 - "YI)P,,, - "Y2K('~r x + O x  ] - [39] 

Such an assumption has been suggested by Ljuboja & Rodi (1979) and Hossain (1979). 
It produces an impressive improvement in the predictions, although it is rigorously true only 
in some special cases. In fact, P is rigorously equal to E for a steady, homogeneous flow, where 
all mean quantities except Ui appearing in the transport equation for K do not depend on 
space, and where the mean strain rate tensor is constant (Tennekes & Lumley 1972). 

The second way of solving the set is to recognize that it is actually a linear set of four 
equations with four unknowns (u~, u, 2, u 2, u-'~,) and then to use standard procedures, such as 
a maximum pivot strategy (Carnahan et al. 1969). Results from the PCM have been found 
to be slightly better than from the MPS, with more simplicity in the program structure. Thus 
we finally decided to use only the PCM (although the MPS has a much better mathematical 
basis). 

4. THE PARTICULATES TRANSPORT EQUATION 

Turbulent quantities being predicted as described in sections 2 and 3, we have now to 
predict the behavior of discrete particles transported by the flow. Let H(x~,t) be the number 
density of the (spherical and monosized) particles, the transport equation is written as 

0F 0F 0 0F 

o-7 + u ,  - ax-  aT' [40] 

where we assume that the particles are convected with the fluid velocity Ui and where ~p~j is 
the turbulent dispersion tensor, the Brownian dispersion being neglected here. For steady 
and axisymmetric dispersion, that relation becomes in cylindrical coordinates 

1 0 1 0 1 0 OF 1 0 OH 
Ox rUxH + - rU,  H - - ~ + r r O r  r ~ x r e p ~ X o x  r o r r ~ p ' O r  

1 0 0H 1 0 0H + -  - - + -  
r ~x  r ~p.X, Or r o r  r epcx -O-XX • 

[41] 

The dispersion tensor is predicted in the framework of the Tchen theory (1947) as 
explained later. Corrections can be introduced for special effects such as crossing- 
trajectories. A more general transport equation than [40] can be designed for the case where 
the particles are convected with Up~ #: Ui but is not presented here. 

5. PREDICTION OF THE TCHEN DISPERSION TENSOR 

Only the necessary results will be recalled here as demonstration have been given 
elsewhere (Gouesbet & Berlemont 1979 a, b; Berlemont & Gouesbet 1982; Berlemont et al. 

1983; Gouesbet et al. 1984). The dispersion tensor ~p.o reads 

ePa/ffi - o  f ®  EPL(I/)(w) sinwwt dw, [42] 



244 A. PICART eta/. 

where EpL(q ) is the symmetric part of the particulate Lagrangian spectral tensor Ep~#, ~ the 
angular frequency corresponding to the frequency of a temporal harmonic oscillation into 
which the motion of a particle can be decomposed, and t the time of dispersion measured 
from the beginning of the dispersion process. Ept, oj) can be computed from the symmetric 
part E/LaU) of the fluid Lagrangian spectral tensor E~o through the simple relation 

2 E EpL..j) = TI /LXO~, [43] 

where n is the Tchen amplitude ratio given by 

+ 2 1/2 = [(1 +f,)2 f2]  [44] 

f j  = ~[o~ + c(lro~12)t/2l(b - 1 ) /D ,  [45] 

f2 = w[a + c(Iroal2)'/2]Cb - I ) / D .  [461 

O = [a + c(~r~/2)~/q  ~ + [o~ + c ( r o ~ / 2 ) ' / q  2, [471 

18v 
a (s + 1/2)d 2' [481 

3 
b 2(s + 1 /2) '  [491 

9(v/a-) '/2 
c (s + 1 /2)a '  [501 

where s = Op/p is the ratio of particle and fluid densities and v the kinetic viscosity of the 
fluid. 

