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ABSTRACT

Horizoe, H., Tanimoto, T., Yamamoto, I. and Kano, Y., 1993. Phase equilibrium study for
the separation of ethanol-water solution using subcritical and supercritical hydrocarbon
solvent extraction. Fluid Phase Equilibria, 84: 297-320.

In order to dehydrate fermented or synthetic crude ethanol, phase equilibria for subcritical
and supercritical solvents (CO,, C,H,, C;H¢, C3Hg, n-C,H;, and CO, + C;Hg) and ethanol
aqueous solution (ethanol concentrations of 2—99 wt.%) were measured. For these solvents
the selectivity and solubility of ethanol under different conditions were investigated. We
confirmed experimentally that ethanol-water solution can be separated completely by
supercritical and subcritical propane or proylene solvent extraction, as has been predicted
previously using the group contribution equation of state model proposed by Brignole et al.
(Brignole, E.A., Skjold-Jorgensen, S. and Fredenslund, A., 1984. Ber. Bunsenges. Phys.
Chem., 88: 801. Brignole, E.A., Anderson, P.M. and Fredenstund, A., 1987. Ind. Eng. Chem.
Res. 26: 254-261.)

INTRODUCTION

Dehydration of fermented or synthetic crude ethanol (ethanol concentra-
tions of 5—40 wt.%) requires a large amount of energy. In the last 10 years
many studies have been made on near-supercritical or supercritical fluid
extraction processes that offer the possibility of energy savings.

The CO, solvent has been intensively investigated. Nagahama et al.
(1988), Furuta et al. (1989) and Brignole et al. (1984, 1987) reported that
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the azeotropic concentration could be broken using CO, solvent at 313 K
and 3.9-5.8 MPa, 333 K and 10 MPa, and liquid CO, (293 K) respectively.

Meanwhile, Inomata et al. (1990) and Abboud et al. (1984) reported that
the azeotropic concentration could be broken by addition as entrainers of
glycol and 2-ethylhexanol, respectively, into the CO, solvent.

As mentioned above, the CO, solvent extraction method can be improved
for ethanol selectivity by choosing the optimum temperature, pressure and
entrainer. However, the ethanol solubility does not increase significantly. In
addition, previous studies have not shown any clear advantage in terms of
energy saving in comparison with ordinary distillation.

The solubility of ethanol may be increased by using a hydrocarbon
solvent having a high affinity for ethanol, but only a few studies of the
extraction using hydrocarbon solvents have been reported. Coenen (1987)
extracted fermented alcohol and reported that CO, was a better solvent
than C,H, and C,H,. McHugh et al. (1983) measured phase equilibria for
the C,Hq—C,H;OH-H,O system and estimated its behaviour using the
Peng—-Robinson equation of state (EOS). (Peng and Robinson, 1976).
Although we found no paper describing experiments of ethanol extraction
using C;Hg as solvent, Brignole et al. (1984, 1987) developed an EOS using
the group contribution method applicable to high pressures, determined
group parameters, and simulated the ethanol extraction process using C;Hg
as solvent. They concluded that C;H; is a promising solvent which can save
energy and concentrate ethanol up to absolute ethanol, but no one has
yet demonstrated this experimentally. Nakayama et al. (1988) used 1,1-
difluoroethane (DFE) as solvent, and concluded that this had a higher
solubility than CO,.

On the basis of the above facts, we carried out an experimental investiga-
tion of promising solvents by measuring the phase equilibria systematically
for aqueous ethanol solution with CO,, hydrocarbon solvents (C,H,, C;Hg,
C;Hg and #-C,H,;) and a mixed solvent (CO, + C;Hg).

