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EXPERIMENTAL INVESTIGATION OF ASYMPTOTIC 
MODAL ANALYSIS FOR A RECTANGULAR PLATE 
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Experimental investigations of the response of a rectanguar plate under a point random 
force have been performed to verify the asymptotic behavior predicted by Asymptotic 
Modal Analysis (AMA). Measurements have been made for various frequency bandwidths, 
center frequencies, and locations of the point force. The experimental results approach 
the results predicted by AMA as the frequency bandwidth becomes large. Moreover, 
experimental results show that the responses at all points of the plate except for some 
special areas become the same as the frequency bandwidth becomes large. However, the 
ratio of experimental results to AMA results has a greater variation from unity when the 
location of the point force is near the edge of the plate, than when the location of the 
point force is at the center of the plate. All experimental results show good agreement 
with the expected results from AMA. 

1. INTRODUCTION 

Dowel1 [l] showed that the results commonly referred to as Statistical Energy Analysis 
(SEA) [2] can be obtained by studying the asymptotic behavior of Classical Modal 
Analysis (CMA) for a general, linear structural system; those asymptotic results are called 
Asymptotic Modal Analysis (AMA). In reference [ 11, moreover, specific generalizations 
were made for structural-acoustic systems and interacting subsystems. Since AMA results 
can be derived systematically from CMA, AMA allows an assessment of the assumptions 
and consequent simplifications which are made to obtain such results and a combination 
of CMA and AMA (or SEA) may prove useful in applications. 

In reference [3], the comparison of AMA (or SEA) and CMA was made for the response 
of a single general linear structure and the asymptotic characteristics of AMA were 
discussed. It was shown that the asymptotic behavior of AMA (or SEA) results depends 
upon the number of modes in a frequency interval of interest and the location of the 
point forces, and that, asymptotically, all points on the structure except for some special 
areas have the same response; the exceptional areas are near the points of excitation and 
near the structural system boundary. Some numerical examples for a beam were presented 
in reference [3]. 

In this paper an experimental study of the response of a rectangular plate under a 
point random force is reported. There were two objectives in this study. The first one was 
to demonstrate experimentally the manner in which the asymptotic limit is approached. 
The second one was to show experimentally that the response of almost all points of the 
plate becomes the same in the asymptotic limit. 

Similar experimental and theoretical investigations were carried out by Crandall et al. 
[4-61. Their works were directed primarily toward the identification and verification of 
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“intensification zones” or local peak responses. Since the input force level was not 
calibrated in the experiments, no quantitative comparison between calculated and 
measured response levels of the SEA type could be made. Moreover asymptotic behavior 
of the response as the frequency bandwidth increases was not studied experimentally. 

Experimental measurements, as described in this paper, have been carried out for 
several frequency bandwidths in which the maximum one corresponds to 47.1 modes of 
plate vibration, for several band center frequencies, and for two locations of the point 
force which are the center of the plate and near the plate edge, respectively. 

All experimental results verify the asymptotic behavior of the plate response which is 
predicted by AMA. 

2. BRIEF REVIEW OF AMA AND A NUMERICAL EXAMPLE 

By using classical modal analysis the mean square response of a plate under many 
point random forces can be calculated by the following equation, on the assumption that 
the damping is small and the external forces are nearly white noise, see reference [7]: 

(1) 

All terms are defined in Appendix C. When a spatial average over the response is taken, 
equation (1) becomes 

(2) 

where ( ) denotes a spatial average. Note that the point pairs Xi, yip x7, yj* obey Xi = x?, 
yi = y”: i.e., they range over the same points on the plate. Hence the * superscript is 
superfluous. 

If the number of modes is large then the right-hand side of equation (2) will tend to 
be dominated by terms for which i =j. Hence equation (2) becomes 

(3) 

where I is the number of the point forces. 
In a certain interval of frequency, Mi, co:, &,,, GF,,(w,), and (I/&) will be slowly 

varying with mode number, m, but 4L(Xi, vi) will vary relatively rapidly. Thus, in a certain 
interval of frequency, Aw, 

where the subscript c denotes the center frequency in the interval, Au. But now, if there 
is a large number of modes, AM, in the frequency interval, do, then 

Thus, 

MtAM-1 

C IlrZ,(xiv Yi) G AM($Z). (5) 
m=M 

(6) 

where [cf=, @F,,(w,)Aw] = (F2>Am may be identified as the total (mean square) force of 
the point forces in the frequency interval, Aw. Moreover, if the plate mass per area is 
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smoothly varying, then the plate generalized mass at the center frequency may be written 
as n/r, = M,(I,@), where Mp is the total plate mass. 

