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Inertia and Interception in the Deposition of Particles 
from Boundary Layers 

J. Fernandez de la Mora 
Yale University, Mechanical Engineering Department, Box 2159 Y. S., New Haven, CT 06520 

The treatment of Parnas and Friedlander for the problem 
of particle capture by interception in laminar boundary 
layers is generalized to include the effect of inertia. For a 
circular cylinder in cross-flow it is seen that the collec- 
tion efficiency is initially reduced by inertia at small 

INTRODUCTION 

In a recent article in ths  journal, Parnas and 
Friedlander (1984) have studied the problem 
of particle diffusion and interception to 
spheres and cylinders using boundary layer 
theory. In their simple and elegant treatment 
of the interception effect, these authors ob- 
serve that the particles initially approach the 
wall as the fluid accelerates away from the 
stagnation point, but they eventually start 
moving away from the obstacle due to the 
"displacement velocity" associated with the 
boundary layer growth (Schlichting, 1968). 

The purpose of this paper is to incorpo- 
rate the effect of inertia into the 
Parnas-Friedlander analysis. Our original 
motivation to explore such an effect arose 
from a previous study (Fernandez de la Mora 
and Friedlander, 1982) where data of 
Chamberlain (1966) on particle deposition 
on roughness elements were analyzed using 
boundary layer theory. The conclusions from 
that work were somewhat puzzling because it 
seemed that the predictions from intercep- 
tion theory were still valid well into the 
region where inertia should have been im- 
portant. More recently, Schack et al. (1984) 
have studied a much wider body of data, 
strengthening considerably our previous con- 
clusions. The reasons why inertia seems to 

Stokes number, Stk, and depends mainly on the product 
of Stk and the square root of the Reynolds number. An 
approximate method of extending this work to other 
two-dimensional or axisymmetric geometries is sketched. 

play no role, when ordinarily it would be 
expected to act vigorously, are rather per- 
plexing, and will be considered in this paper. 

THE MATHEMATICAL AND 
PHYSICAL PICTURES 

There is no basic difficulty in studying the 
deposition of particles by inertia and in- 
terception. The problem is fully deterministic 
and can be handled by straightforward in- 
tegration of Newton's equations for the par- 
ticles (Fuchs, 1964; Friedlander, 1977). Such 
a treatment, however, would require exten- 
sive numerical computations, and would per- 
mit the extraction of limited amounts of 
general information. Besides, the role of in- 
ertia at Stokes numbers above the critical is 
so much greater than that of interception 
that we are interested only in the region of 
subcritical Stokes numbers. A general proce- 
dure to conveniently treat such a problem 
has been described in Fernandez de la Mora 
and Rosner (1982). The particle velocity field 
(including inertia) is obtained as a function 
of the fluid local properties by expansion in 
powers of the Stokes numbers. Denoting by 
up and U the particle and fluid velocity fields 
and T the particle stopping time, then, to 
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262 J. Fernandez de la Mora 