EXPERIMENTAL APPARATUS AND PROCEDURE

The phase equilibrium apparatus (Fig. 1) incorporated the advantages of
the static method described by Takishima et al. (1986) and the flow method
described by Inomata et al. (1990). The mixture was held in a cell (1.0 1),
agitated, and mixed at a specified temperature and pressure. Mixing was then
stopped and the gas and liquid phases were slowly circulated using a magnetic
pump. The gaseous and liquid phases were withdrawn continuously through
a metering valve from the circulation line, at a minimum flow rate, so as not
to disturb the phase equilibrium in the cell. The samples were heated to about
150°C and fully gasified at atmospheric pressure. By keeping constant the
adsorption equilibria of ethanol and water within the sampling tube, errors
due to adsorption of ethanol and water were eliminated. The samples were
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Fig. 1. Schematic flow diagram of the apparatus used to measure the high pressure phase
equilibria.

analysed using a process gas chromatograph with a Porapak QS 80/100 mesh
(4.2m) and a preset cycle time. The purity of the samples used in these
experiments were as follows: CO,, 99.99 vol.%; C,H,, 99.5 vol.%; C;Hg,
99.8 vol. %; C;iHg, 98.9 vol.%; n-Cs;H,e, 98.5 vol.%; ethanol, more than
99.5 vol.%; water, distilled.

RESULTS FOR EXTRACTION OF ETHANOL
CO,~H,0 system

Figure 2 shows the phase equilibria for the CO,—~H,O system at 304 K
and 3-15 MPa. Both the gas and the liquid phase compositions agree well
with the results of Wiebe and Gaddy (1940, 1941) and Takishima et al.
(1986).

COZ d C2H5OH—H20 system

Figures 3 and 4 show the ethanol-water selectivity curves and the
solubility of ethanol in the CO, phase for the CO,-C,H;OH-H,O system
at 293, 313 and 383 K at 9.905 MPa pressure. The measured data are given
in Table 1.

As shown in Fig. 3, the maximum extracted ethanol concentrations (free
of CO,) are 90-92 wt. % at 293 and 313 K, i.e. near the critical temperature
of CO,.
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Fig. 3. Ethanol-water selectivity in the CO,-C,H;OH~-H,O system at 9.905 MPa.
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Fig. 4. Solubility of ethanol in the CO,-C,H;OH-H,O system at 9.905 MPa.
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TABLE 1
Phase equilibria for the CO,-C,H;OH-H,O system at 9.905 MPa

Temperature Weight fraction®

(X)
Heavy phase Light phase
CO, C,H;0OH H,0 Co, C,H;OH H,0
293 NA 0.3300 0.6700 0.9743 0.0235 0.0022
NA 0.3750 0.6250 0.9684 0.0279 0.0038
NA 0.4190 0.5810 0.9659 0.0349 0.0028
313 NA 0.1000 0.9000 0.9930 0.0057 0.0013
NA 0.3500 0.6500 0.9662 0.0312 0.0026
NA 0.6000 0.4000 0.9443 0.0504 0.0053
NA 0.6900 0.3100 0.9363 0.0586 0.0051
NA 0.4000 0.6000 0.9590 0.0378 0.0032
NA 0.4000 0.6000 0.9595 0.0369 0.0037
NA 0.4000 0.6000 0.9634 0.0332 0.0034
0.1161 0.4082 0.4755 0.9527 0.0437 0.0035
0.1100 0.4113 0.4786 0.9546 0.0420 0.0033
383 0.0337 0.0731 0.8933 0.9744 0.0152 0.0103
0.0797 0.3711 0.5492 0.9511 0.0383 0.0106
0.1057 0.4585 0.4358 0.9460 0.0434 0.0106
0.2146 0.6330 0.1524 0.9286 0.0633 0.0082
0.2466 0.6670 0.0864 0.9207 0.0733 0.0060
0.2773 0.6901 0.0326 0.9096 0.0818 0.0033
0.2847 0.6964 0.0188 0.9069 0.0913 0.0018
0.2908 0.7031 0.0061 0.9036 0.0958 0.0006

2 NA, not analysed.

C_;H,g —C2H50H'-H20 System

Figures 5 and 6 show the ethanol-water selectivity, and the solubility of
ethanol in the C;Hg phase at three temperatures (313, 384 and 403 K) and
one pressure (9.905 MPa) for the C;Hg—C,Hs-OH-H,O system. The
measured data are given in Table 2.

As shown in Fig. 5, the concentration of extracted ethanol (free of C;Hg)
is higher at lower temperatures, satisfying the specifications of regular
ethanol (93.1 wt.% or 95vol.% of ethanol). However, owing to the high
affinity between ethanol and C;Hg, the mixture became homogeneous when
the ethanol concentration (free of C;Hg) in the liquid phase was increased
to about 80-90 wt.%.
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Fig. 6. Solubility of ethanol in the C;Hg—C,H;OH-H,O system.