Hence, finally, if there are many modes (large AM) in Aw, then equation (6) may be 
written as 

(w2)dw = (~/4)(AM/Au)((F’>a~/M~~~~~). (7) 

Equation (7) is the final result of AMA for the response of a plate under point random 
forces. For a more detailed derivation and discussion, see reference [3]. Note here that 
equation. (7) is not only the asymptotic limit for the spatial average of the plate response, 
but also the correct asymptotic limit for the response at almost any spatial point on the 
plate. For the discussion about the exceptional points, see Appendix A. 

Taking the ratio of equation (2) to equation (7) one has a measure of goodness of the 
asymptotic approximation, ( W2)cMA/( R2),,,. Now, for a numerical example, consider a 
uniform, all simply supported rectangular plate where I/J~ = sin m,rx sin myn,,; x, y are 
non-dimensionalized by plate length and width. A few sample calculations have been 
made for an aluminum plate under one point force, I = 1, whose dimensions are 762 x 508 x 
0.794 (in mm). These dimensions are the same as those of the plate which was used in 
the experiment (see the following section). In the calculation, the center frequency of the 
interval was defined as fc = (fminfmax)“* and the number of modes in the frequency 
interval, Af; was estimated from AM = AfA,/hm, where A, is the plate area and h 
the plate thickness. This equation is derived in reference [2]. 

In Figure 1 the ratio of CMA response to AMA response is given as a function Of fmin 
for xi = y, = 0.5. Figure l(a) shows the ratio for Af = 300 Hz, (b) for Af = 100 Hz, (c) for 
Af = 30 Hz, and (d) for Af = 10 Hz. The number of modes, AM, in the frequency interval 
is approximately 47.1 for Af = 300 Hz, 15.7 for Af = 100 Hz, 4.7 for Af = 30 Hz, and 1.6 
for Af = 10 Hz. The ratio oscillates about unity more randomly in the case of a plate than 
in the case of a beam (see reference [3]). The reason is that the mode numbers, m, and 
my, do not form a single monotonic frequency sequence for a plate. However, the ratio 
approaches one as the frequency interval, Af, becomes large. In the case of Af = 30 Hz 
and Af = 10 Hz, the ratio is sometimes zero when all m, and/or my in the frequency 
interval, AA are even, i.e., all modes of the plate vibration in one or both directions are 
antisymmetric, and x1 = y, = 0.5. 

In Figure 2 the ratio of CMA results to AMA results is shown for Af = 300 Hz and 
x, = y, = 0.05. This result is representative in that the asymptote is approached less rapidly 
when the location of the point force is near the plate edge: compare Figures l(a) and 2. 

5, 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Figure 2. Ratio of CMA response to AMA response versus minimum frequency for x, =y, = 0.05 and 
Af= 300 Hz. 
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3. EXPERIMENT 

3.1. EXPERIMENTAL ARRANGEMENT 

A schematic diagram of the experimental set-up is illustrated in Figure 3. The dimensions 
of the aluminum plate are 762 x 508 x0.794 (in mm). Small permeable discs (9 mm in 
diameter) are glued at the locations of excitation. Two opposite sides of the plate are 
clamped and the others are free, as shown in Figure 4. The first natural frequency of the 

Charge Frequency 
amplifker analyzer 

Aluminum plate 

\ 

Accelerometer 

r-5 Random noise 
generator 

Figure 3. Experimental set-up. 
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Figure 4. Plate dimension and measuring points for x, = y, = 0.5; X, measuring points. 

plate is determined to be 6.56 Hz experimentally and 6.74 Hz analytically, which was 
calculated from Janich’s equation [8]. Figure 5 shows the damping ratio of the plate 
which was obtained by measurement. In the damping measurement the decrements of 
free vibration at each natural frequency were measured by using a frequency filter. 
Measurements were made at those points of the plate which had the maximum response, 
and averages were then taken. A non-contact magnetic transducer, Bruel & Kjaer (B&K) 
MM 0002, was used as a vibration exciter. The force level of the exciter was calibrated 



208 Y. KUBOTA AND E. H. DOWELL 

1 x10-41 / 1 I I I I I / 
0 100 200 300 400 500 600 700 600 900 1C 

Frequency (Hz) 

Figure 5. Damping ratio of the plate. 

