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ABSTRACT 

A new method for calculating the cooling time forfresh fruits and vegetables 
and processed foods is presented. The method uses the truncated analytical 
solution of the governing partial differential equation to define a cooling curve 
with two parameters. One parameter is the lowest eigenvalue for the product. 
The second parameter is a constant multiplier similar to the one that occurs in 
the analytical solution. The lowest eigenvalue is evaluated using aJinite element 
analysis. The multiplying constant is evaluated using a finite element solution in 
time. Cooling curves for a Rome apple and a Bartlett pear are presented and 
discussed. 

INTRODUCTION 

Cooling of a product is an important task in the food industry. The need for 
cooling includes fresh fruits and vegetables, the carcass of an animal after 
slaughter, and processed products in cans or jars. Cooling is usually accom- 
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plished using forced air, hydrocooling or refrigerated room cooling. In each 
case, the heat moves to the surface by conduction and from the surface by 
convection. Heat loss by convection is dependent on the type of cooling process 
selected. The cooling time depends on whether the product is cooled individually 
or whether the product is stored in boxes or bulk bins. One engineering aspect 
of the cooling process is to predict the time required for a product to cool to its 
surrounding temperature. This calculation for food products is often complicated 
by irregular geometries. Cooling times are presently calculated by approximating 
the product as a slab, a cylinder or a spherical body because temperature 
response curves are available for these shapes (Singh and Heldman 1993). 

The objective of this paper is to present a new procedure for estimating the 
cooling time for irregularly shaped food products. The method utilizes the 
irregular grid analysis capabilities of the finite element method to evaluate a pair 
of parameters that define a cooling curve for a product. The procedure for 
developing a cooling curve is presented using a pair of axisymmetric products, 
a Rome apple and a Bartlett pear. 

REVIEW OF LITERATURE 

Traditional methods to determine the time needed to cool agricultural 
products have used the Fourier equation for transient heat transfer. This equation 
is limited to homogeneous, isotropic substances with nice shapes such as slhbs, 
cylinders and spheres. Heldman (1977) gives the infinite series solutions to the 
governing differential equation for the infinite slab, the infinite cylinder and a 
sphere and shows how to apply these solutions to solve heating and cooling 
problems. Singh and Heldman (1993) present the Fourier equation in one-dimen- 
sion and solve heating and cooling problems using temperature response charts 
for the well defined shapes. 

Smith et al. (1967) preformed a similitude study to develop a nomograph 
that could be used to predict the cooling time of anomalous shapes. They 
concluded that the ellipsoidal model was the most valid model and adapted well 
for replacing a large range of anomalous shapes for predictions in transient 
conduction heat transfer. 

DeBaerdemaeker et al. (1977) used the finite element method to solve time 
dependent problems related to food materials. The temperature history was 
calculated for the heating of a cylindrical can, the heating of an infinite slab, the 
cooling of a pear, the cooking of a chicken leg and the cooking of a slice of ham 
that is turned over during the process. Predicted temperature histories were 
given for each case. 

Misra and Young (1979) used the finite element method for a time 
dependent heat transfer problem, approximating apples as a spherical body. 
Their numerical results agreed well with an analytical solution and the authors 
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concluded that the finite element method gave a very good approximation for the 
transient heat transfer problem in a sphere. 

Hayakawa and Succar (1982) used the finite element method to determine 
thermal response and moisture loss during cooling of fresh potatoes and 
tomatoes. The surface heat conductance and transpiration coefficient were found 
to strongly effect the thermal response and moisture loss of spherical produce. 

Bazan ef al. (1989) predicted the temperature response during room cooling 
of a confined bin of spherical fruit. Experimental results agreed well with 
simulation studies. These investigators determined that small temperature 
gradients exist inside the fruit during cooling. 

Pan and Bhownik (1991) used the finite element method to predict the 
temperature distribution in individual mature green tomatoes during forced air 
cooling. The calculated results were within 1C of the experimental results when 
cooling the tomatoes from 20C to 12C. 