As shown in Fig. 6, the solubility of ethanol in the C;H; phase increased
remarkably with the ethanol concentration in the liquid phase and with
temperature.

C:Hz—~C,H;OH—-H,O system

Figures 7 and 8 show the ethanol-water selectivity, and the solubility of
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TABLE 2
Phase equilibria for the C;Hy;—C,H;OH-H,O system at 9.905 MPa

Temperature Weight fraction®

(X)
Heavy phase Light phase
C,H, C,H;:OH H,0 C,H, C,H,OH H,O
313 NA 0.1032 0.8968 0.9953 0.0043 0.0003
NA 0.1798 0.8202 0.9882 0.01090 0.0005
NA 0.4000 0.6000 0.9706 0.0281 0.0013
NA 0.4000 0.6000 0.9718 0.0271 0.0011
NA 0.5816 0.4181 0.9384 0.0583 0.0028
NA 0.8029 0.1971 0.8373 0.1509 0.0117
NA 0.9000 0.1000 0.8342 0.1523 0.0135
NA 0.9000 0.1000 0.8340 0.1529 0.0131
0.00083  0.04435 0.95482  0.99846  0.00131 0.00023
0.00089  0.07881 092030  0.99656  0.00309 0.00034
0.00102 0.14067 0.85831 0.99374 0.00594 0.00032
0.00108 0.18455 0.81437 0.99049 0.00912 0.00039
0.02621  0.52072 0.45307 094613  0.05141 0.00245
0.12870 0.66760 0.20380 0.87910 0.11460 0.00630
0.20295 0.64101 0.15604 0.83292 0.15398 0.00130
384 NA 0.103 0.897 0.9673 0.0267 0.0060
NA 0.3467 0.6533 0.8856 0.1021 0.0123
NA 0.4430 0.5570 0.8528 0.1304 0.0168
403 0.0009 0.0271 0.9720 0.9781 0.0118 0.0101
0.0013 0.0569 0.9418 0.9651 0.0242 0.0107
0.0023 0.0985 0.8995 0.9518 0.0374 0.0108
0.0121 0.3295 0.6585 0.8652 0.1164 0.0184
0.1046 0.5641 0.3313 0.7357 0.2273 0.0370
0.2579 0.5551 0.1870 0.5449 0.3573 0.0678

2 NA, not analysed.

ethanol in the C;Hg phase at two temperatures (313 and 403 K) and one
pressure (9.905 MPa) for the C;H;—C,H;OH-H,O system. The measured
data are given in Table 3.

Figure 7 shows that at lower temperatures the extracted ethanol concen-
tration is higher, as observed for the C;Hj solvent. The maximum ethanol
concentration is about 95 wt.% at 313 K, which satisfies the specification of
regular alcohol (95 vol.% or 93.1 wt.%).

As shown in Fig. 8, the concentration of ethanol in the C;Hg¢ phase
increases with the ethanol concentration in the liquid phase and with
temperature. These tendencies are similar to those observed for C;Hg.
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Fig. 8. Solubility of ethanol in the C;Hy-C,H;OH-H,O system at 9.905 MPa.

n-C,H,,—C,HsOH~H,0 system

Figure 9 shows the ethanol-water selectivity and the solubility of ethanol
in n-C,H,, solvent at a weight fraction of ethanol in the liquid phase (as a
solvent-free basis) X¥ of 0.4, a pressure of 9.905 MPa, and in the tempera-
ture range 313-433 K. The measured data are given in Table 4.



H. Horizoe et al. | Fluid Phase Equilibria 84 (1993) 297-320

TABLE 3
Phase equilibria for the C;H,~C,H;OH-H,O system at 9.905 MPa

305

Temperature Weight fraction
(K)
Heavy phase Light phase
C;H, C,H;OH H,O C,H¢ C,H;OH H,O
313 0.0026 0.1164 0.8810 0.9865 0.0122 0.0013
0.0115 0.3726 0.6159 0.9148 0.0805 0.0047
0.0921 0.5974 0.3105 0.7959 0.1877 0.0163
403 0.0054 0.1008 0.8937 0.9307 0.0533 0.0160
0.0355 0.3815 0.5850 0.7804 0.1897 0.0299
0.1216 0.5269 0.3515 0.6434 0.3024 0.0542

As shown in Fig. 9, the concentration of ethanol in the »-C,H,, solvent
increases with temperature and is a little lower than that in the case of C;Hs.

