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Abstract-The aspiration efficiency of a thin-walled, shallow-tapered aerosol sampler, as studied 
by Vincent et al. (1986, J. Aerosol Sci. 17, 211-224), which is rear-facing the wind is numerically 
investigated. The turbulent fluid flow is predicted by employing the control volume, finite-difference 
method with a body-fitted coordinate system and a low Reynolds number k-E turbulence model. The 
particle trajectories are calculated by integrating the particle equations of motion using either the 
turbulent instantaneous fluid velocity (a stochastic model) or the mean fluid motion (the mean 
motion model). The aspiration efficiency for thin-walled, shallow-tapered samplers which rear-face 
the wind as predicted by the two models, are in good agreement and although the results show an 
unusual behaviour they agree reasonably well with all the available experimental data. 

INTRODUCTION 

Thin-walled sampling probes are used primarily for duct sampling in order to determine the 
concentration of particles in relevant size fractions in the ambient atmosphere and in clean 
rooms. The early experimental work and theoretical analysis concentrated on the situation 
when the sampler faces the wind, and the probe diameter is less than 25 mm, see fdr example 
Badzioch (1959), Vitols (1966), Sehmel (1967), Ruping (1968), Belyaev and Levin (1974), 
Jayasekera and Davies (1980) and Okazaki et al. (1987). 

When the orientation angle of the sampler to the wind is in the region from 0” to 90” 
experimental work and semi-theoretical-empirical analyses have been performed by 
Durham and Lundgren (1980), Davies and Subari (1982), Vincent et al. (1986), Hangal 
and Willeke (1990) and Grinshpun et al. (1993). For an orientation angle of 180”, only 
Vincent et al. (1986) have experimentally investigated thin-walled samplers but more 
recently Tsai and Vincent (1993) have theoretically extended the impaction model of 
Vincent (1987,1989) to thin-walled, blunt samplers which are rear-facing the wind. Dunnett 
(1990) performed a numerical investigation on thin-walled samplers at orientations with 
respect to the flow direction from 0” to 90” by employing a potential fluid flow model and 
more recently Wen and Ingham (1994) have presented a numerical investigation on the 
sampling mechanism for thin-walled cylindrical samplers using the turbulent k--E model (see 
Launder and Spalding, 1974). 

In this paper the numerical investigation of Wen and Ingham (1994) has been extended to 
thin-walled, shallow-tapered samplers which are rear-facing the wind. A low Reynolds 
number turbulent k--E model has been used in order to simulate the turbulent air flow in the 
sublayer of the boundary-layer on the wall of the sampler. The particle paths have been 
traced by considering the averaged turbulent fluid velocity (the mean motion model) or the 
turbulent instantaneous fluid velocity (the stochastic model) in which the fluctuating 
turbulent fluid velocity is locally isotropic with a Gaussian distribution. 

MATHEMATICAL MODEL 

The sampler under investigation is cylindrical, thin-walled and shallow-tapered and has 
the same dimensions as the sampler employed in the experimental work of Vincent et al. 
(1986), see Fig. 1 for a schematic diagram of the sampler investigated. The sampler consists 
of a long shallow-tapered probe of circular cross-sectional area. The probe is of diameter 
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Fig. 1. A schematic diagram of a thin-walled, shallow-tapered sampler which is rear-facing 
the oncoming wind. (a) 6 = 2.0 cm, D = 7.0 cm, U, = 2.0 m s-l, U0 = 2.0 m s-l. (b) 6 = 5.0 cm, 

D=7.0cm, U,=2.0ms-‘, U0=2.0ms-‘. 