The method of evaluating E/L,(o) (or rather relevant components) will be explained later. 
We intend first to discuss the fact that ep.ij is generally a dispersion tensor involving 
nondiagonal components. Let us assume that we are able to compute the diagonal 
components of this tensor (we are in fact able to do this, a statement which will be examined 
later). Then, the process for computing the nondiagonal components is as follows. First note 
that %~j,EpL.(o,EfLxo) are symmetric tensors which can be made simultaneously diagonal by 
transforming the components from one Cartesian coordinate system xk to another x~,. But 
(Gouesbet et al. 1984), 

UfLtUf~ - fo  ® E~Cq)(¢o) do~. [511 

Assuming that U/L.iU:L,j = UfUj (which is rigorously true for homogeneous turbulence), the 
coordinate system x~,, where u~uy is diagonal is the one where EIL.(q) is diagonal. Knowing u~u: 
from the section 3 (second-order closure scheme), x~ can be determined by a known rotation 
with respect to xk. Then, in x~,, the components e~,jj (equal to zero for i # j )  can be computed 
and, going back to Xk by the inverse transformation, the components %o are obtained, 
including the nondiagonal components. Thus, the 3D-problem degenerates into a juxtaposi- 
tion of three 1 D-problems and, without any loss of generality, the formalism can be given in a 
monodimensional scheme. The mathematical expressions corresponding to the above process 
are not presented here since we shall not nc~l them in the present work. 

The transport equation [41] will b¢ used here only for an axisymmetric parabolic flow of 
particles, namely the case of a particle point source in a fully developed turbulent pipe flow, 
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for which the dispersion terms involving the derivatives O/Ox can be neglected, so that [41] 
becomes 

1 0  _ 1 0 0 ~  1 0 rU~-fi + r~p,,, 
r O-'x r -~r rU, n = r O r  ~r"  [52] 

Then we only need to compute the diagonal component %., which can be considered as a 
radial coefficient of dispersion %,. 

Note that nevertheless, predictions have been achieved both using [52] and the whole 
equation [41 ], including the nondiagonal components of the dispersion tensor, and have led 
to the same results, as expected. 

Then, in a 1D-formalism, relations [42], [43] and [51] become 

ep = £ "  EpL(W) sino~ot do~, [53] 

E..(,,,) = ,72Ea(~o), [54] 

UT~RfL(r ) ffi fo  ® EIL(W ) COS o:1" dw, [551 

where the fluid Lagrangian correlation function R/z(T) reads 

u~(O)u/L(~) 
Rf~(~) - [56] 

The problem is now to evaluate E/z(o:). In a previous work which led to the so-called 
DISCO- 1 code (Gouesbet et al. 1982; Berlemont & Gouesbet 1981), E~(o~) was evaluated by 
first building an Eulerian spectrum E~(o~) in the framework of the turbulence section then 
by applying an Euler-Lagrange simple rule of transformation. Although the results were 
found to be satisfactory for engineering purposes, that procedure was suffering from two 
main shortcomings: (i) computations of the dispersion coefficients required quadratures of 
oscillating functions which were costly and time-consuming, (ii) the Euler-Lagrange 
transformation was based on rather intuitive arguments. These shortcomings are avoided in 
the present work. 

Here, we shall start from a fluid Lagrangian correlation function Rfz(r)  with two 
parameters, used by Frenkiel, and having empirical support (Frenkiel 1953; Calabrese & 
Middleman 1979; Snyder & Lumley 1971): 

--r ( m2 7" > 0, R/L(r) - exp (m 2 - - . .  - cos 
+ l )r t ]  + l ) r  

[57] 

where rL is the Lagrangian time macroscale and the whole set of functions is generated when 
the real m increases from zero up. The parameter rn is linked to the occurrence and the 
importance of negative loops in the function. By Fourier transforming, the spectrum E~(~o) 
is found to be 

1 + m 2 + / o 2 f  2 
E ~ )  - _2~. u}tf ( l  - m 2 -4.- 002f2) 2 .-[,- am 2' [58]  

where 

f ~  (m 2 + 1)rL. [59] 
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Thus, the coefficient of dispersion reads 

fo® - -  1 + m 2 oosf 2 

% ( t )  = ))s(°~) u ~ t f  (1 m s o o ' f ' ) '  +- 

2 

7r - + + 4 m '  
sin o0t do~. [60] 

