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Abstract

Heating of non-Newtonian ¯uids is of particular importance to food processing systems. However, excessive pumping demand

generally precludes development of turbulence in tubular arrangements. So, laminar ¯ow is all that can be developed in heat transfer

equipment handling non-Newtonian materials. The paper presents a theoretical model of heat transfer, which is dependent only on

the ¯ow behaviour index of the ¯uid. Increase in ¯ow behaviour index produces a lower convective heat transfer coe�cient and for

real non-Newtonian ¯uids NusseltÕs number approaches a ®xed value corresponding to a ¯ow behaviour index of 4. Ó 1999

Elsevier Science Ltd. All rights reserved.

1. Introduction

Fluids like tomato paste, condensed milk, sugar so-
lution, apple sauce, banana pureeÕ, etc. are non-New-
tonian in behaviour and heat transfer in non-Newtonian
¯uid is generally analysed by empirical equations relat-
ing dimensionless groups. This is acceptable in turbulent
¯ow conditions but non-Newtonian ¯uids put severe
pumping demand if turbulent ¯ow is desired. For ex-
ample, banana pureeÕ having a consistency index of 7.28
Pa-sn and a ¯ow behaviour index of 0.5 will require
about 23 m sÿ1 of average velocity in a tube of 9 mm
inside diameter (smallest size available) to develop tur-
bulence. This means a mass ¯ow rate of 95 kg minÿ1. To
raise the temperature of this ¯uid by 50°C requires a
straight tube of 57 m length. The pressure drop in such
situation is close to 450 bar, which is impractical. Hence,
laminar ¯ow has to be depended upon for more rea-
sonable pressure drop and length. But in laminar ¯ow as
¯uid moves in sliding layers, it is necessary to develop a
heat transfer model, which relates convective heat
transfer coe�cient to thermal conductivity, density, and
viscosity of ¯uids. Besides, due to laminar ¯ow, the
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Nomenclature

A heat transfer area, m2

B integration constants

C speci®c heat capacity, J kgÿ1 Kÿ1

h convective heat transfer coe�cient, W mÿ2 Kÿ1

k thermal conductivity, W mÿ1 Kÿ1

K consistency index, Pa sn

L tube length, m

m mass ¯ow rate, kg sÿ1

n ¯ow behaviour index, dimensionless

N dimensionless number

Q heat ¯ow rate, W

r radial distance from the centre of the tube, m

R radius of cylindrical tube, m

T temperature of liquid, K

u velocity of laminar layer, m sÿ1

x axial distance along the length of the tube, m

Greek symbols

a thermal di�usivity, m2.sÿ1

d di�erential operator

D in®nitesimal

q density

Subscripts

1,2 integration constants

net total

axial along the axis

radial along the radius

in heat in¯ow

out heat out¯ow

b bulk

Nu Nusselt number

o central axis

p constant pressure

w wall
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fastest moving regime is also the slowest heating (at the
centre of a cylindrical tube). Therefore a heat balance
model is also necessary which can predict the tempera-
ture of the ¯uid at the slowest heating region.

2. Model development

Taking a small ring element of length Dx and thick-
ness Dr at a radial distance r from the centre the heat
balance in the element can be expressed as (Fig. 1):

Qnet � Qin-axial � Qin-radial ÿ Qout-axial ÿ Qout-radial �1�
or

0 � 2prDruqCpT jx � 2prkjr�DrDx
�dT=dr�jr�DrDr

Dr

ÿ 2prDruqCpT jx�Dx ÿ 2prkjrDx
�dT=dr�jrDr

Dr
: �2�

In Eq. (2) it should be noted that Qradial �
�kA�DT=Dr� as T increases with r.

Eliminating 2pDr from Eq. (2) we get
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It can be shown from Prasad (1987) that dT=dx is
independent of r for a straight tube heat exchanger ex-
cluding the entrance and exit regions. Similarly, a can be
assumed constant for a ®nite region of heat exchange.
Laminar velocity u can be expressed for non-Newtonian
¯uid as:

u � u0 1ÿ �r=R��1=n��1
h i

: �4�
From Eq. (3) we can write
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Since T is ®nite at r � 0;B1 � 0: Hence,

T � T0 � 1
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and

Tw � T0 � 1
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Average bulk temperature of the ¯uid can be ob-
tained by using the following expression (Holman,
1986):

Tb �
R R
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Substituting the expressions from Eqs. (9) and (10) in

to Eq. (8) we get

Tb � T0 � 3n� 1

5n� 1

u0

a
dT
dx

R2 1

8
ÿ n3

3n� 1� �3
" #

: �11�

Using convection±conduction model at the wall of
the heat exchanger, we can write

Fig.1. Heat balance in tube ¯ow: (a) shell element in tube; (b) shell

element isolated; (c) heat ¯ow in element.
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Qw � hAw Tw ÿ Tb� � � kAw
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����
r�R

;

NNu � 2R
dT=dr� �r�R
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So,
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Combining Eqs. (13) and (14) we get

NNu �f�n� 1�=�3n� 1�g= 1=4ÿ n2= 3n� 1� �2
h in

ÿ��3n� 1�=�5n� 1�� 1=8ÿ n3= 3n� 1� �3
h io

: �15�

3. Conclusion and discussion

Table 1 obtained from Eq. (15) suggests that increase
in n results in decrease in NNu. Since most liquid foods
are pseudoplastic, i.e. n < 1 it can be pointed out that
NNu increase with non-Newtonian behaviour. NNu in-
volves the parameter thermal conductivity in the de-
nominator. So, the convective heat transfer coe�cient is

directly proportional to thermal conductivity of the
liquid times NNu. Flow behaviour index of liquid food
decreases from 1 with increase in total solids (Reddy &
Datta, 1994) Thermal conductivity also decreases with
increase in lipids and carbohydrates for their non-polar
composition. But the increase in NNu due to lowering of
the value of n is generally outweighed by the decrease in
thermal conductivity value of liquid foods having large
total solid concentration. Hence, convective heat trans-
fer coe�cient of liquid foods decrease with increasing
non-Newtonian behaviour.

An attempt was made to validate the proposed model
with published literature data. Equation of Metzner and
Gluck (Geankoplis, 1993) was found to be semi-empir-
ical and applicable to ``highly viscous'' non-Newtonian
¯uids:

NNu � 1:75
3n� 1

4n

� �n mCp

kL
Kb

Kw

� �0:14

: �16�

Using Eq. (16) and taking NNu for n � 1 as unity the
ratio NNu� for any n=NNu for n � 1� were computed.
These and the same ratio, obtained from Eq. (15), are
compared in Table 2. There is some discrepancy but the
overall trend is identical.
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Table 1

NNu as a function of n from Eq. (15)

n 0.2 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 3.0 4.0

NNu 5.52 4.75 4.63 4.54 4.47 4.41 4.36 4.21 4.13 4.05 4.01

Table 2

Nujn=Nujn�1

ÿ �
for various values of n

n 0.2 0.5 0.6 0.7 0.8 0.9 1.0

Model (15) 1.149 1.08 1.097 1.074 1.05 1.025 1.0

Eq. (16) 1.266 1.09 1.062 1.041 1.025 1.011 1.0
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