C,H,-C,H;OH-H,O0 system

Figure 10 shows the solubility of ethanol in the C,H, phase at 313 K and
9.905 MPa for the C,H,—~C,H;OH-H,O system. The measured data are
given in Table 5.

The solubility of ethanol in the C,H, phase increases with the ethanol
concentration in the liquid phase, but is lower than that in the CO,, C;Hq,
C;Hg and n-C,H,, systems.
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TABLE 4
Phase equilibria for the n-C,H,,—C,H;OH-H,O system at 9.905 MPa

Temperature Weight fraction

(K)

Heavy phase Light phase

n-C4H,, C,H;OH H,O n-C,H,, C,H,OH H,0
313 0.0035 0.3851 0.6114 0.9762 0.0228 0.0010
353 0.0065 0.3680 0.6256 0.9434 0.0526 0.0040
373 0.0119 0.3816 0.6065 0.8914 0.0975 0.0111
413 0.0189 0.3847 0.5964 0.8217 0.1522 0.0261
433 0.0247 0.3847 0.5926 0.7767 0.1826 0.0407

C02 — C3H8 - C2H50H—H20 System

Figures 1114 show the extracted ethanol concentration for two different
ethanol concentrations in the liquid phase (X§ =0.1 and 0.4, the weight
fraction on a solvent-free basis) as a function of the C;H; concentration in
the mixed solvent (CO, + C;H;). The measured data are given in Tables 6
and 7.

These results show that the single solvent (C;Hjg) is better than the mixed
solvent (CO, + C;Hjy).
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TABLE 5
Phase equilibria for the C,H,~C,H;OH-H,O system at 313K and 9.905 MPa

Weight fraction

Heavy phase Light phase

C,H, C,H;OH H,O0 C,H, C,H;OH H,O
NA 0.7018 0.2982 0.9429 0.0235 0.0017
NA 0.7018 0.2982 0.9754 0.0230 0.0017
NA 0.7018 0.2982 0.9744 0.0239 0.0017
NA 0.8891 0.1109 0.9520 0.0428 0.0053
NA 0.8891 0.1109 .9361 0.0548 0.0094
NA 0.8891 0.1109 9322 0.0598 0.0080
NA 0.8891 0.1109 0.9455 0.0448 0.0097
NA 0.9565 0.0435 0.8711 0.1247 0.0042
NA 0.9565 0.0435 0.8767 0.1191 0.0042
NA 0.9565 0.0435 0.8762 0.1208 0.0030
NA 0.9565 0.0435 0.8738 0.1230 0.0032
NA 0.9613 0.0387 0.8655 0.1281 0.0064
NA 0.9613 0.0387 0.8654 0.1288 0.0058
NA 0.9613 0.0387 0.8685 0.1279 0.0036
NA 0.9613 0.0387 0.8737 0.1210 0.0053
NA 0.9651 0.0349 0.8607 0.1325 0.0068
NA 0.9651 0.0349 0.8665 0.1293 0.0042
NA 0.9651 0.0349 0.8625 0.1317 0.0058
NA 0.9651 0.0349 0.8694 0.1269 0.0037

2 NA, not analysed.

RESULTS FOR THE SEPARATION OF ETHANOL

The experimental results for the extraction of ethanol indicated that
C;Hg, C;Hg and #-C,H,, were promising solvents. The usual method of
recovery of ethanol from the solvent phase is to lower the pressure (pressure
swing). Thus the vapour-liquid equilibria for the separation of ethanol
from these solvents were measured and studied.