6 at the orifice, diameter D at its base and of length Lb. The probe is connected to 
a cylindrical pipe of diameter d at its base by means of a shoulder which is inclined to the 
axis of the sampler at an angle tx. Cylindrical coordinates are used in which r is the 
coordinate in the radial direction and z is aligned with the axis of symmetry of the sampler 
and is measured positively from the plane of the orifice of the sampler in the direction of the 
undisturbed freestream flow UO. At the orifice of the sampler the fluid enters the sampler 
with an average sampling velocity U,. A large distance along the cylindrical pipe the fluid 
flow becomes fully developed turbulent flow, with an average sampling velocity Ui, and we 
assume that this takes place at the section E, see Fig. 1. Therefore we define the ratio of the 
undisturbed fluid velocity to the average sampling velocity at the orifice as the velocity ratio 
R = U&J, and the ratio of the diameter of the probe at the orifice to its diameter at its base 
as the sampler ratio rl = 6/D. Because some of the oncoming fluid enters the sampler and 
some will not, there is a dividing stream surface which separates these fluids. In particular 
there is a point on the axis of symmetry of the sampler where there is a stagnation point, say 
the point S, see Fig. 1, and the distance from stagnation point S to the orifice of the sampling 
probe is assumed to be 2,. 

In this paper, to match the experimental operating conditions in the wind tunnel of 
Vincent et al. (1986) we have assumed that the air flow is turbulent. Clearly, the geometry of 
the sampler is more complex than the cylindrical sampler which was considered by Wen 
and Ingham (1994), with the consequence that the air flow around the sampler is also more 
distorted. Given the geometry of the sampler, the flow is characterized by the Reynolds 
number Re = U&/v, where v is the kinematic viscosity of the air. In most experimental 
situations, and in particular those investigated by Vincent et al. (1986), the Reynolds 
numbers are typically of the order 4000 and the thickness of the turbulent boundary-layer is 
of the same order as that of the diameter of the orifice of the sampler. In this situation the 
standard k--E model cannot reveal the true nature of the fluid flow by using the wall function 
in regions very close to the wall of the sampler. Therefore, in this paper we use a ‘low 
Reynolds number turbulent k--E model’, for further details see, for example, Launder and 
Sharma (1974). 

For an incompressible fluid, the momentum and the continuity equations for turbulent 
fluid flow, in vector notation, are given by 

v*vv = - ;vp + v.(v.vv), (1) 

v.v=o, (2) 

where V = u e, + we,, u and w are the mean values of the turbulent components of the fluid 
velocity in the radial and axial directions, respectively, and e, and e, are the unit vectors in 
the radial and axial directions, respectively, p is the density of the fluid and v, is the effective 
kinematic viscosity of the fluid and consists of the sum of the laminar kinematic viscosity 
v and the turbulent kinematic viscosity vt, i.e. v, = v + vt. 



Aspiration efficiency of a thin-walled shallow-tapered sampler rear-facing the wind 935 

A low Reynolds number turbulent k--E model, developed by Launder and Sharma (1974), 
is given by 

(V*V)k = V* [(v+;)Vk]+,-s..,, 

(V.V)E = v 

where k is the turbulent kinetic energy, E is the turbulent energy dissipation, 4 is the 
generation of the turbulent energy which is caused by turbulent stresses, and 

fl = 1.0, 

fi = 1 - 0.3exp(- Rg), 

(5) 

(6) 

R’T = k=/ve, (7) 

(8) 

E, = - 2.Ovv, 

The turbulent viscosity v, is given by 

v, = C,f,k+ 
E’ 

where 

(9) 

(11) 

Further, the coefficients which occur in equations (3Hll) should be determined by perform- 
ing an experimental investigation on the flow around the sampler. However, there is 
a severe lack of detailed measurements on the turbulent velocity distribution, and of other 
turbulence quantities, for flows around samplers. Therefore, the values of the unknown 
coefficients used in this paper are those suggested by Launder and Sharma (1974), namely, 

C, = 0.09, crk = 1.0, (T, = 1.3, C1 = 1.44, C2 = 1.92. (12) 

These values are based on a very extensive examination of various fluid flows and form the 
best available data. 