0o 

Generally, it again requires quadratures of oscillating functions. Nevertheless, very 
often, the so-called Basset term can be neglected in the equation of particle motion, leading 
mathematically to c = 0 (relation [50]). A discussion of the situations in which the Basset 
term can be neglected is available from Picart et  al .  (1982). In particular, such is the case in 
the situation we shall study later in this paper. Then, the quadrature in [60] can be 
performed analytically leading to 

c, = u}trL{1 + d/o e -a' + [d/, cos  ( r a t ~ f )  + ¢,, sin ( r a t / f ) ]  e -'/-r }, [61] 

where 

( m '  + 1 ) ( b  s - 1 ) (1  + m '  - -  a2f 2) 
~ o =  ( a 2 f  2 + m s -  1) 2 + 4 m '  ' 

- { a 4 f  4 - a2f2[(1 + b2)(1 + m s) - 4m']  + b'(1 + m2) 2} 

¢~1 = [a2f ' + ra' - 1]' + 4rn' ' 

[62] 

[63] 

a*f '  - 2aSf2(i - m s) + bS(l + m2) 2 
d/2 = rnCq + 2 m  ( a S f  , + m S  _ l)  s + 4ras [64] 

To close the problem, we have to evaluate u~,  m and rL. u}L is approximated by u 2 
deduced from the second-order closure scheme section. The loop parameter m should be 
considered as a "'closure constant" to be determined with the aid of experiments. 

Note that, to avoid negative values for the dispersion coetticients, m must be smaller than 
3.644 (Picart 1983) and a recommanded value is m - 1 (Calabresse & Middleman 1979; 
Gouesbet e t  al .  1984). 

To evaluate rL, we know that ([19]) 

~ r  ~ P u~zr t ,  [65] 

while, from the (K-e) model (relation [12]), 

g 2 

# r -  C~p m ,  [66] 
e 

where C, is about 0.09. This leads to 

K z 1 
r t  ~ C ~ -  = [67] 

E /4 2 ' 

where we have estimated u~z by u 2. 
At this point, there is one alternative. Noting, in isotropic flows, K = 3hu2, we could either 

eliminate K in [67] leading to 

D 

9 ,/2 u 2 

C~ :~ ~ 0.20- T L ~ 4 ~ [681 
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or eliminate u 2 in [67] leading to 

3cK K 
r L ~ ~  ,~~0.135--.~ [691 

To choose between [68] and [69] we must point out that r L in [69] cannot be made 
dependent on the direction, while [68] can be rewritten in the ith direction as 

r .  - 0 .20  [70] 

reintroducing the nonisotropic character of the flow. Note that rL is defined in 1 D-problems 
a s  

rL " .~o ® RfL(r) dr, [71] 

which is a degenerate relation of the 3D-expression 

rL(o) - f o  ® R~u j ) ( r )  dr. [72] 

Thus, rt  owns a second-order tensorial character. But, in the coordinate system where 
R~(,j) is diagonal or when the nondiagonal components are not essential r~(,j) will "'look like" 
a vector r~o justifying the choice of [70]. Finally, the constant 0.20 can be adjusted with the 
aid of experiments. Note, nevertheless, that this value has been previously used in predictions 
of scalar diffusion in a pipe flow (Dupont et al. 1984) and is expected to own some universal 
character. 

6. M O D I F I C A T I O N S  F O R  C R O S S I N G - T R A J E C T O R I E S  E F F E C T S  

As far as particulate dispersion is concerned, the Tchen theory is the only complete 
formal theory available at the present time. Thus, it could play the role of a limiting simple 
case, a reference framework for the discussion of current experiments and from which more 
general situations could be studied by introducing modifications in the basic theory. 

One of the main assumptions in the Tchon theory is that a discrete particle must remain 
in the same fluid particle during its motion. Clearly, this cannot be true when there is a 
particulate drift produced by an external force field such as gravity or when particles are 
injected into the flow with a velocity which is not equal to U~. Then, there is generally a 
significant lack of coincidence between the discrete particle and the fluid particle trajecto- 
ries. 