C;Hy;-C,H;OH-H,0 system

Figure 15 shows the pressure effect for the phase equilibria of the
C;H;—C,H;OH-H,O ternary system at 313 K with X% =0.41 and 0.78.
Measured data are given in Table 8.
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The weight fraction of ethanol in the gas phase became a minimum at
about 1.37 MPa, which is almost equal to the vapour pressure of pure
C;Hg. When the weight fraction of ethanol in the liquid phase is high, for
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. 13. Ethanol-water selectivity in the CO,—C;Hg~C,H;OH-H,0 system at X% = 0.4,
and P =9.905 MPa.
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example 0.78, the ethanol concentration in the vapour phase is about 0.015,

and this means that much ethanol may be lost in the vapour phase.

According to these results, as the extracted ethanol concentration from
the extractor is about 96 wt.% (solvent free), the loss of ethanol will be even

hig

her.
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TABLE 6
Phase equilibria for the CO,-C;Hg-C,H;OH-H,O system at X% =0.1 and 9.905 MPa

Temperature Weight fraction

(K)
Heavy phase Light phase
Co, C;Hy C,H;OH H,0 CO, CiHy; C,H;OH H,O
383 0.0362 0.0 0.1007 0.8631 0.9722 0.0 0.0171 0.0107
0.0235 0.0008 0.1068 0.8690 0.6474 0.3198 0.0229 0.0098
0.0167 0.0011 0.1068 0.8753 0.4159 0.5479 0.0274 0.0088
0.0090 0.0012 0.1084 0.8814 0.1614 0.7991 0.0322 0.0074
0.0 0.0015 0.1044 0.8941 0.0 0.9662 0.0282 0.0056
363 0.0370 0.0 0.0989 0.8643 0.9831 0.0 0.0110 0.0058

0.0215 0.0007 0.1051 0.8727 0.4775 0.4996 0.0202 0.0048
0.0160 0.0008 0.1009 0.8823 0.3038 0.6705 0.0215 0.0042
0.0104 0.0009 0.0973 0.8914 0.1835 0.7921 0.0201 0.0043
0.0012 0.0007 0.1035 0.8947 0.0044 0.9718 0.0208 0.0030

As mentioned above, the ethanol concentration in the C;Hg solvent phase
from the extractor can be increased up to about 96 wt.% and so, using
ethanol solutions of 95 and 98 wt.%, isothermal vapour-liquid equilibrium
data for the solvent—C,H;OH-H,O system were measured at various
pressures. The measured data are given in Table 9.

015 ——r————

CsHg-C2Hs0H~-H20

L T=313K J

0.10 i~ ———

Weight Fraction of C2HsOH in Gas Phase

0.0 1.0 20
Pressure (MPa )

Fig. 15. Solubility of C,H;OH in the light phase for solvent separation by pressure swing at
313 K.
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TABLE 7
Phase equilibria for the CO,-C;Hz—C,H;OH-H,O system at X% =0.4 and 9.905 MPa

Temperature Weight fraction *

(K)
Heavy phase Light phase
CO, CyHy C,H,OH H,0 CO, C;Hy; C,H,OH H,O0

313 NA NA  0.4000 0.6000 0.9022 0.0523 0.0413 0.0042
NA NA 0.4000 0.6000 0.8975 0.0557 0.0427 0.0041
NA NA 0.3800 0.6200 0.8560 0.0968 0.0431 0.0041
NA NA  0.3800 0.6200 0.8482 0.1008 0.0466 0.0044
NA NA 0.4281 0.5719 0.6998 0.2305 0.0639 0.0058
NA NA 0.4281 0.5719 0.6949 0.2344 0.0649 0.0059
NA NA 0.4218 0.5719 0.5936 0.3394 0.0610 0.0060
NA NA 0.4218 0.5719 0.4211 0.5182 0.0568 0.0040
NA NA 0.4218 0.5719 0.4239 0.5176 0.0549 0.0036
NA NA 0.4107 0.5893 0.2489 0.7000 0.0483 0.0027
NA NA 0.4107 0.5893 0.2566 0.6914 0.0488 0.0031
NA NA 0.4000 0.6000 0.0 0.9595  0.0369 0.0037
NA NA 0.4000 0.6000 0.0 0.9634 0.0332 0.0034
0.0 NA 0.4000 0.6000 0.0 0.9706 0.0281 0.0013