Fraser and Otten (1992) studied the cooling of peaches in well-vented 
containers. They measured temperature values and compared the results to the 
analytical solution for a sphere composed of peach flesh. Cooling times were 
slower for the peaches than predicted by the model. Fraser and Otten believed 
the slower cooling occurred because of the increase in air temperature as it 
flowed through the packed bed of peaches. 

BASIC THEORY 

The procedure for defining a cooling curve presented here starts with the 
well known Fourier equation for transient heat transfer. The idea can be 
illustrated by using the analytical solution to 

for an insulated bar of unit length with the initial conditions of T(x,O) = Ti, 
boundary conditions of T(0,t) = T(1,t) = T, where T, is a specified value. 
The parameters in (1) are the temperature, T, the time, t, the coordinate 
variable, x, and the thermal diffusivity, a. The units for temperature, time and 
space must be consistent with the units for the thermal diffusivity. The analytical 
solution of (1) for initial and boundary conditions similar to those given above 
is presented by several authors. A modification of the solution given by Smith 
(1978) is used here. The modification includes the dimensionless temperature 
ratio, (DTR) 
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T-T, 
DTR=- 

Ti -T, 

and the thermal diffusivity, a. Most authors present the solution to (1) for the 
case where a = 1, Ti = 1 and T, = 0. 

The general solution to (1) is 

The slowest point to cool occurs at the center of the bar, x = 1/2. 

Substituting x = 1/2 reduces (3) to 

4 "  -pnt 
DTR = - C (-1)' - 

71 n=O (2n + 1) 
(4) 

where the sequence of numbers 

are called eigenvalues. The specific equations for a sequence of eigenvalues vary 
with the shape of the region, the boundary conditions and the material 
properties. Eigenvalues have units of s-'. 

The series in (4) can be simplified for two reasons. First, the cooling time 
for a product involves large values of time. Most of the exponential terms go to 
zero. Second, the eigenvalues are well spaced. The first three terms of (4) are 

where 

p1=an2, p2=9an2, and P,=25ax2 
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The quantity e-’ = 0.0067 is negligible in the determination of the cooling time. 
When &t = 5, which occurs when DTR = 0.73, the series in (4) reduces to 

4 -Pit DTR=-e 
n: 

(7) 

Every term in the series except the first disappears during the first 27% of the 
cooling process. The dimensionless temperature ratio can be represented by the 
two parameter equation 

The two parameters are the first or lowest eigenvalue, p, and a coefficient A. 
The lowest eigenvalue in (8) can be determined from the system of ordinary 

differential equations generated by applying the finite element or finite difference 
method to (1). The parameter A varies with the dimension of the problem and 
the boundary conditions. 

The derivation of (8) from (3) considered the one-dimensional step change 
problem. The analytical solutions for one-dimensional problems with convection 
boundary conditions and two- and three-dimensional problems are more 
complicated. Each solution, however, involves exponential terms and eigen- 
values which are spaced such that the cooling process reduces to the solution of 
an equation similar to (8). 

The value of the dimensionless temperature ratio at which all but the first 
term can be neglected is a function of the dimension and the boundary 
conditions. Calculations for one- and two-dimensional problems and cylindrical 
problems (not presented here) indicate that more than 50% of the cooling 
process is governed by an equation similar to (8) for the least favorable 
conditions. This fact is verified by observing the temperature response curves 
(Lienhard 1981; Singh and Heldman 1993). The straight line property of the 
curves on a semi-log plot indicate that only one term is left in the infinite series 
solution. Analysis of the temperature response curves indicates that the lowest 
starting point for the straight line relationship occurs for the cylindrical problem 
and starts with DTR = 0.65. 

EVALUATION OF THE LOWEST EIGENVALUE 

One reason a method similar to the procedure presented here has not been 
used is the difficulty involved in calculating the lowest eigenvalue for food 



390 N .  CARROLL, R. MOHTAR and L. SEGERLIND 

products with irregular shapes. Analytical evaluations of the lowest eigenvalue 
are not possible. The evaluation of P must be done numerically and requires a 
significant amount of computer software. 

