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Aktract--Fiiter efficiency is rigorously calculated without ad hoc assumptions pertaining to aerosol 
distribution within the filter bed and even without the very concept of single-element efficiency. In 
particular, aerosol filtration processes are treated by formulating the particle transport problem at a 
pointwise (interstitial) level throughout the whole filter bed. These microscale processes ultimately 
govern aerosol transport and collection at the coarser Darcy scale. At the latter level of description 
the filter bed is viewed as a continuum in which aerosol propagation and deposition processes are 
characterized by three position-independent 'global" phenomenologlcal coefficients: the mean 
aerosol velocity vector, dispersivity dyadic and mean volumetric aerosol deposition rate coefficient. 
Calculation of these three global aerosol coefficients is effected via a rigorous application of 
Taylor-Aris convective dispersion theory to a lattice model of a porous filter bed. The filter efficiency 
is easily and explicitly expressed in terms of these three transport coefficients, thereby completely 
eliminating evaluation of the single-element efficiency as an intermediate step in the calculations. 
Circumstances are outlined in which the coarse-scale aerosol diffusivity may be neglected and the 
concomitant aerosol collection rate uniquely characterized by Leer's filtration length parameter 
[Leers, R. (1957) Staub 17, 402.I, relating filter bed thickness to total filtration efficiency. The scheme 
developed herein is illustrated by numerically computing the three Darcy-scale aerosol transport 
coefficients (via a finite element technique) for a fibrous filter subjected to typical filtration operating 
conditions. These coefficients are subsequently used to calculate the characteristic filtration length, 
whose values are then compared with existing theoretical results and available experimental data. 
The practical relevance of our theoretical development is outlined with respect to: (i) establishing the 
limitations of current filtration models; (ii) interpreting experimental data and (iii) optimal filter 
design. 
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characteristic collector size 
Cunningham's correction factor 
aerosol particle diameter 
Brownian diffusivity of aerosol particle 
Darcy-scale dispersivity dyadic 
effective axial aerosol dispersivity 
tensor components of the dispersivity I)* 
dimensionless potential energy function 
initial aerosol spatial concentration distribution 
external force 
unit vector in x direction 
aerosol flux vector operator 
Boltzmann's constant or microscale reaction constant 
Darcy- or macroscale aerosol deposition rate coefficient 
axial aerosol deposition rate coefficient 
characteristic microscale length 
characteristic cross-sectional length 
characteristic filtration length, LTf//(f 
unit basic lattice vectors 
filter thickness 
dimensionless filter thickness, L Uf//)f 
integer number 
aerosol particle mobility 
zero-order moment of aerosol concentration distribution 
zero-order axial moment of coarse-scale concentration 
positive or negative integer numbers, including zero 
aerosol number density microscale concentration field 
aerosol number density macroscale concentration field 
cross-sectionally averaged macroscale aerosol concentration 
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aerosol concentrations at the filter inlet and outlet 
microscale Peclet number, 2a Uo/D 
filter cross-sectional domain 
curvilinear coarse-scale coordinates within the fitter cross-section 
filter cross-sectional periphery 
aerosol particle radius 
intracellular (local) position vector 
unit cell interstitial fluid domain 
k th unit cell face 
microscale position vector 
global (discrete) position vector specifying the location of the nth unit-cell 
macroscale position vector; mean displacement vector 
meanZsquare displacement dyadic 
filter cross-sectional area 
actual and virtual bed particle (collector) surface 
time 
absolute temperature 
aerosol particle and fluid velocity vector 
superficial filter velocity 
mean Darcy- or macroscale aerosol velocity vector 
mean axial aerosol velocity 
external force potential 
infinite (continuous space) domain 
coarse-scale axial coordinate 
mean axial displacement 
dimensionless axial coordinate 
constant, equation (1.3) 
dimensionless deposition rate parameter,/('f/)f//_72 
filtration efficiency 
unit bed (or single-element) efficiency 
lwasaki's filter coefficient 
constants, equations (6.5a, b) 
air viscosity 

1. I N T R O D U C T I O N  

This study concerns the transport and deposition of submicrometer aerosol particles in 
porous granular and fibrous filters. Collection of such particles is usually governed by 
diffusional, interceptional and gravitational deposition mechanisms. Existing filtration 
theory determines aerosol collection rates by solving the particle transport and deposition 
problem posed within a representative region of a porous bed, thereby evaluating the so- 
called unit-bed or single-element efficiency, t/g. The latter calculation of r/c, as well as its use in 
determination of the total filter efficiency, hinges upon several ad hoc assumptions pertaining 
to the aerosol distribution within the filter bed. 

Aerosol particles are generally regarded as posing significant health hazards (Friedlander, 
1977). A major source of air pollution arises via the discharge of various types of particulates 
into the atmosphere from industrial plants. Removal of dust particles from air streams prior 
to discharge constitutes an important engineering problem, one whose resolution lies at the 
focus of major scientific and engineering efforts (Davies, 1973; Dorman, I973; Strauss, 1975). 

Various techniques have been proposed for aerosol elimination. Electrostatic pre- 
cipitators are among the most widely used air pollution control devices. However, they are 
very expensive, in addition to failing in the filtration of submicrometer and high-resistivity 
dusts (Strauss, 1975; Dietz, 1977). Space-charge precipitators and self-agglomerators are 
ineffective unless the pollutant to be removed is of extremely high density. Cyclones operate 
effectively for coarse dusts ( > 10 #m), but prove ineffective in the removal of submicrometer 
and micrometer particles. Scrubbers, while effective in cleaning air, create auxiliary 
problems of water pollution (Hetsroni, 1982). 