first order in the Stokes number, Stk, 

for a steady state flow. Equation (1) has been 
used repeatedly in the literature (Marble, 
1970; Michael, 1968; Michael and Norey, 
1970, etc.). Stechina et a1 (1969) refer to a 
paper by Voloshuck (which I have not seen) 
where it is pointed out that the expansion (1) 
is valid for subcritical Stokes numbers. That 
claim is somewhat optimistic, though the ex- 
pansion has been used for supercritical Stokes 
numbers by Cleaver and Yates (1975) and 
Yeh and Liu (1974), among others. It is 
difficult to give precise conditions for (1) to 
hold, since it is an asymptotic rather than a 
convergent expansion. For linear flows such 
as the stagnation point flow, a solid body 
rotation or a Couette flow, Eq. (1) contains 
the two leading terms of a series that con- 
verges for all subcritical Stokes numbers. 
However, even then it is only the outer solu- 
tion of a singular perturbation expansion 
which is not valid close to the points where 
particles are injected or reflected. Therefore, 
one ought to use Eq. (1) with extreme care. 
Fortunately, for the problem of particle mo- 
tion in viscous fluids it can be stated gener- 
ally (Fernandez de la Mora and Rosner, 
1982) that Eq. (1) is valid in a thin strip close 
to the obstacle's surface for all subcritical 
Stokes numbers. The reason for that power- 
ful fact is that the local Stokes number (based 
on the product of T with the local velocity 
gradient) tends to zero near a surface. As a 
result, the particle velocity can be given ana- 
lytically near the wall, the particle stream- 
lines can be inferred, and the local analysis 
of Parnas and Friedlander (1984) can be 
extended without much extra labor. A first 
step in that direction for boundary layer 
problems is given in Fernandez de la Mora 
(1980, Sect. 6.4) for the case of a cylinder. 
But neither interception nor the important 
effect of the velocity displacement were in- 
cluded there. The work, however, contains 
the inertial ingredient that has to be added 
on to the Parnas-Friedlander approach: if 

the obstacle is curved, centrifugal effects on 
the particles act together with the fluid dis- 
placement to bring the point of minimum 
separation closer to the stagnation point. 

ANALYSIS FOR A CYLINDER IN 
TWO DIMENSIONS 

The fluid velocity field in the proximity of 
the wall can be written in cylindrical coordi- 
nates r ,  8 as 

U, = - ( ~ v ) ' / ~ q ~ G ' ( 8 ) / 2  (2) 

Ue = wRqG(6'), (3) 

with 

being the nondimensional length in the di- 
rection normal to the obstacle's surface. R is 
the cylinder radius, v the fluid kinematic 
viscosity, 8 the angular position along the 
surface measured from the stagnation point, 
G(8) is a known function for the cylinder 
(Schlichting, 1968, p. 151) given by 

with 

G, = 1.2326 

G2 = - 0.48293 

G, = 0.05160 

and w is the rate of deceleration in the 
inviscid stagnation point region, given in the 
case of the cylinder by 

where Uw is the free stream velocity far from 
the cylinder. Evaluating now the correction 
(U . v )U in cylindrical coordinates, and ne- 
glecting terms of order larger than q or q2 
for Ups and Up,, respectively, we obtain 

D
ow

nl
oa

de
d 

by
 [

IR
ST

E
A

] 
at

 0
3:

01
 1

7 
Se

pt
em

be
r 

20
14

 



Particles From Boundary Layers 

with and given by the condition: 

Therefore, only the centrifugal correction 
T U ~ / R  is significant close to the wall, and 
the corresponding velocity drift is propor- 
tional to the unusual group (. This is indeed 
unexpected, because inertial effects are gen- 
erally considered to be of the order of the 
Stokes number (WT here). But ( is a Stokes 
number magnified by a half power of the 
Reynolds number: 

Re- 2UmR/u = W R ~ / V .  (10) 

Although not widely known, thls result is 
not new in the literature, having been first 
discussed in 1968 by Michael, and in more 
detail in the above-mentioned 1980 Ph.D. 
thesis. The behavior of particles in boundary 
layers thus departs drastically from that of 
fluids. The main difference is that there is no 
pressure term in the particle momentum con- 
servation equation normal to the wall to 
dominate the picture as in the standard 
boundary layer theory (see Fernandez de la 
Mora, 1982, Sect. 3). The term next in im- 
portance is the centrifugal one, which be- 
comes leading for the particle phase, but is 
still negligible for the fluid. All other terms 
in the T(U . v )U particle velocity drift are of 
the order of WT, and therefore much smaller 
than ( in the Re >> 1 limit, where boundary 
layer theory is applicable. Other discussions 
on the centrifugal effect can be found in 
Rosner and de la Mora (1982) and also in 
Brun and Dorsh (1955) for a situation with a 
supercritical Stokes number. 