Application of the finite element or finite difference method to time 
dependent heat transfer problems defined by (1) produces a system of ordinary 
differential equations 

dT 
dt 

[C] {-I + [K] {TI - (9) 

where [C] is the capacitance matrix, [K] is the stiffness or conductance matrix 
and IF) is a vector that contains a part of the convection boundary condition and 
point source or sink values. The details of the finite element formulation for (9) 
are given by Segerlind (1984). The analytical solution of (9) requires the 
evaluation of a set of eigenvalues that satisfy the relationship 

In this case, n is finite and corresponds to the number of nodes at which the 
temperature is not known. 

An excellent discussion of the solution of (10) is given by Bathe and Wilson 
(1976). Equation 10 can be solved for all of the eigenvalues using one of several 
methods. Jacobi’s method and Householder’s method are two of these. 
Alternatively, (10) can be solved for the lowest eigenvalue or the largest 
eigenvalue using the inverse iteration method or forward iteration method, 
respectively. The most important concept, however, is that the lowest eigenvalue 
for (10) approaches the value of the lowest eigenvalue for the analytical solution 
of (1). 

The evaluation of the lowest eigenvalue, 0, for the cooling problems 
presented in this paper used the finite element method to generate [C] and [K] 
in (9) and the inverse iteration method discussed by Bathe and Wilson (1976) to 
obtain p. The lowest eigenvalue for any problem has a fixed value and the value 
calculated from a finite element or finite difference grid will converge as the 
grid is refined. The amount of the grid refinement may affect the rate of 
convergence but should not influence its final value. 

A complicating factor when using the finite element method to formulate (9) 
is that there are two ways to define the capacitance matrix [C]: The lumped 
formulation and the consistent formulation, Segerlind (1 984). The lumped 
formulation produces a diagonal [C] and is similar to the finite difference 
formulation. The consistent formulation produces [C] with nonzero off-diagonal 
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values. Calculations reveal that the lumped formulation produces eigenvalues 
that converge to f i  from below while the consistent formulation produces values 
that converge to f i  from above, Hughes (1987). Hughes shows that an average 
of the values calculated using the two formulations gives an excellent estimate 
for the lowest eigenvalue when solving one-dimensional problems. Preliminary 
calculations done for this study indicated that the same property existed for 
axisymmetric problems. The average of the lowest eigenvalue calculated using 
the lumped and consistent formulations is very close to the analytical value for 
a finite cylinder with the temperature specified on the boundary. Preliminary 
calculations also showed that the grid should have a minimum of 16 nodes that 
are not a part of the boundary conditions in order to obtain an accurate value for 
P .  

EVALUATION OF THE COEFFICIENT A 

The simplified form of the cooling curve in (8) has a multiplying coefficient 
A. The value of A for the step change problem in (3) is A = 4/7r = 1.27. The 
value changes with the boundary conditions and with the geometry of the 
problem. The cooling curves for a particular type of problem are not defined 
until A has been evaluated. The following procedure was used to evaluate A. 

(1) Define the geometry for the shape and generate a finite element grid. 
(2) Specify the boundary conditions which consist of known temperatures on 

the boundary or the convection heat loss condition. When convection heat 
loss occurs, the derivative boundary condition contains the ratio h/k where 
h is the convection coefficient, W/m*."C and k is the thermal conductivity 
of the material, W/m."C. 

(3) Evaluate the lowest eigenvalue using the inverse iteration method. 
(4) Solve the transient heat transfer problem in time using the finite element 

method to generate the matrices in (9). A lumped formulation should be 
used for the capacitance matrix. Equation 9 is then solved using a central 
difference method in time because this method is second order accurate, 
Gear (1971). The advantages of the lumped formulation over the consistent 
formulation when developing (9) are discussed by Segerlind (1984). The 
selection of the time step required for an accurate solution using the central 
difference method is discussed by Mohtar (1994). 

(5) Determine the time required for the dimensionless time ratio to decrease 
from one to a specified value. A value of 0.125 was used in this study. 
Equation (8) can be solved for the coefficient A from the time required to 
reach the specified dimensionless time ratio and the value of 0. 
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The procedure outlined above must be performed for the shape of interest. The 
thermal diffusivity, a, and thermal conductivity, k, must be known for the 
material being cooled. 