IO 

by a standard experimental set-up. The exciter force level depends upon the input voltage 
and the clearance between the exciter and the plate. However, those relationships are 
linear over the force level range which was used in the experiment. An example of the 
frequency response of the exciter force level is shown in Figure 6. The force level does 
not change very much with respect to frequency. 

I x 10-41 I 1 I I 1 I 1 / 
0 100 200 300 400 500 600 700 600 900 1000 

Frequency (Hz) 

Figure 6. Force level of the magnetic exciter; 0.7 mm is the clearance between the exciter and the object, 
and 35 volt is the input voltage. 

The exciter was driven by a random generator, B&K 1024. The frequency bandwidth 
of the narrow band random noise can be chosen in four steps, 10, 30, 100 and 300 Hz. 
The center frequency of the band noise can be tuned continuously. A small accelerometer, 
B&K 4375, whose weight is 3 g was used to detect the response of the plate. For 
measurement of higher order plate modes, the mass of the contact transducer has to be 
small, because for higher modes the measured value may be affected substantially by the 
transducer mass. This phenomenon can be predicted analytically for simple physical 
configurations: see Appendix B. Hence, one cannot measure accurately the response of 
the structure by a contact transducer for sufficiently high order modes, even if the 
transducer mass is small. The root mean square value of the plate response acceleration 
was measured by an accelerometer, B&K4375, charge amplifier, B&K 2635, and frequency 
analyzer, B&K 2107. 
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3.2. EXPERIMENTAL MEASUREMENTS 

Measurements have been performed for two locations of the exciting force, i.e., 
x1 = y, = 0.5 and x1 = y, = 0.05, where x1 and yi are normalized by the length and width 
of the plate. For x, = y, = O-5 (the exciting point is at the center of the plate) measurements 
have been made for four frequency bandwidths, Af= 10, 30, 100 and 300 Hz, and for 
seven center frequencies, fT = 350,400,450,500,550,600 and 650 Hz, where f: is defined 
asf: = (fmi” +f,,,)/2. Measuring points on the plate are shown in Figure 4. Measurements 
have been made only for one quarter of the plate for x1 = y, = 0.5. 

For x1 = y1 = 0.05, measurements have been performed for Af = 300 Hz and for four 
center frequencies, f: = 350,450, 550 and 650 Hz. Measuring points were similar to those 
shown in Figure 2: i.e., detailed measurements have been made for near the exciting 
point and near the plate edge, but now also for the whole plate. 

The root mean square values of the plate response acceleration were measured directly. 
However, the mean square values of the local response acceleration and the spatial 
averages of the mean square acceleration value will be used in the following discussion. 
The spatial average has been calculated by averaging the average mean square value of 
each area which is surrounded by four measuring points. 

3.3. EXPERIMENTAL RESULTS AND DISCUSSION 

The ratio of experimental results to AMA results will be used to focus the following 
discussion. AMA results were calculated from equation (7) and the spatial average of 
the plate acceleration was defined by (a’),, = w:(#*)~~ where w, = (ti,inW,,,)“*. To 
determine the effective damping ratio, &, at the center frequency, the averages of the 
experimental damping data (see Figure 5) in each bandwidth 300 Hz were used for each 
Af= 300 Hz, and the averages in each bandwidth 100 Hz were used for each Af= 10, 30 
and 100 Hz. These were used in the theoretical calculations. 