The streamlines corresponding to the 
velocity field (7, 8) can be obtained straight- 
forwardly, giving 

where in the limit .$ = 0 our I), is the same 
streamfunction of Parnas and Friedlander 
(except for a constant). The point of closest 
approach to the cylinder is again indepen- 
dent of I), (the particular trajectory picked), 

~ ' ( 0 , )  - ( ~ ' ( 8 , )  = 0. (12) 
Solving this transcendental equation to ob- 
tain 8, as a function of ( is facilitated by 
noticing that the series giving G(6') con- 
verges very rapidly for values of 6' below 1 
radian. Two terms give a reasonable descrip- 
tion, while keeping three terms leads to the 
same results of Parnas and Friedlander within 
less than one-half of one percent. The de- 
scription becomes even better for ( # 0, since 
inertia tends to reduce the value of 6',, im- 
proving the rapidity of convergence of (5). 
Keeping terms up to 6': in (12) yields the 
following quadratic equation: 

G, + O?(~G,  - (G:) 

+ 6',4(5G, + 2G,G2t) = 0, (13) 

whose only meaningful root gives the func- 
tion 6 ' , ( ( )  tabulated below. The table (Table 
1) contains also the ratio +,(()/I)(O) 
(evaluated keeping only three terms in the 
expansion for G(6')) or a correction factor by 
which the Parnas-Friedlander capture 
efficiency should be multiplied when t # 0. 
The outcome is quite surprising, and seem- 
ingly unphysical. Inertia reduces the rate of 
particle collection. A similar effect was found 
by Fernandez de la Mora and Rosner (1982) 
for the capture of particles on spheres by 
inertia and diffusion at low Reynolds num- 
bers. Odd as this conclusion seems, we have 
not been able to find any flaw in the process 
leading to it. On the other hand, at the point 
of closest approach the particle path has the 
same curvature as the cylinder, so that it 
must have been significantly centrifuged for 
an important portion of its previous history. 
On the very early part of the trajectory it is 
clear that the inertial drift pushes the par- 
ticles towards the obstacle rather than away 

TABLE 1. 

I 0 0.05 0.10 0.15 0.20 
e:(o 1.045 0.918 0.830 0.763 0.709 

( ( 0 )  1 0.9720 0.9438 0.9169 0.8919 
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264 J. Fernandez de la Mora 

from it, so that some compensation for the 
ulterior centrifugal resistance does exist. This 
effect is of the order of 0 7 ,  and thus much 
smaller than the centrifugal one proportional 
to [. This can be shown quantitatively by 
following the particle streamline from the 
small 7 region previously studied to the re- 
gion far upstream. The operation can be 
performed analytically to lowest order in the 
Stokes number. The corresponding analysis 
is, however, cumbersome and physically less 
interesting than the preceding portion of the 
paper. 

Since the fluid velocity field is given accu- 
rately by Eqs. (2) and (3) up to values of q 
as large as 0.3, and our description (Eqs. (7) ' 

and (8)) for the particle velocity field is also 
excellent within that interval of q and up to 
the critical Stokes number W T  = 1/4 (see 
Figure 4 of Fernandez de la Mora and 
Rosner, 1981), particle trajectories are given 
quite precisely by Eq. (11) up to q - 0.3-0.4. 
Furthermore, the sizes of particles for which 
this theory is valid are such that q << 1 at the 
point of interception, so that (11) will be 
valid from the capture point (0 = 8,) where 
q 1 to the upstream point where q = 
0.3-0.4, where 0 is now rather small. In this 
region the q dependence of the particle 
velocity field is more complex than before, 
but the 0 dependence becomes trivial, and 
the particle streamline can again be found 
analytically. Indeed, for small values of 0 
one is effectively in the stagnation point 
where the particle velocity field admits a 
similarity solution (Fernandez de la Mora 
and Rosner, 1981): 

where F, and F, are given by solving the 
first order differential equations: 

and f (q)  is the function giving the fluid 
velocity field at the stagnation point 