Yudine (1959) and Csanady (1963, 1973) considered the case of the turbulent diffusion 
of heavy particles in the atmosphere. These particles are supposed to fall quickly through the 
air, providing a sampling cut of the fluid particle velocities, so that Rp (r) could be obtained 
from the fluid Eulerian space-time velocity autocorrelation in a frame of reference moving 
with the fluid mean velocity. Since Yudine the phenomenon of the lack of coincidence 
between particles and fluid particle trajectories is called the crossing-trajectory effect 
(CTE). Analyzing this phenomenon, Csanady derives an expression for the dispersion in the 
vertical direction, parallel to the free fall velocity: 

£2]-1/2 
[731 
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where the coefficients of dispersion apU and cpl are discussed for an infinite time of dispersion 
(asymptotic values), Cpl is the coefficient of dispersion in the Tchen theory parallel to the free 
fall velocity f,/3 is the ratio r L / r e  of Lagrangianand Eulerian time macroscales, respectively, 
having the same order of magnitude as 1, and J the mean square of the fluctuating velocities 
in the direction of the drifting force. 

A similar formula is given for the dispersion in the horizontal direction (perpendicular to 
the free fall velocity). Nevertheless, because of the continuity of the flow, the formula is 
found to be slightly different: 

~]-1/2 
ap±(Oo) ffi %±(00) 1 + 4fl 2 , [74] 

where again only asymptotic values are considered and % is the coefficient of dispersion in 
the Tchen theory in the direction perpendicular to the free fall velocity. But these formulae 
cannot be in general rigorously valid, as, for instance, when the drift is not constant of when 
it is not large enough to provide an Eulerian sampling out as assumed in the analysis. A more 
complicated analysis has been given by Reeks (1977, 1980) but it was found to be too 
complex to be reasonably useful in a modelling for engineers. So, rather than complicate the 
scheme, the idea will be to simplify it and to obtain a semiempirical formula which will be 
then tested against experiments. 

Let us focus our attention on a 1 D-analysis in which the coefficient of dispersion ap (a 
diagonal component of the dispersion tensor %.~j involved in the transport equation [47], 
including the effects due to Uoa ~ Ut), writes 

ap = f(¢p, other variables). [75] 

The other variables are expected to be the turbulence energy K and the square of the 
mean velocity difference (Upa - Ui) 2. A dimensional analysis then leads to the nondimen- 
sional expression 

at, = f[ (Up, ,  - U~) 2] 
% K " 

[76] 

To guess the form of the function f, we come back to Csanady's analysis and simply 
suggest 

a ,  = % 1 + C a 2 K / 3  ] ' [77] 

where C a is expected to have the same order of magnitude as 1. For particles falling freely 
and if the gravity is the only cause of Upa ~ Ut, [77] becomes (for asymptotic values) 

% = ep 1 + C a 2 K / 3 J  ' [781 

which is to be compared with [73] and [74]. The simplification is mainly due to the fact that 
we no longer distinguish between %N and ap± and that C a is an adjustable parameter 
(certainly nearly equal to 1) whose value will be deduced from experiments. Relation [77] 
will be found to be quite successful. 

7. COMPARISONS BETWEEN THE CODES vtsco-I AND DISCO-2 

The turbulent field is the one reported by Laufer in 1954, namely a turbulent flow of air 
in a pipe with a diameter D equal to 0.25 m. The mean velocity on the axis is UM = 36 m/s. 
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The Reynolds number is around 500,000, high enough to expect a good behavior of the (K-c) 
model (which is better when the Reynolds number increases). The turbulent quantities, 
including the Reynolds tensor components, have been predicted using the model described in 
sections 2 and 3. Results, given elsewhere (Berlemont & Gouesbet 1981; Gouesbet & 
Berlemont 1981), are not repeated here. Comparisons between the predictions and the 
experiments have been found to be very satisfactory. 