384 NA NA 0.4000 0.6000 0.9473 0.0068 0.0362 0.0068

NA NA 0.4000 0.6000 0.9477 0.0067 0.0361 0.0095
NA NA 0.4000 0.6000 0.8319 0.1200 0.0385 0.0095
NA NA 0.4000 0.6000 0.7295 0.2180 0.0431 0.0094
NA NA 0.4000 0.6000 0.6646 0.2801 0.0457 0.0096
NA NA 0.4000 0.6000 0.6407 0.3018 0.0480 0.0095
NA NA 0.4000 0.6000 0.6067 0.3337 0.0499 0.0097
NA NA 0.4000 0.6000 0.6031 0.3368 0.0505 0.0097
NA NA 0.4000 0.6000 0.2921 0.6169 0.0797 0.1235
NA NA 0.4000 0.6000 0.2928 0.6177 0.0786 0.0109
NA NA 0.4000 0.6000 0.2424 0.6638 0.0825 0.0113
NA NA 0.4000 0.6000 0.1464 0.7503 0.0912 0.0116
NA NA 0.4000 0.6000 0.1469 0.7503 0.0912 0.0116
NA NA 0.4000 0.6000 0.0 0.8530 0.1309 0.0161

2 NA, not analysed.

Figure 16 shows the relative volatility of water and ethanol with respect
to C;H; as a function of the C;Hg concentration in the liquid phase at
333 K. The relative volatility of water is higher than that of ethanol, and
exceeds unity at the higher end of the C;H; concentration in the liquid
phase. Therefore, azeotropic distillation using C;Hg can separate most of
the C,H; and water in the distillate from the top of the tower, and absolute
ethanol and a certain amount of recovered C;Hg in the liquid phase from
the bottom of the tower.
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TABLE 8
Phase equilibria for the C;Hgz-C,H;OH-H,O system at 313K

Pressure Weight fraction®
(MPa)

Heavy phase Light phase

C,H; C,H,OH H,O C;H;, C,H,OH H,0
0.588 NA 0.4099 0.5901 0.9813 0.0135 0.0052
0.971 NA 0.4108 0.5892 0.9923 0.0067 0.0010
1.079 NA 0.4129 0.5871 0.9972 0.0022 0.0007
1.569 NA 0.4007 0.5993 0.9764 0.0317 0.0019
0.686 NA 0.7754 0.2246 0.9733 0.0225 0.0041
1.128 NA 0.7754 0.2246 0.9823 0.0149 0.0028
1.177 NA 0.7754 0.2246 0.9827 0.0146 0.0027
1.618 NA 0.7754 0.2246 0.8902 0.1012 0.0086

2 NA, not analysed.

Pressure (MPal

07 18 20 2.1
100 fr—or—"vlr—rptr—t1L
E CaHg-C2HsOH-Hz0

. T=333K
I *
L — X2 =098
*
10 L - Xz=005 _

T

Relative Volatility of CzHsOH and H20 to CsHs

0.0 0.5 1.0
Weight Fraction of CsaHsg
in Liquid Phase

Fig. 16. Relative volatility of C,H;OH and H,O with respect to C,Hj for solvent separation
as a function of the weight fraction of CyHy in the liquid phase at 333 K.
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Fig. 17. Relative volatility of C,H;OH and H,O with respect to C;Hg for solvent separation
as a function of the weight fraction of C;H; in the liquid phase at 363 K.

Brignole et al. (1984, 1987) predicted these phenomena by process simula-
tion using the group contribution EOS method, but the present work
appears to be the first in which the phase equilibria were measured and the
phenomena were confirmed quantitatively and experimentally.

Figure 16 also shows that if 98 wt.% (propane free) ethanol solution is
used, ethanol can be separated more easily from water.

Figures 17 and 18 show the results at 363 K and 383 K respectively. At
363 K, a similar tendency to that seen at 333 K was observed, but at 383 K,
which is higher than the critical temperature of C;Hg (7, =369 K), the
relative volatilities of water and ethanol reverse, and it became difficult to
separate ethanol from C;Hg and water.

From these results, we conclude that when the temperature and pressure
were lower than the critical points for C;Hg, most ethanol could be
separated from C;H; and dehydrated by the azeotropic distillation method.