The ratio of experimental results to AMA results versus the center frequencies is shown 
for various Af in Figure 7. The ratio oscillates about one as the center frequency varies, 
but for larger Af the variation is less. In Figure 8 the ratio of experimental results to 
AMA results versus the frequency bandwidth, Af is shown for x, = y, = 0.5. The bounded 
bar lines indicate the maximum and the minimum values determined by numerical 
calculations for various center frequencies in the corresponding frequency range for an 
all simply supported plate (see the previous section). Note here that the boundary 

1 

I I 1 1 ‘1 1 I / 1 
0 100 200 300 400 500 600 700 600 900 

Frequency (Hz) 

Figure 7. Ratio of experimental results to AMA results versus center frequency. X, = y, = 0.5; 0, Af= 300 Hz; 
., Af= 100 Hz; A, Af= 30 Hz; 0, Af= 10 Hz. x, =y, =0.05; x, Af = 300 Hz. 
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Af (Hz) 
30 

Figure 8. Ratio of experimental results (and CMA) to AMA results versus frequency interval for x, = y, = 0.5; 
various center frequencies. I, Theory, CMA/AMA; 0, experiment/AMA. 

condition of the plate used in the numerical examples is different from that in the 
experiment. For a high mode, however, the natural mode shapes will tend to be indepen- 
dent of boundary support conditions: see references [9] and [lo]. Hence, for the higher 
modes, the asymptotic behavior of equation (5) will not change even if the boundary 
condition of the plate is changed. As can be seen from Figure 8, both experimental and 
numerical results approach one as the frequency bandwidth, Af; becomes large. It is 
interesting to note that all experimental results are bounded by the bar lines which describe 
the numerical result. Note that the experimental measurements have been made for seven 
center frequencies. 

In Figure 9 the ratio of experimental (and numerical CMA) results to AMA results 
versus the location of the exciting point, x1 = y,, is shown for Af= 300 Hz. AMA is less 
accurate when the location of the point force is near the plate edge. 

5 

i 

Figure 9. Ratio of experimental results (and CMA) to AMA results versus location of force for Af= 300 Hz. 
Key as Figure 8. 

The distributions of the plate response for various Af and fz = 650 Hz are shown in 
Figure 10. Figure 10(a) shows the case of Af= 10 Hz, (b) for Af= 30 Hz, (c) for Af= 
100 Hz, and (d) for Af = 300 Hz. The vertical axis in Figure 10 shows the ratio of the 
mean square local response to the spatial average of the mean square response, 
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Figure 10. Ratio of mean square local response to spatial average of mean square response for xi = y, = 0.5 
and .c = 650 Hz; (a) Af = 10 Hz; (b) Af= 30 Hz; (c) Af= 100 Hz; (d) Af= 300 Hz. 



212 Y. KUBOTA AND E. H. DOWELL 

&(x, v)/(%*),,. In the case of Af= 300 Hz, the accelerations of all points of the plate 
except for some selected areas are almost the same as the spatial average. The exceptional 
areas are near the lines x = x1 and y = yl, and near the edge of the plate. According to 
AMA (see Appendix A), the points on x = x, or y = y, have a response twice as large as 
the spatial average in the asymptotic limit and the response at the location of the point 
force becomes asymptotically four times as large as the spatial average. For more 
discussion about the asymptotic limit of the exceptional areas, see Appendix A. Experi- 
mental results for Af= 300 Hz show good agreement with these analytical asymptotic 
limits. These analytical results are some of the generalizations of AMA beyond SEA. As 
can be seen from Figure 10(a)-(d) the spatial distribution of the plate response will vary 
less as the frequency bandwidth, Af; becomes large. 

4. CONCLUDING REMARKS 

Experimental investigations of the accuracy of AMA have been performed for the 
response of a rectangular plate under a point random force and the following conclusions 
have been reached. 

(1) The response of the plate approaches its asymptotic limit as the frequency interval 
becomes large, but when the exciting point is near the plate edge the response varies 
more from its asymptotic limit. Typically the frequency interval must contain 20-50 modes 
for the asymptotic limit to be a useful approximation. 

(2) All points of the plate except for some selected areas have nearly the same response 
when the frequency interval is large. The exceptional areas are near the lines of x = Xi 
and y = yi, and near the plate edge. Xi, yi is the position of the point random force. For 
xi = yi = 0.5 the response of points on x = xi or y = yi is almost twice as large as the 
average response and the response at the exciting point is almost four times as large as 
the spatial average when the frequency interval is large. 