As far as coefficients of dispersion are concerned, the comparisons between the two codes 
are now given for particles transported in the above predicted turbulent field. Figure 2 shows 
the asymptotic longitudinal coefficients of dispersion ~p~(Oo) vs r / R ,  where r is the distance 
from the axis and R the radius of the pipe. Similarly, the asymptotic radial coefficients of 
dispersion ~p~,(oo) are given in figure 3. The diameter and the nature of the particles do not 
matter for asymptotic values. Comparisons involve DISCO-1 results (previously published), 
then DISCO-2 results using either relation [69] or [70]. The agreement between DISCO-1 and 
DISCO-2 using relation [70] is very satisfactory. Relation [69] leads to less satisfactory 
results as expected from our discussion at the end of section 4 and will be from now on 
definitely abandoned. 

Figures 4 and 5 show the ratios ¢pj(t)/~pj(Oo) (i ~ x or r) versus the time of dispersion at a 
distance r = D~ 100 = 0.25 cm from the axis. So near to the axis, the flow is locally isotropic 
and no difference is detected between the longitudinal and radial dispersion coefficients. The 
particles are water droplets having a diameter equal to 1 ~tm (figure 4) or 100 #m (figure 5). 
DlSCO-I is compared with DISCO-2. The agreement is fairly satisfactory (figure 4) or 
satisfactory (figure 5). Figures 6 to 9 show the ratios ¢p.~(t)/,p~,(oo) and Ep.(t)/~p~,(oo) for r = 
3.77 cm. The nonisotropic character of the flow leads now to different values for the 
longitudinal and the radial coefficients. Again the comparisons are fairly satisfactory (d - 1 
urn) or satisfactory (d = 100 #m). In all the cases, the recommanded value m = 1 has been 
used. Agreement is better when m decreases below 1 and worse when m increases. 

The conclusion is that both codes DISCO- 1 and DISCO-2 provide quite similar results. This 
is a first validation of these computer programs derived from our approach. In particular, it 
shows that the Euler-Lagrange rule of transformation used in DISCO- 1 was useful at least for 
engineering purposes, as were our methods of predicting approximate Eulerian and 
Lagrangian spectra. Nevertheless, we prefer the code DISCO-2 which avoids the previously 
mentioned shortcomings of DISCO- 1. 

20 

10 

~p ,x (cm2 s'l) 
DISCO -1 

. . . .  DISCO-2 
(T . , ,  0.135 K/~ ) 
~ L  

° i  i. r lR  

Figure 2. Radial dispersion coefficient: comparison between DISCO-I and DISCO-2. 



250 A. PICART et al. 

& ( p , r  (cm 2 s I ) 
/ 

1 5 0 ~ ,  - -  DISCO -1 
I ~" ~ . . . .  DISCO-2 

I \ , .  . DISCO-2 
I ~ "", ( 'L ' (~2 "u2 ` ' )  
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Figure 3. Longitudinal dispersion coefficient: comparison between DISCO-1 and DISCO-2. 

8. COMPARISONS WITH SNYDER AND LUMLEY'S EXPERIMENTS 

Snyder & Lumley (1971) studied the dispersion of various particles (hollow glass, solid 
glass, corn and copper) in a well-known turbulence, namely a stationary grid flow, nearly 
isotropic. The main direction of the air flow was vertical to avoid gravitational vertical drift 
of the particles with respect to the mean horizontal streamlines which would be encountered 
for a horizontal windtunnel. The section of the flow is a square of 40 × 40 cm: and the length 
of the test section is 5 m. In this situation, the particles remain reasonably far away from the 
walls whose influences can be neglected. The mean flow velocity is U = 6.5 m/s and the 

1 

0.5 

Ep,i(t) 
e f , i  (¢0) 

d ,-  1/~m 1",= 1 2  1 0  . 3  s 

r ,,, 0 . 2 5 c m  

• K- .K- 

"X- m 

/ .m. ,1  DISCO-2 
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10"3 10"2 10"1 

Figure 4. Dispersion coefficients in a pipe flow versus the time (d - 1 ~m). 
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Figure 5. Dispersion coefficients in a pipe flow versus the time (d - I00 urn). 