A disadvantage of this azeotropic distillation method is the partial
resolution of C;H; in absolute ethanol in the liquid phase at the bottom of
the tower, and it is necessary to strip C;Hg completely from the bottom
liquid until its concentration drops below that allowable. However, as the
presence of C;Hy in the bottom of the separating tower permits a smaller
temperature difference between the top and the bottom of the tower, it will
be possible to save much energy using the vapour recompression method.
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Fig. 18. Relative volatility of C,H;OH and H, O with respect to Cy;H; for solvent separation
as a function of the weight fraction of C;Hj in the liquid phase at 383 K.

C3H6 - C2H50H——H20 system

The phase equilibria for the 95 wt.% (propylene free) ethanol aqueous
solution and the C;Hy system were also measured. Figure 19 shows the
relationship between the relative volatilities of water and ethanol to that of
C,;H¢ and the concentration of C;Hg in the liquid phase at 333 K. The
measured data are given in Table 10.

The relative volatility of water was greater than that of ethanol and
exceeded unity at the higher end of the C;H4 concentration in the liquid
phase. Therefore it will also be possible to separate ethanol from CyH, and
simultaneously to dehydrate ethanol by the azeotropic distillation method
as well as C;Hj solvent. In the case of C;Hg, there is a greater difference in
the relative volatility between ethanol and water than in the case of C;Hs.

n-C4H10 ”C2H5OH—H20 system

The phase equilibria for the 95 wt.% ethanol solution and n-C,H,, system
were also measured. Figure 20 shows the relationship between the relative
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Fig. 19. Comparison of C;Hg with C;Hj in terms of the relative volatilities of C,HsOH and
H, O with respect to C;H or C;Hj, for solvent separation as a function of the weight fraction
of C;Hg or C,H; in the liquid phase at 333 K.

volatilities of water and ethanol to n-C,H,, at 353 K and the »n-C,H,,
concentration in the liquid phase. The measured data are given in Table 11.

The relative volatility of water is greater than that of ethanol and exceeds
unity at the higher end of the n-C,H,, concentration. Therefore it will
also be possible to separate almost all the ethanol from n-C,H,, and
simultaneously to dehydrate ethanol by the azeotropic distillation method.
The difference in the relative volatilities of water and ethanol was also a
little greater than that for C;Hg, so ethanol may be separated more easily
from water by using n-C,H,, as solvent.

However, Holderbaum et al. (1991) have recently shown that the va-
pour-liquid equilibria of the butane—ethanol system shows azeotropic
behaviour at all temperatures. Thus butane and ethanol cannot be separated
completely by distillation.

CONCLUSIONS

The phase equilibria for the subcritical and supercritical solvents and the
C,H;OH-H,O0 system using CO,, a light hydrocarbon (C,H,, C;H,, C;H;
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Fig. 20. Comparison of n-C,H;, with C;Hjg in terms of the relative volatilities of C,H;OH

and H,O with respect to #-C,H,, or C;Hg for solvent separation as a function of the weight
fraction of #-C,H,, or C;H; in the liquid phase at 353 K.

and n-C,H,,), or a mixed solvent (CO,+ C;H;) were measured. The
experimental results revealed the following facts.

(1) CO, could hardly break the azeotropic concentration, even at high
temperatures (383 K), and the ethanol solubility in the CO, phase did not
increase significantly.

(2) C,H, was low in terms of both the selectivity and the solubility of
ethanol. It is a poor solvent for extracting ethanol.

(3) C,H; was excluded from this study as the results of previous studies
indicate that it is a poor solvent.

(4) C;H,, C3H; and n-C,H,, showed almost the same behaviour, with
the exception that the vapour-liquid equilibrium of the n-C,H,o—ethanol
system shows azeotropic behaviour. Using these solvents, ethanol was
concentrated up to about 96 wt.%, which is higher than the specification of
regular ethanol (95 vol.% or 93.1 wt.%). Meanwhile, the relative volatilities
of water to these solvents were greater than that of ethanol, and exceeded
1.0 at higher solvent concentrations in the liquid phase. Using azeotropic
distillation under these conditions, it will be possible to separate most
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solvents and water as distillate from the top of the tower and absolute
ethanol with dissolved solvent from the bottom.

(5) Comparing C;Hg with the mixed solvent (CO, + C;Hg), CsH; was
better than the mixed solvent in terms of both the solubility and the
selectivity of ethanol.
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