DETERMINATION OF THE COOLING EQUATIONS 
FOR A ROME APPLE AND A BARTLETT PEAR 

Cooling curves were determined for two agricultural products, a Rome 
apple and a Bartlett pear. Each product was assumed to be axisymmetric. The 
cross section and the finite element grid for each are presented in Fig. 1. The 
Rome apple had a maximum horizontal diameter of 0.091m and a height of 
0.067m. The Bartlett pear had a maximum horizontal diameter of 0.079m and 
a height of 0.107m. The thermal properties for an apple are given by Singh and 
Heldman (1993). The thermal properties for a pear are given by 
DeBaerdemaeker et al. (1977). A thermal diffusivity of a = 1.39E-07 m%ec 
and a thermal conductivity of k = 0.4 W/m."C were used for the apple. A 

(4 @) 

FIG. 1. THE FINITE ELEMENT GRIDS FOR (a) ROME APPLE AND (b) BARTLETT PEAR 



IRREGULAR SHAPED FOOD PRODUCTS 393 

thermal diffusivity of a = 1.65E-07 m2/sec and a thermal conductivity of k = 
0.6 W/m*"C were used for the pear. 

The lowest eigenvalue and the coefficient A were evaluated for nine 
different values of h/k for each product. The lowest value of 10 is in the range 
for cooling by natural convection. Using the values given by Fraser and Otten 
(1992) and Leinhard (198 l ) ,  h for natural convection is in the range of 5 or 6 
W/m*-"C. Using h = 5, hlk = 510.4 = 12.5 m-' for the apple and hlk = 8.33 
m-I for the pear. The largest value of h/k = 03 occurs when the temperature on 
the boundary is known. 

The calculated values for the lowest eigenvalue and the A coefficient are 
summarized in Tables 1 and 2 for the apple and pear, respectively. The values 
in this table can be used in (8) to provide an explicit equation for the cooling 
process. The values can also be used to generate product specific cooling curves 
that allow a graphical solution. The variation of the lowest eigenvalue with h/k 
is presented in Fig. 2. The cooling curves for the apple and pear are given in 
Fig. 3 and 4, respectively. 

The temperature response curves (Singh and Heldman 1993) are presented 
using a Biot number as one of the dimensionless parameters. The Biot number 
is Bi = hD/k where D is a characteristic length. The results in Table 1 and 2 
are presented in terms of h/k and a Biot number calculated using the largest 
radius value for each product as D. The primary reason for presenting the Biot 
values is to allow researchers familiar with the Biot number a basis on which to 
evaluate the results. The calculations presented in the next section use the h/k 
values when interpolating to determine and A. The definition of a characteris- 
tic length for an irregular shaped food product could be useful and should be 
studied. 

TABLE 1 .  
COOLING PARAMETERS FOR A ROME APPLE 

Biot 

Number B A h 1  
k m  -,- 

10 
25 
50 

125 
250 
625 

1250 
m 

0.455 
1.14 
2.28 
5.69 

11.4 
28.4 
56.9 
03 

0.2 12E-04 
0.5088-04 
0.952E-04 
2.030E-04 
3.280E-04 
5.140E-04 
6.5OOE-04 
7.5508-04 

1.01 
1.05 
1.09 
1.23 
1.43 
1.76 
1.94 
2.06 
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TABLE 2. 
COOLING PARAMETERS FOR A BARTLETT PEAR 

h 1  
k m  -,- 

Biot 

Number a A 

10 
25 
50 

125 
250 
625 

1250 
03 

0.395 
0.988 
1.98 
4.94 
9.88 

24.7 
49.4 
m 

0.457E-04 
1.061E-04 
1.918E-04 
3.790E-04 
5.600E-04 
7.650E-04 
8.58OE-04 
9.630E-04 

1.05 
1.10 
1.19 
I .37 
1.57 
1.71 
1.83 
1.87 

9 -  

x 

4 

0 
750 1250 

FIG. 2. THE LOWEST EIGENVALUE FOR A ROME APPLE 
AND A BARTLETT PEAR 
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EXAMPLE PROBLEM 