Reynolds number based on the mesh dimension of the grid (M - 2.54 cm) is I0,000. 
Turbulence measurements were made and energy decay laws on the eenterline of the test 

2 and u~ (equal to u 2) section established. The longitudinal and transversal variances ux 
respectively are given by 

- ~  = 42.4 - 16 
u= \M ' 

U2 39.4( x 12) 
2 u~ \M 

[79] 
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Figur¢ 7. Dispersion co¢fllcicnt in a pipe flow versus the time (d - 100 ~m). 

where x is the distance from the grid. The  turbulence energy K is obtained from [79] and 

[80]. Then the rate of  dissipation ~ is given by 

dK 
~ - U - - .  [81]  

dx 

has also been determined from the relation 

- 15v ~o ® k2Fl (k )  dk ,  [821 

~p,r(t) 
~p,r (¢o) 

d .,1pro TL,, 3.7 10"3S 
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t(-  
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0.5 
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Figure 8. Dispersion coeflici©nt in a pipe flow versus the time (d - I .m). 
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Figure 9. Dispersion coefficient in a pipe flow versus the time (d - 100 #m). 

where F~ (k) is the spectral density of energy of the longitudinal component of the fluctuating 
velocity. A good agreement between results obtained from either [81] or [82] has been 
found. All the above results are sufficient for computing the transversal coefficient of 
dispersion %, in our approach or ap.v when the corrections due to the crossing-trajectory 
effects are included. They will indeed be used for that purpose, the turbulence parts of 
DISCO-2 are not used in the present section. 

The particle characteristics are given in table 1, where d and pp have already been 
defined and where f is the terminal velocity, i.e. the Stokes velocity corrected by a method 
recommended by Fuchs (1964). 

The particles are injected on the centerline of the flow, 51 cm after the grid with a mean 
velocity equal t__o the mean velocity of the flow. Measurements of the mean square 
displacements y2 were made at different locations, from 173 cm up to 427 cm from the grid. 
These experimental results can be compared with theoretical results, either y~ - 2 fot cp.v dt 

or Y~cTe - 2 fot oep,v dr, depending on whether the crossing trajectory effects (CTE) are taken 
into account or not. 

In figure 10, we compare y2 measured by Snyder & Lumley (points, s ta rs . . . )  and y2 
computed from D~SCO-2. Note that the results for solid glass and copper are the same (which 
is merely a coincidence). A very good agreement is obtained for the hollow glass particles 
which follow the fluid fairly well (~'p/~'L --- 0.1, where ~-p - 1/a) and are not affected by the 
CTE, since their terminal velocity is small compared to the turbulence energy [ f -  1.67, 
2K/3- 200, so that f2(2K/3)-~-0.01]. On the other hand, a large difference can be 
observed for the other particles which are strongly influenced by the CTE. 

In figure 11 we compare y2 and y2CT E including the CTE-corrections. The agreement is 
very satisfactory. Note that C# was taken equal to 0.85 (~ 1 as expected). 

Table I. Particle properties in Snyder & Lumley's experiments 

Hollow Solid 
glass glass Corn Copper 

d (#m) 46.5 87.0 87.0 46.5 
pp (g/cm 3) 0.26 2.5 1.0 8.9 
f (cm/s) 1.67 44.2 19.8 48.3 
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Figure 10. Comparison between DISCO-2 and Snyder & Lumley's experiment without the crossing- 
trajectories effects. 

9. COMPARISONS WITH WELLS' EXPERIMENTS 

The situation recently examined by Wells (1982) is essentially the same as the one 
examined by Snyder & Lumley, but the main direction of the flow is horizontal. Turbulence 
measurements were made and energy decay laws characterizing the grid flow are given, they 
are quite similar to Snyder & Lumley's results. The particles are glass spheres, with a 
diameter of 5 or 57 ~tm and a density equal to 2.45 g/cm 3. They are injected on the centerline 
of the flow and submitted to an electric field which allows the control of the crossing 
trajectory effects by adjusting the terminal velocity. Measurements of the mean square 
displacement y2 are made at different locations, from 50 cm up to 178 cm. 

We introduced the decay laws for the turbulence given by Wells into the program, as we 
had previously done for Snyder & Lumley's results, and two cases are considered, depending 
on whether the correctingterm for the CTE is used or not. 