In order to solve for the fluid velocity, the turbulent kinetic energy k and the turbulent 
dissipation E, the control volume, finite-difference method is used in order to discretize 
equations (lH4), see Ingham and Wen (1993), using body-fitted coordinates and a non- 
staggered grid. Different body-fitted coordinates, mesh sizes and solution domains have 
been investigated in order to obtain accurate numerical results and we found that an 
orthogonal coordinate system with 170 x 80 grid nodes which covers the region of 
- 11.7(0/2) < z < 8.4(0/2), 0 < I < 10(0/2) can produce reliable numerical results. The 

resulting algebraic equations were solved using a line-by-line Tridiagonal-Matrix Algo- 
rithm. The SIMPLEC algorithm (see Van Doormaal and Raithby, 1984), which is a modifi- 
cation to the SIMPLE algorithm (see Patankar, 1980), and the average velocity and 
pressure correction technique (see Wen and Ingham, 1993) is employed. The upstream 
values for the turbulent kinetic energy and dissipation were specified, namely k = (IV,)’ 
and E = Cz’4k’.5/L, where I is the turbulent intensity and L is the turbulent length scale. 
In the experimental investigation of Vincent et al. (1986) they estimated that the value of 
I was 0.06 and L = 7 cm. Therefore all the calculations presented in this paper were 
performed with these values of I and L. 
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Stochastic model 

When the particle density is much larger than that of air and the particle Reynolds 
number is much less than unity, then the i component of the Lagrangian particle equation of 
motion takes the form 

dxi 
dt = upi, 

dupi Y*dh 

18~ dt 
= iii + Uj - UPi, 

(13) 

(14) 

where y* is the density of water, d,, is the particle aerodynamic diameter, p is the viscosity of 
the fluid, xi normalised by 612 is the position of the particle, Upi is the i component of the 
velocity of the particle, ui is the mean fluid velocity of the fluid and u: is the fluctuating 
component of the fluid velocity, Upi, Ui and u: are normalised by U,,. The Stokes number is 
defined as 

St = y*dgZ,Ue/(18/&2). (15) 

The motion of the particles are not equally affected by the different scales of turbulence, 
but rather the motion is mainly governed by the interaction of the particle with a succession 
of large eddies, each of which is assumed to have constant flow properties. A method for 
tracking the particle motion was developed by Gosman and Ioannides (1981) assuming that 
the velocity fluctuations are isotropic and have a Gaussian distribution with a standard 
deviation given by 

u, = (2/?/3)“‘. (16) 

Thus the fluctuating velocity components are given by 

U: = YiUJU()y (17) 

where Yi are normally distributed pseudorandom numbers and u; is used in the particle 
equation (14) to evaluate the instantaneous drag force on the particle. The length scale 
L, and the lifetime r, of the large scale eddies are, see for example Gosman and Ioannides 
(1981) and Shuen et al. (1983), given by 

L, = C;/4k1.5/e, z, = LA, (18) 

respectively. 
The transit time required for the particle to cross the eddy was determined by Shuen et al. 

(1983) for a particle in a uniform flow, i.e. 

r, = - r In { 1 - L,/[z 1 (UT + u$)~‘~ - (u& + 1.4~)~‘~ I]}, 

where r is the relaxation time of the particle, namely 

(19) 

r = d&y*/18p. (20) 

Equations (13) and (14), which govern the motion of the particles, were integrated over the 
time T, which is the minimum of the eddy lifetime and the transit time, i.e. T = min(t,, r,}. 