These experimental results are predicted by AMA. It has been verified experimentally 
that AMA is a valid, consistent, and useful approximation as Af becomes sufficiently large. 
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APPENDIX A: ASYMPTOTIC LIMIT OF LOCAL RESPONSE 

Equation (7) was derived by starting from equation (1). As a first step a spatial average 
of equation (1) was taken leading to equation (2). What is perhaps remarkable is that it 
can be shown that equation (7) is also the correct asymptotic limit for the response at 
almost any spatial point on the plate. Some special points, however, have other asymptotic 
limits. A brief discussion of the asymptotic limit of the local response follows. 

Consider equation (1) and retain only those terms for which i =j since asymptotically 
these will be dominant. In a certain frequency interval Mi, wi, &,,, $F,,(o,) will be 
slowly varying with the mode number, m, but +i(x, y) and $‘,(Xi, yi) will vary relatively 
rapidly. Then equation (1) becomes 

#2(x, y ) = z 
4 &E @F,,CwC) C Ic12m(x, Y)+c12m(xi, Yi). 

E c i m 
(Al) 

Compare equation (Al) and equation (4). Equation (4) is for the spatial average response, 
while equation (Al) is for the response at any point, x, y. It can be shown that 

M+AM-I 

,zM tifn(x, Y)J/fn(xi, Yi) + [(&J12AM (A2) 

for AM + co for most x, y and xi, yi. 
Recall here that the plate mode functions can be represented as the product of beam 

functions (see reference [8]); that is, &,,(x, y) = x,(x)y,(y), where x,(x) and ys(y) are 
chosen as the mode shapes of beams having the boundary conditions of the plate. This 
is exact for a pinned-pinned plate and asymptotically correct for other boundary condi- 
tions. Moreover, if the number of modes is sufficiently large, then 

[(UAr) C X?(X>X3(Xi)l[(llAS) C Y%Y)Yf(Yi)I + [(x?>I’[(Y~)I” = [(&Jl* (A3) 
I s 

as Ar, As+ 00, where Ar and As are the number of modes in the x and y directions. 
Hence, it is sufficient to consider the asymptotic limits for the beam functions. 

As an example, consider the natural modes of a uniform, simply supported beam of 
length L (x,(x) = sin (mx)/L). The results of S, = [C>?rfr-’ x?(x)x~(x,)] are obtained 
analytically and the asymptotic limits are given in the following. 

(I) When X # 0, L/2, L, Xi, 

where 

(Ar/4) - RI s S, s (Ar/4) + RI, (A4) 

RI = sin Arm(x+xi) 
L I 

8 sin r(X+Xi) 
L I I 

+ sin Ardx-xi) 
L I 

8 sin r(X-xi) 
L 

+ /sinF/4sinyI +IsinF/4sinTl. 

Hence 

Jj_m, (llAr)X = a( = [Cdl’) (AS) 

(II) When X = Xi Z L/2, 

$Ar - RI1 6 S, G 8Ar + RII, W) 

where RI1 = ]sin (Amx,/L)/2 sin (Txi/L)I +]sin (2Arrxi/L)/8 sin (2rxJL)i. 
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Hence 

Kim (l/Ar)S, =i( =;[(x:)]*)]. 647) 

(III) When X = Xi = L/2, 

S,=Ar/2+[1-(-1)A’]/4. (Ag) 

Hence 

;jmr (l/A,)S, = ;( = Wf)12). (A9) 

Thus, in cases (II) and (III), equation (A2) does not follow. For x = Xi and/or y = yi, 
the right-hand side of equation (A2) should be multiplied by (3/2)O for Xi # L/2 and/or 
yi f L/2, and by 2D for x = L/2 and/or y = L/2 where D = 1 or 2 for one or two dimensions, 
respectively. Recall that, for a high mode, the mode shapes will tend to be independent 
of boundary conditions except near the boundary: see references [9] and [lo]. Therefore, 
these asymptotic results are also correct for the other boundary conditions except for the 
case that x, Xi, y, and yi are near the boundary: see Figure 10. 

Of course, equation (A2) does not follow for response points near the boundary. As 
a special case, consider the case when x/L is very small, i.e., near the edge, and Amx/ L 
is also very small. In this case the result of the summation, S,, is bounded by 

(2r,+Ar- l)rx 
L 1 (2r,+Ar-1)7rx +R 

L 1 BY 

(AlO) 

where RB = sin 
Arr(x+xi) 8 sin n(x+xi) + sin Arr(x-xi) 

I I 
8 sin 

7r(x-xxi) 
L L L L 

+ Isin%/4sinyl. 