Figure 12 compares yz vs x / M  (M = 2.54 cm) measured by Wells (for d = 5 . m  and a 
terminal velocity equal to 0) and y2 = y2tcrE obtained from DIsco-2. There is no influence of 
the CTE effects (either in experiments or theory) and the agreement between experiments 
and predictions is very satisfactory. 

5. ~'~ (cm2) 
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4"~ .,_ com 

| - _  sol  g,.ss.co..or 
31- Pol~s : SNYOER AND LUf4LEY 

J LINES : DISCO-2 / _.. . . ' ""  " 
o O ' p ° ° ° ~  ~ .  ~ Imp- . 

| - 

/ "'"e, , . t(ms} 
0. 100 200 3()0 4 0 0  

Figure 11. Comparison between DISCO-2 and Snyder & Lumley's experiment with the crop.sing- 
trajectories effects. 
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Figure 13 compares the results for particles having a diameter equal to 57 pm and for 
four different terminal velocities, namely 0, 25.8, 39.7 and 54.4 cm/s. The CTE-corrections 
are included in the predictions (although they are not useful for f -  0). Again, the agreement 
is remarkable. Furthermore, note that C a was taken to be equal to 0.85 as in the case of 
Snydcr & Lumley's experiments. In particular, this shows that the relation [78] must be 
preferred (as stated) when compared with Csanady's relation [73] and [74], sinc~ the main 
flow was horizontal (perpendicular to the terminal velocity), while it was vertical (parallel to 
the terminal velocity) in Snyder & Lumley's situation. 

10. COMPARISONS WITH ARNASON'S EXPERIMENTS 

Arnason's experiments (1982) consist of an air flow in a pipe, aligned vertically to 
prevent gravity from changing the axial symmetry of the whole situation. The diameter of 
the pipe is 9 cm and the Reynolds number 50,000. 

POINTS : WELLS 
LINES : DISCO-2 

4.t~(cm2) 

• f.o. ,._ f=39.7 
/ • f.25.8 J ...~.. f=54.5 

l • ./..-"" / .,S" 7... 
. , , , x / .  

O. 40 80 4O 80 
Figure 13. Comparison l~twecn DISCO-2 and Well's experiment. 



256 A. PICART et  al. 

The particles are the same as those used by Wells (1982) and are continuously and 
isokinetically injected on the centerline of the flow, 50 diameters after the beginning of the 
pipe in order to work in the fully developed part of the flow. 

The whole code DISCO-2 has been used to predict the experimental situation, both for 
turbulence field and particle dispersion predictions, including the resolution of the transport 
equation [52]. The constants which have been used are 

C, = 0.09, Ct = 1.56, C 2 = 1.92, Co = 1.0, a, = 1.3, ax = 1, C't = 1.80, 3"1 = 0.76, 

3'2 = 0.18, 3"3 = 0.20. 

The reader can observe that we used 3'3 = 0.20 instead of 3"3 = 0.11. This means that this 
constant has been adjusted separately. From a strict mathematical point of view, it is not a 
correct procedure because 3,], 3"2, 3"3 must be linked together due to tensorial symmetry 
conditions. Nevertheless, from a practical point of view, this difference in 3"3 mainly affects 
the tangential correlation Uxu, within only 15%. The idea in artificially improving the fitting 
between experiments and theory is to avoid the repercussion of turbulence prediction errors 
on the particle dispersion predictions. Nevertheless, even with 3"3 = 0.11, agreement remains 
satisfactory. Furthermore, the presented results concern only the normal correlations which 
are not affected by the modification of 3"3 from 0.11 to 0.20. 

Figure 14 shows the mean velocity reduced profile U/Uu, where UM is the centerline 
velocity versus (1 - r/R). Predictions are compared with Arnason's and Laufer's results 
and the agreement is satisfactory. 

2 and : respectively versus (1 r/R), Figures 15 and 16 show the fluid variances ux u, 
compared with Arnason's and Laufer's measurements. Again, agreement is satisfactory. 

Figures 17, 18 and 19 show the mean concentration reduced profiles C/CM, where Cu is 
the concentration of particles on the axis, versus r/R for three different locations from the 
seeding point, namely 0.318, 0.502 and 0.679 m. The diameter of the particles is equal to 5 
~m. The agreement is again very satisfactory, the slight discrepancies which appear on the 
edges of the profiles, being probably mainly due to the proximity of the walls. 