The calculation of the aspiration efficiency has been performed in two simple situations, 
namely, for both sticky and non-sticky walls. When the wall of the sampler is considered not 
to be sticky, it is assumed that when particles impact on the wall of the sampler they bounce 
off and the coefficient of restitution is defined as fi = V2/V1, where V2 is the normal 
component of the rebound velocity and V1 is normal component of the impact velocity. 
When the wall of the sampler is considered to be sticky, it is assumed that once a particle 
impacts on the wall of the sampler it sticks to the wall. In practice once a particle hits the 
surface of the sampler it is possible that it will be reentrained into the flow by means of 
blow-off and this is influenced more by the nature of the air flow and drag forces on the 
particle in the boundary-layer and less by the speed of the impact of the particle. Because 
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this phenomena is complex and the inclusion of blow-off depends on numerous other 
independent quantities it is not included in the present work. However, the situations of 
a sticky wall and perfect impaction gives the two extremes for the aspiration efficiency. The 
aspiration efficiency will lie between these limits. But in most practical situations, the 
‘sticky-wall’ assumption is the closest to reality. 

In order to obtain the dispersion properties of the particles a number A4 (A4 = 1000 has 
been taken in all the results presented in this paper in order to obtain a stable statistic value 
of P) of particles of a given size were released at the same point at a large distance upstream 
of the sampler. Then the probability that the particle is sampled for this size of particles is 
defined as 

P=$ (21) 

where N is the number of sampled particles. Clearly, P is a function of Qr, where Ql is the 
flux of fluid across the area enclosed by the circle in the plane of constant z on which the 
particles start. It has been assumed that far upstream of the sampler the particle has the 
same velocity as that of the air and the concentration of particles of a given size is constant. 
Thus the aspiration efficiency of the sampler is given by the expression 

(22) 

where Q is the sampled flux of air which enters the sampling probe. 

Mean motion model 

In general the turbulent fluctuating air velocity is much smaller than the average air 
velocity and under the assumption of local isotopic turbulence, a particle has an equal 
chance of diffusing in the two directions which are normal to the mean particle motion. 
Therefore, when there exists a uniform concentration of particles at large distances from the 
sampler it is expected that the inertia of the particle will be more important than the particle 
diffusion in the determination of the aspiration efficiency. Therefore if we neglect the effect 
of particle diffusion on the aspiration efficiency of the sampler, i.e. we neglect the fluctu- 
ations in the fluid velocity, then equation (14) simplifies to 

y*dZe dupi - 
18~ dt 

= Ui - Upi. (23) 

Further, based on equation (23), for a given particle size there exists a particle limiting 
surface. The particles within the limiting particle surface will be sampled and the particles 
outside of the limiting particle surface will not be sampled. Thus the aspiration efficiency of 
the sampler is given by the expression 

A = QolQ, (24) 

where Q. is the flux of air which is enclosed by the particle limiting surface far upstream of 
the sampler and Q is the sampled flux of air which enters the sampling probe. 

The stochastic model and the mean motion model were used to evaluate the aspiration 
efficiency for the two thin-walled, shallow-tapered samplers which were experimentally 
investigated by Vincent et al. (1986). These samplers have the same size of sampler body, 
Lb = 13.0 cm and D = 7.0 cm, the same size of arm, L, = 8.5 cm, d = 1.0 cm and a = 45”, 
but have different orifice diameters, namely 6 = 2.0 and 5.0 cm. Calculations have been 
performed with the oncoming wind speeds of U0 = 1.0, 2.0 and 3.8 m s-r and this gives rise 
to sampling velocity ratios R = U&J, = 0.67, 1.0 and 2.0, respectively. The value of these 
parameters were chosen so as to correspond to the experimental conditions of Vincent et al. 
(1986). 
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RESULTS AND DISCUSSIONS 