Hence, when r,/Ar is sufficiently large and (2r,, + Ar - 1)x/L = 1, 

;jlm (l/Ar)S, =+( = 2[(x5)12). (All) 

Therefore, the response at x = L/(2r,+ Ar - 1) becomes twice as large as the spatial 
average response in the asymptotic limit. It is interesting to note that L/(2r,+ Ar - 1) is 
one quarter of the average wave length in the frequency interval. Though the boundary 
for the plate which was used in the experiment is not simply supported, a similar 
phenomenon for response near the clamped edge is observed in Figure 10. 

APPENDIX B: EFFECT OF TRANSDUCER MASS 

To study the effect of a transducer mass, consider a high mode of a uniform, simply 
supported beam of length L. For the sake of simplicity, it is assumed that the transducer 
is placed at a point, x0, at which the slope of the deflection is zero. 

The differential equation of motion is 

EIa4w/ax4 = -mBa2w/dt2, (Bl) 

where w is the beam deflection, EI is the flexural rigidity, and mg is the mass per unit 
length of the beam. Now assume a solution of equation (Bl) in the form 

w(x, t) = w(x) e’“‘. 032) 



Thus 
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W 
,111 _ 

-PW, (B31 

where p = m,w2/ El. The boundary conditions for the region 0 s x d x0 are 

w(0) = w”(0) = 0, w’( x(J = 0, Elw”‘(x,) = -(mAWZ/2)w(xo), IB4) 

where m,.+ is the transducer mass. Using boundary conditions (B4), one obtains the 
characteristic equation 

cos Pxo cash ,&+ (PL/4)(m.JMB)[ cos P x0 sinh pxO - sin pxo cash px,,] = 0 i B5 1 

and the mode shape function 

[cos L%- W12)(mA/MB) sin Pxol 
w(x)=sin PX+[cosh pxo+(PL/2)(m,/MB) sinh px(,] sinh Px’ 

(B6) 

where MB is the total mass of the beam. Since px, is very large for a high mode, 

cash pxO = sinh pxO( =i e”+l). 

Hence, the characteristic equation (B5) becomes approximately 

IB7) 

cos @x0 - 0) = 0, iB8) 

where 8 = tan-’ {-(PL/4)(m,/MB)/[1+((PL/4)(mA/ MB)]}. Equation (B8) yields the 
eigenvalues 

Prx0=(rr-7r/2)-+, r=1,2,..., CB9) 

where 4, = tan-’ {-@J/4)( ma/ M,)/[l + @J/4)( m.,J MB)]}, 0 < C& < 7r/4. By using 
equations (B6), (B7) and (B9), the normalized amplitude of the response at x0 can be 
obtained from 

Iw(KJ =cos (+,-~/4)/[1+(r~/2)(Ux0)(mAlMB)1. (BlO) 

The amplitude at x0 becomes smaller as r and/or mA becomes large. Equation (BlO) 
indicates that the value detected by the transducer is always smaller than the correct 
value which is the response without the transducer. Therefore, the transducer mass should 
be as small as possible in measurements. Equation (BlO) may be used as a guide for how 
small the mass must be. However, note that one cannot measure accurately the correct 
value for sujiciently high modes by a contact transducer, even if the transducer mass is 
small but non-zero. 

M first mode number in the frequency interval, AW 
MIT? plate generalized mass, =~jrn&~ dx dy 
AM number of plate modes in Aw 

APPENDIX C: NOMENCLATURE 

plate area 
modulus of elasticity 
force 
frequency interval in Hz 
maximum frequency in Af 
minimum frequency in Af 
center frequency of Al; =(f f In,* max )‘I’ 
center frequency of Af; = (fmi,+fm,,)/2 
plate thickness 
number of forces 
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total mass of plate 
plate mass per area 
plate deflection 
Cartesian co-ordinates 
power spectral density 
plate modal shape function 
plate density 
modal damping of plate 
frequency in radians per seconds 
modal frequency of plate 
mean (temporal) 
spatial average 
subscripts denoting ith and jth points 
subscript denotes property associated with the frequency interval Aw 
subscript denotes property evaluated at center frequency of do 