A Bartlett pear of the size in this study (0.107 m height, 0.079 m in 
diameter) is being cooled from 20C to 2C using forced air with h = 25 
W/m2."C. The thermal conductivity of the pear is k = 0.6 W/m."C. How 
long will it take for the pears to cool to 3°C. The dimensionless temperature 
ratio is 

DTR = (3-2)/(20-2) = 0.056 

The convection/conduction ratio is h/k = 2510.6 = 41.67 m-I. Linear 
interpolation of the values in Table 2 gives = 1.63E-04 and A = 1.17. The 
equation for the cooling of the pears is 

Since DTR = 0.056, 

= - ln (0.05611.17) 
1.638-04 

t = 18650s = 5.18h 

The cooling curve in Fig. 4 could have been used to solve this problem. The 
answer would have been subject to the visual interpolation errors that go with 
a graphical solution. 

COMPARISON WITH STAND- SHAPES 

Given a method for defining the cooling equation for an irregular shaped 
food product, it is of interest to compare the cooling time using this equation 
with the time calculated using a standard shape such as the infinite slab, infinite 
cylinder or a sphere. A comparison of the cooling time for the Rome apple 
when modeled as a sphere and the cooling time for the Bartlett pear when 
modeled as an infinite cylinder is discussed here. 
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Rome Apple 
hlk=10,50,125,250,625,1250, 03 

1 

0.1 

0.01 

0 1 2 3 4 5 6 

Pt 

FIG. 3.  COOLING CURVES FOR A ROME APPLE 

The volume of the Rome apple and the Bartlett pear were calculated during 
the finite element formulation of (9). The volumes were 3.463E-04 m3 and 
3.043E-04 m3 for the apple and pear, respectively. A sphere with the same 
volume as the apple has a radius of 0.0436m. A finite cylinder of height 0.107m 
with the same voIume as the pear has a radius of 0.0301m. 

The temperature response curves given by Singh and Heldman (1993), and 
other books, require a significant amount of visual interpolation unless values 
are selected on the basis of readability. Easily readable values were selected for 
this part of the study. The curves are given in terms of the dimensionless 
temperature ratio, DTR, the inverse of the Biot number and the dimensionless 
parameter, at/D2 where D is the outside radius. A dimensionless temperature 
ratio of 0.100 was used. Inverse Biot values of 0,0.5 and 1 .O were used for the 
apple and 0, 0.4 and 1.0 were used for the pear because the curves for these 
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values intercepted the DTR value of 0.100 at locations which reduced the 
amount of visual interpolation required. 

Bartlett Pear 
h/k=10,50,125,250,625, 

0 1 2 3 4 5 6 

Pt 

FIG. 4. COOLING CURVES FOR A BARTLETT PEAR 

The time to cool each product to DTR = 0.100 was calculated using the 
finite element solution of (9) as described in step 4 to evaluate the coefficient A. 
The cooling time was also calculated using the numerical value of at/D2 obtained 
from the temperature response curves. The results of each set of calculations are 
summarized in Tables 3 and 4. 
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TABLE 3. 
COOLING TIME TO DTR = 0.100 

USING TWO DIFFERENT METHODS, ROME APPLE 

Bi" 
Type of Calculation 0 0.5 1 .o 

Temperature Response Curve 4790 9436 14360 
Numerical Analvsis 3220 27000 50000 

~~ 

Calculated values are in seconds 

TABLE 4. 
COOLING TIME TO DTR = 0.100 

USING TWO DIFFERENT METHODS, BARTLETT PEAR 

Bi-' 
Type of Calculation 0 0.4 1 .o 

Temperature Response Curve 2730 4360 8720 
Numerical Analysis 3060 8770 17700 

Calculate values are in seconds 

The conclusion of this comparison is that there is no relationship between 
the two methods of calculating the cooling values. In fact, the disparities 
between the calculated cooling times are so great, the finite element code was 
rechecked for programming errors and rechecked using a finite cylindrical 
shape. No errors were found in the software. It appears from these calculations 
that an apple should not be modeled by a sphere nor should a pear be modeled 
by an infinite cylinder when trying to estimate the time to cool to a specified 
temperature. These results may not be as surprising as they seem because the 
cooling of an apple or pear is a special two-dimensional problem, axisymmetric, 
and the infinite slab, the infinite cylinder and a sphere are one-dimensional 
problems. 