In order to reveal the general characteristics of the turbulent air flow in the vicinity of the 
sampler, the velocity vectors and the streamlines are shown in Fig. 2 for the two samplers 
with diameters 6 = 2 cm and 6 = 5 cm under the operating condition of U0 = 2.0 m s-r and 
R = 1.0. It is observed that the air flows are significantly distorted near the arm of the 
sampler. Further, as the flow approaches the body of the sampler the air is displaced by the 
body of the sampler. It is in the vicinity of the bluntest section of the sampler that the air 
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Fig. 2. Velocity vectors and streamlines in the vicinity of the sampler when R = 1.0, U, = 2.0 ms- ’ 
for (a) 6 = 2.0 cm and (b) 6 = 5.0 cm. 
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velocity is largest and where the boundary-layer on the external wall of the sampler has 
a minimum thickness. Beyond the bluntest section of the sampler the air begins to converge 
towards the orifice of the sampler and the smaller sampler orifice causes a sharper distortion 
of the streamlines near to the orifice than does the larger sampler orifice. When the air is in 
the region which is less than a distance of about one radius of the orifice of the sampler from 
the orifice of the sampler it undergoes a rapid acceleration, due to the action of the 
sampling, and in this vicinity the boundary-layer thickness is sharply reduced in size. 
Downstream of the orifice of the sampler the air which is contained in the limiting stream 
surface is sucked back into the sampler, and in the vicinity of the orifice of the sampler the 
air undergoes a rapid change in its direction of flow. The air then continues to flow into the 
sampling probe and eventually becomes the fully developed turbulent flow in the circular 
exit pipe. The sampler also draws air from the boundary-layer along the external wall of the 
sampler and this illustrates that the sampling process is very complex when the sampler is 
rear-facing the wind. 

Both the stochastic model and the mean motion model have been employed to calculate 
the aspiration efficiency of the sampler. Figure 3 shows the variation of the probability that 
a particle is sampled as a function of QJQ when 6 = 2.0 cm, U,, = 2.0 m s- ‘, R = 1.0, and 
St = 0.002. It is observed that when Q/Q < 0.93 then P(QJQ) takes a value of 1.0, and this 
means that all the particles which start within a circle which has a radius of ,/69% and 
centre on the z axis are sampled. Otherwise when QJQ 2 0.93 the value of P(Q,/Q) begins to 
decrease and is close to the value of zero when Q,/Q = 1.1, namely when all particles which 
start outside a circle which has its centre on the z-axis and has a radius of flS are not 
sampled. In this case the radius of the limiting surface upstream is Jo.9786 and this implies 
that some of the particles which are within the particle limiting surface are not sampled but 
some particles which are outside of the particle limiting surface are still sampled because of 
particle diffusion. Because the value of Q, is proportional to r2, the particles which are 
outside of the particle limiting surface respond to a larger flux of fluid and therefore the 
aspiration efficiency produced by the stochastic model will always be slightly larger than 
that produced by the mean motion model. We have also performed numerous calculations 
for 0.002 < St < 1.0 and found that the aspiration efficiency produced by the stochastic 
model is consistently slightly larger than that produced by the mean motion model by an 
amount up to about 0.05 for all the values of the Stokes number, St, considered. It is also 
worth noticing that when the Stokes number is very small the stochastic model produces an 
aspiration efficiency which is larger than unity. Therefore, we conclude that the stochastic 
model used in this paper gives results for the aspiration efficiency which are not significantly 
different from those predicted by the mean motion model. However, in order to produce the 
aspiration efficiency under the same operating conditions the stochastic model takes 
approximately 100 times longer to obtain results than does the mean motion model. 
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P o.s- 

0.25- 

0.0 , I I I , I I , I , I I I I , I I , I , 
0.9 0.95 1.0 1.05 1.1 

Q./Q 
Fig. 3. The variation of the probability that particles are sampled as a function of Q./Q for 

U0 = 2.0msC’, R = 1.0, D = 7.01x11,6 = 2.0cm and St = 0.002. 



940 D. B. Ingham et al. 

Therefore in the remainder of this paper we present results for the aspiration efficiency using 
only the mean motion model. 