11. G E N E R A L  D I S C U S S I O N  

Before going to the conclusion, it is thought useful to present a general discussion 
concerning the universal character of the proposed model and to state that the involved 
constants and functional forms have not been simply choosen for data fitting. 

The turbulence model (K-¢ plus algebraic relations) has been previously used with 
success by us for situations different from Arnason's one, namely for the development of the 
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Figure 14. Mean velocity profiles in a turbulent pipe flow. 
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pipe flow, the round free jet, (Berlemont & Gouesbet 1981), the channel flow and the 
confined mixing layer (unpublished). This model consequently owns some kind of universal 
character. Nevertheless, it is clear that we do not reach a full universality. People are trying 
to develop more sophisticated models and improvements of such models would result in 
improvements of our approach and extension of its range of applications. 

Concerning the dispersion model, we have to discuss the Frenkiel form, the estimate of 
the macroscale rL and the correction for the CTE. The choosen Frenkiel form is not 
arbitrary. It is consistant with some experiments (Calabrese & Middleman 1979) and is a 
simple extension of the exp(-  t /rL)  form, which is the only one discussed by Hinze (1959) in 
its celebrated book on turbulence. Furthermore, the approach in DISCO-I was different to 
built the fluid Lagrangian correlation function R/L(r). The comparison between DISCO-1 and 
DISCO-2 results show that there is a fair insensitivity to the approach chosen to model R~b'). 
The estimate for rL including the constant 0.2 has been used in previous works, specially for 
scalar diffusion (Dupont et ai. 1984), before we heard of Arnason's results. The correction 
for the CTE relies on a previous analysis by Csanady (1963), Yudine (1959), and on a 
dimensional approach. The constant C~ was taken equal to 0.85 for data fitting but the 
guessed value C~ ~ 1 would have lead to similar results. Note that the value 0.85 is correct 
for both Snyder & Lumley (1971), and also Wells (1982) experiments. More generally, the 
fact that a good agreement between theory and experiments is obtained with the same 
approach for three different cases shows that our particle model also owns some kind of 
universal character. Again, as for the turbulence model, full universality is neither expected 
nor claimed. Any theoretical progress in predicting the function RIL(r), estimating ~'L or the 
correction for the CTE would lead to improvements. Furthermore, some assumptions are 
explicitly stated and relaxing these assumptions would also lead to improvements and 
extension of the range of applications. One example is that we do not know what is to be done 
when the diameter of the particles becomes larger than the Kolmogoroff scale. This is a 
challenging question for future work. We must also state that the experiments we have 
chosen have not been simply retained because they would be the only ones to compare 
favourably with our model. Actually, other experiments are discussed in the literature. 
Unfortunately, they generally cannot be used because our assumptions are not met (too big 
particles, larger than the Kolmogoroff scale, or volume fraction too important, for instance), 
or people do not measure all we need and the operating conditions are not well enough 
precised, or also, very often, the turbulence field is not properly enough designed and 
characterized. We are indeed faced to a very difficult problem for which experiments are too 
scarce. Future experiments are planned to increase the number of available data and to 
permit an interplay between theory and material reality. Waiting for these experiments, the 
present state of the art is certainly a good compromise between physical requirements and 
numerical simplicity. 

12. CONCLUSION 

Prediction of particle dispersion in turbulent flows has been presented. Turbulence fields 
are predicted with the aid of a (K-~) model supplemented with algebraic relations deduced 
from a second-order closure scheme for the Reynolds tensor. The modelling of the discrete 
particle behavior is based on the nondiscrete dispersive approach leading to a transport 
equation for the mean number of particles per unit of volume which involves a dispersion 
tensor. A two-parameter family of Lagrangian correlation functions has been assumed to 
evaluate the dispersion tensor and the crossing trajectory effects are introduced into the 
code. Predictions have been compared with experimental results and the agreement is 
satisfactory. It must finally be stressed that, the agreement being satisfactory for three 
different experiments, the possible involved constants are expected to own some kind of 
universal character. 
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