COOLING TIME ESTIMATE 

Equation (8) and the A values for the apple and pear can be used to 
generate a simple equation to estimate the cooling time. The equation contains 
a numerical value divided by the lowest eigenvalue. The equation has the simple 
form 



IRREGULAR SHAPED FOOD PRODUCTS 

C 
t = P  

The cooling time to a specified DTR value is 

The numerator in (12) has similar values for apples and pears for the same h/k 
values. Suppose hlk = 125 m-I and DTR = 0.02. The corresponding A values 
are 1.23 and 1.37 for the apple and pear, respectively. The numerator values are 
1.789 and 1.836 with an average of 1.81. The time required to cool the apple 
or pear is 

1.81 t = -  
P 

Using the eigenvalue for each fruit when h/k = 125 m-' in (12), the 
estimated time to cool each fruit 98% is 8920 s for the apple and 4780 s for the 
pear. These values compare with 8810 s, apple, and 4840 s, pear, calculated 
using (8). The cooling time for each fruit has a 1.2% error. The largest time 
difference is less than 2 min. 

Table 5 contains the C values required for (1 1) for six different DTR 
values and convection coefficients corresponding to natural convection, h = 5 
W/m*"C, forced convection, h = 25 W/m2"C, and hydrocooling, h = 70 
W/m2"C. The convection coefficients are given by Fraser and Otten (1992). The 
C coefficients were calculated using the A values given in Table 5. Each A 
value was determined using linear interpolation in Table 2 or Table 3 and is the 
average for the apple and the pear. 

The advantage of the cooling time estimate given by (13) is that the lowest 
eigenvalue is much easier to evaluate than a time dependent finite difference or 
finite element solution of the fruit. No decisions have to be made about the 
solution procedure or the time step. A good estimate of the lowest eigenvalue, 
/3. is obtained from a relatively coarse grid of the shape. The best approach is 
to average the lowest eigenvalue for the lumped and consistent formulations of 
the time problem. The C values may also be relatively independent of the 
axisymmetric shape. Further study is needed on this aspect. 
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TABLE 5. 
THE COEFFICIENT C USED TO ESTIMATE THE TIME 

REQUIRED TO COOL A ROME APPLE AND A BARTLETT PEAR 

DTR 
Type of 
Cooling A 0.125 0.100 0.075 0.050 0.025 0.010 

Natural 1.03 0.916 1.01 1.14 1.30 1.61 2.04 
Forced 1.14 0.960 1.06 1.18 1.36 1.66 2.06 
Hydro 1.33 1.03 1.12 1.25 1.42 1.72 2.12 

SUMMARY 

A procedure for developing a cooling equation for an irregular shaped food 
product has been presented. The cooling equation includes two parameters that 
are a function of the product shape, material properties and boundary conditions. 
The procedure utilizes the finite element method to calculate the lowest 
eigenvalue for the transient heat transfer problem. The second parameter is 
obtained by determining the time required for the dimensionless temperature 
ratio to reach a specified value. The method was applied to the cooling of an 
apple and a pear. A table of the lowest eigenvalues and the multiplying 
coefficient A as a function of h/k is given for the Rome apple and the Bartlett 
pear, respectively. The method gives reasonable cooling time values for the two 
products analyzed. A comparison with temperature response curves indicates that 
the calculations for an apple modeled using a sphere with the same volume are 
not comparable. The same noncomparble result was found for the pear when it 
was modeled using a finite cylinder with the same volume. 

The method of analysis presented here could be the basis for a computer 
code that is capable of determining the cooling time for axisymmetric shapes 
because the cooling time can be represented by a single numerical coefficient 
divided by the lowest eigenvalue for the product being cooled. All of the thermal 
properties of the cooling problem are incorporated in the lowest eigenvalue. The 
lowest eigenvalue is a more desirable parameter than the Biot number because 
the Biot number is not clearly defined for irregular geometries. The computer 
software would ask for information that defines the shape and thermal 
properties, calculate the lowest eigenvalue for the product and give the time to 
cool the product to a specified dimensionless temperature ratio. 
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