When considering the interaction between the particles and the wall of the sampler as 
a perfect elastic impaction, namely, /l = 1.0, Fig. 4 shows that the aspiration efficiency A as 
a function of the Stokes number, St, when U,-, = 1.0, 2.0 and 3.8 m s- I, i.e. R = 0.67, 1.0 and 
2.0, for the two samplers investigated experimentally by Vincent et al. (1986) and compari- 
sons have also been made with the experimental data. We observed that when the Stokes 
number is very small the limiting particle surface is very close to the limiting streamline 
surface. Increasing the Stokes number causes the limiting particle surface to move closer to 
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Fig. 4. The variation of the aspiration efficiency as a function of the Stokes number. 
(a) U, = 3.8msC’, (b) U,, = 2.0msC’, and (c) U0 = l.Oms-‘. The experimental data have 
been taken from Table 3 of Vincent et al. (19861. (E.D.-Experimental Data; T.P.-Theoretical 

Prediction.) 
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the body of the sampler. Therefore all the numerical and experimental data show that the 
aspiration efficiency steadily decreases as the Stokes number increases. Among the sampled 
particles, some have impacted on the external wall of the sampler but some will pass around 
the bluntest section of the sampler without bouncing on the wall. It is very interesting to 
observe that the aspiration efficiency has a minimum value. The reason for this is that for 
Stokes numbers less than where the minimum aspiration occurs the limiting particle surface 
insects the upstream face of the sampler. In this situation all the particles within the limiting 
particle surface impact on the wall of the sampler and rebound back into the air flow field. 
This leads to a reduction in the axial component of the particle velocity and consequently 
the inertia of the particle in the axial direction is reduced. However, as the Stokes number 
increases further the aspiration efficiency sharply decreases and the particles of large size 
will not be sampled, although the axial component of the particle velocity has been reduced 
by the impact on the wall. We also observe that when the ratio 6/D is small (say when 
6 = 2.0 cm) the impaction of the particle on the wall of the sampler has less effect on the 
aspiration efficiency than it does for larger values of 6/D (say when 6 = 5.0 cm). This is 
because after the particles pass around the bluntest section of the sampler they are further 
from the external wall of the sampler, due to their inertia, and therefore the boundary-layer 
along the external wall of the sampler has less effect on the motion of the particle. When the 
value of S/D is larger then, after the particles have passed around the bluntest section of the 
sampler, the particles are closer to the external wall of the sampler and the boundary-layer 
along the external wall of the sampler slows down the motion of the particle. This leads to 
a larger aspiration efficiency. Further, when the Stokes number is large the experimental 
data also show an increase in the aspiration efficiency and this is consistent with our 
numerical predictions. 

The numerical predictions of the aspiration show that as the value of R decreases, the 
aspiration efficiency increases. In Fig. 4 we have not marked the experimental data accord- 
ing to the value of R because for fixed values of S/D and U0 there are only four or five 
experimental data points available and this is not sufficient to reveal the variation of the 
aspiration efficiency with the value of R. We also observe that the freestream velocity has 
little effect on the aspiration efficiency. However, the smaller the orifice of the sampler then 
the smaller is the aspiration efficiency. A possible reason for this could be that the 
geometries from the arm to the bluntest section of the sampler are the same for the two 
samplers in our calculations but may not be in the experimental investigation. Thus, the 
velocity distributions around the arm and the bluntest section are similar and this results in 
the efficiencies being almost the same. However, the smaller the value of 6/D the smaller is 
the aspiration efficiency. 

When the impaction of the particles on the external wall of the sampler is not perfect, 
numerical calculations have also been performed for the coefficient of restitution /.I = 0.5. 
Figure 5a shows the aspiration efficiency as a function of the Stokes number for the smaller 
sampler orifice diameter, namely 6 = 2.0 cm, and hence 6/D = 2/7. The results for the 
perfect impaction are also presented in this figure under the same sampling operation 
conditions. The numerical results show that the aspiration efficiency rapidly increases when 
all of the sampled particles have impacted on the wall and the smaller the coefficient of 
restitution, the larger is the aspiration efficiency. This rapid increase in the aspiration 
efficiency only occurs in a small range of values of the Stokes number and on further 
increasing the Stokes number then no particles are sampled. Figure 5b shows the aspiration 
efficiency as a function of the Stokes number for the larger sampler orifice diameter, namely 
6 = 5.0 cm and hence S/D = 5/7. We observe that for this larger value of 6/D then the 
coefficient of restitution, fl, has a much more significant effect on the aspiration efficiency 
than it does at the smaller value of 6/D. This comparison leads us to conclude that as the 
value of 6/D decreases, the effect of the coefficient of restitution on the aspiration efficiency 
decreases. 