(Schlichting, 1968, p. 88, uses the notation + 
for our f ). The asymptotic forms for q >> 1 
are for W T  < 1/4, 

F ~ + ~ ( q - q o )  q > > l  (I8) 

F 2 + b  q > > l ,  (19) 

with 

qo = 0.6479 (20) 

Then the particle streamline is given through 
the differential equation: 

which involves only integrating the ratio 
F2/F,, which is itself a universal function of 
q for every value of w7. The asymptotic 
forms of the trajectory are 

Clearly Go is related to our previous +,, 
while +, is related to the mass flow between 
the trajectory considered and the stagnation 
line. If n is the particle density away from 
the viscous region, but still in the neighbor- 
hood of the stagnation point region, the par- 
ticle mass conservation equation is 

with characteristics (trajectories) given by 
(24), along which n is 

where n ,  can depend on +, (the particular 
trajectory considered), but is a constant for 
this problem, where all relevant streamlines 
are so close to the stagnation line as to 
follow basically the same degree of compres- 
sion during the process of approach. The 
mass flow between the stagnation line and a 
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Particles From Boundary Layers 

streamline characterized by +, is then 
0 

& z ( + ~ )  =I n,(q - n e ) " ~ u a ( o v ) 1 / 2 ~ d 0 ,  
0 

implying that 
(28) 

Denoting by no the particle concentration 
far upstream, it turns out that n, > n, due 
to the compressibility of the particle phase. 
The ratio n,/n, is a function of Re and wr 
given by Fernandez de la Mora and Rosner 
(1981). Now, since $, is fixed by the inter- 
ception condition at 8 = O,, we can de- 
termine +, through (ll) ,  while the mass of 
captured matter is given through $I, by (29). 
It remains to connect $I, to +, by integrating 
(23). The result is to first order in the Stokes 
number: 

where C is given by 

(31) 
This conclusion results from the fact that to 
first order in wr(from (16) and (17)), 

The corresponding capture efficiency for a 
spherical particle of radius a,, defined as 

becomes 

In the Parnas-Friedlander approach the first 

term in square brackets (the inertial com- 
pression) becomes unity, while the last one in 
curly brackets (the centrifugal depletion) 
takes the value of G(8,)5=, = 0.798 (in our 
approximation of retaining only three terms 
in the expansion (9, G(8*)5=o is 0.8017). As 
previously claimed on the basis of qualitative 
arguments, the centrifugal depletion initially 
dominates over the inertial compression. The 
effects, however, depend weakly on 6, which 
itself changes with Re1I2. Also, the com- 
pensating contribution of the two inertial 
terms leads to a minimum somewhere in the 
q, versus w r  curve, flattening further the 
response of the capture efficiency to the 
Stokes number. No dramatic inertial effects 
should thus be observable, even in the 
proximity of the critical Stokes number, a 
result which rationalizes in part the observa- 
tions of Fernandez de la Mora and Fried- 
lander (1982). , 

As a final remark, we point out that the 
treatment of Parnas and Friedlander, and 
our own Eq. (11) are general for two-dimen- 
sional laminar boundary layers around any 
form of obstacle, provided the function G(8) 
is determined appropriately and that 6 is 
based on the obstacle's local radius of curva- 
ture (a function of the location 0). The gen- 
eralization for three-dimensional axially 
symmetric geometries is also trivial. For the 
determination of G(B), one can follow 
standard approximate methods of boundary 
layer theory such as the Karman Pohlhausen 
integral approximation. As a result, one can 
attack analytically a wide variety of prob- 
lems of particle deposition in natural or 
artificial filters. In particular, it would be 
instructive to study the problem of two- 
dimensional elipses or even blades and com- 
pare the results with the data of Cham- 
berlain on particle deposition to blade-shaped 
roughness elements. Perhaps the anoma- 
lously low deposition rates inferred from the 
oversimplified model of Ferrandez de la Mora 
and Friedlander (1982) could be improved 
by the more precise interception theory 
sketched above. 
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