When the external wall of the sampler is perfectly sticky, i.e when a particle hits the wall it 
sticks to it, the numerical calculations have been performed for D = 7.0 cm, 6 = 5.0 cm, 
U0 = 2.0 m s-l and Fig. 6 shows that the aspiration efficiencies as a function of the Stokes 
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U, = 2.0 m/s, 6 = 2.0 cm. 
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Fig. 5. The effect of the coefficient of restitution on the aspiration efficiency when 6 = 2.0 cm and 
(a) 6/D = 217, (b) S/D = 5/l. 
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Fig. 6. A comparison of the results obtained using the impaction model, perfectly elastic impaction, 
perfectly sticky wall and the experimental data when U. = 2.0 m s- I, 6 = 5.0 cm, D = 5.0 cm and 

R = 1.0 for the aspiration efficiency. 

number when R = 1.0. A comparison is also made for a sticky wall, perfect impaction and 
the Tsai-Vincent formula. It is observed that the aspiration efficiencies predicted by the 
numerical model are in reasonable agreement with the predictions of Vincent’s impaction 
model. It is also observed that when the Stokes number is large, the perfectly sticky wall 
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predicts a smaller aspiration efficiency than the Tsai-Vincent formula and this is because in 
practice not all the particles which hit the wall will stick to it. Further, the perfect elastic 
impaction produces a larger aspiration efficiency than the impaction model of Vincent and 
this is because in the numerical model the transverse shift produced by such as particle 
rotation, large averaged turbulent velocity gradients near the wall and the non-isotropism 
of the fluctuations in the fluid velocities are ignored. Therefore, in practice the aspiration 
efficiency will lie between those predicted by the perfectly sticky wall and the perfectly 
elastic impaction models. 

CONCLUSIONS 

Thin-walled, shallow-tapered samplers, as investigated by Vincent et al. (1986), have been 
investigated for a large range of conditions which occur in actual air environments, when 
the samplers are placed at an angle of inclination of 180” to the oncoming air flow using 
a low Reynolds turbulent k--E model. It has been found that the stochastic model for particle 
diffusion gives results for the aspiration efficiency of the sampler which are not substantially 
different from those predicted using the mean motion model. However, it is interesting 
to note that the stochastic model, which is very expensive in CPU time, predicts an 
aspiration efficiency which is slightly greater than unity when the Stokes number is very 
small. In general, both the models numerically predict aspiration efficiencies which agree 
reasonably well with all the available experimental data and the Tsai-Vincent formula. 

We conclude, for thin-walled, shallow-tapered samplers as investigated in this paper that: 

(a) The inertia of the particles, namely, the particle Stokes number, St, dominates the 
sampling process. 

(b) The sampling velocity ratio and the impaction of the particles on the wall of the 
sampler have a significant effect on the aspiration efficiency when the Stokes number is close 
to unity. 

(c) A decrease in the ratio of the diameter, 6, of the orifice of the sampler to the diameter, 
D, of the sampler, i.e. 6/D, produces a decrease in the aspiration efficiency. 

(d) The turbulent boundary-layer flow along the external wall of the sampler has 
a significant effect on the sampling efficiency when the Stokes number is close to unity and 
the value of 6/D is large. 

(e) The larger the velocity ratio, U&J,, the smaller is the aspiration efficiency. 
(f) Much experimental data for the aspiration efficiency of samplers which rear-face the 

wind is required and further numerical investigations should be performed according to the 
dimensions of the sampler employed in these experiments. 
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