Submicrometer aerosol particles are ineffectively collected by conventional air pollution 
control devices. Such particles constitute primary health hazards when inhaled into upper 
and lower human respiratory tracts (Mercer, 1973; Melandri et al., 1975). Filtration of 
submicrometer particles thus poses an important engineering challenge. 
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Both micrometer and submicrometer aerosols can be effectively collected by porous 
granular (Tardos et al., 1978; Gutfinger and Tardos, 1979; Tien, 1989) and fibrous (Fuchs, 
1964; Kirsch and Stechkina, 1978) filters. Such filters display high filtration efficiencies over a 
broad range of particle sizes, in addition to being characterized by low capital costs and 
operating expenses. These facts motivated the present study, which is devoted to developing 
the basic physical principles prerequisite to the rational design of porous filters capable of 
removing submicrometer particles from flowing gas streams. 

A porous filter is depicted schematically in Fig. 1. Consider a dusty gas flowing within a 
cylindrical channel of arbitrary, but uniform cross-sectional shape. The filter is created by 
filling with a porous substance (sand, glass beads, cotton, wool, etc.) a region of length L 
lying between any two channel cross-sections. Dusty gas flowing within the filter bed 
interstices deposits aerosol particles onto the filter's collecting elements (collectors). 

Filtration efficiency, ~, is defined as 

mass of aerosol captured by the filter 
q = (1) 

mass of aerosol entering the filter 

Alternatively, in terms of the aerosol concentrations Pi, and Pout prevailing, respectively, at 
the filter inlet and outlet, 

Pout 
r/-- 1 -  Pi~" (2) 

This filtration efficiency depends upon a variety of operating parameters, the most 
important being the aerosol particle radius, rp, characteristic collector size, a, superficial 
stream velocity, Uo and filter thickness, L. The particle diameter 2rp constitutes the primary 
factor governing the dominant mechanism of aerosol collection. Fine particles, those 
possessing diameters below 0.2 #m, are affected by Brownian motion. Accordingly, their 
diffusion to the collector's surface represents the dominant deposition mechanism. However, 
for larger particles, namely those possessing diameters between 0.2 and 2 #m, this diffusional 
mechanism is less effective in the removal process. Such particles are nevertheless in- 
sufficiently coarse to be significantly affected by inertial forces; (these forces provide an 
efficient deposition mechanism only for particle sizes above 2 pm). Consequently, porous 
filters--especially granular ones--are usually less effective in the collection of aerosols lying 
within the intermediate size range (0.2 #m < 2rp _<_ 2/~m). Calculation of the collection rate of 
such aerosols is usually effected by supplementing the diffusional particle deposition with 
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Fig. 1. Porous filter. 
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other, secondary collection mechanisms (Gutfinger and Tardos, 1979). Included among the 
latter is interception, namely the 'geometric' removal of particles moving along those 
streamlines whose minimum approach distance to the collector surface is less than the 
particle's radius. Other secondary deposition mechanisms include gravitational (Tardos et 
al., 1979) and electrostatic (Pich, 1966; Davies, 1973; Ariman and Tang, 1976; Melcher et al., 
1977; Fan and Gentry, 1979; Tardos and Pfeffer, 1979; Tardos et al., 1979; Henry and 
Ariman, 1981a, b; Shapiro, 1984; Shapiro and Laufer, 1984a, b; Shapiro et al., 1983, 1986a-c, 
1988a) forces. 

Calculations of the filtration efficiencies of porous filters usually invoke several simpli- 
fying assumptions common to classical filtration theory (Pich, 1966, 1987; Lrffler, 1971; 
Dorman, 1973). Therein, each individual filter element is assumed to manifest identical 
filtration behavior irrespective of bed position, allowing the cumulative aerosol collection 
rate for the filter bed as a whole to be obtained by merely summing the respective collection 
rates for each of the individual collectors composing the bed. 

Classical filtration theory begins with a proper description of aerosol transport and 
deposition at the microscale, i.e. interstitial level, although only for a so-called 'single" 
representative unit-bed element (UBE) (Shapiro et al., 1988a; Tien, 1989). In order to 
calculate the total aerosol collection rate for the entire set of UBEs, a set of simplifying 
assumptions is introduced pertaining to: (i) the microstructure of the individual collectors 
and bed, as a whole; (ii) the flow field and external force field prevailing at the microscale (i.e. 
within the UBE); (iii) the formulation of the aerosol microtransport problem within a single 
UBE; and (iv) the calculation of the total collection rate and filtration efficiency by transition 
from the single UBE results to that for the filter as a whole, i.e. the bed composed of a 
sequence of UBEs. It is, in essence, only in the last two--but nonetheless critical--steps that 
our approach departs from that of classical theory. 

The essence and significance of these assumptions, as well as the scheme for calculating 
filtration efficiency according to existing theory, is schematically depicted in Fig. 2. Filter 
microstructure is characterized by specifying a UBE within which the detailed velocity and 
external force fields are calculated. The scheme ultimately calculates the aerosol collection 
rate achieved by such a single UBE. Towards this goal the aerosol microtransport problem 
is formulated within one UBE, while imposing an ad hoc boundary condition specifying a 
uniform inlet aerosol concentration at its upstream boundary. As a result, a so-called unit- 
bed efficiency,* r/c, (Tien, 1989)is calculated. 

] 
Identification of UBE and | 
calculation of velocity and | 
external force fields within it [2 / 

l 
sition problem formulation 
posed within one UBE 

t- 
Solution of the problem 
within one UBE 

Calculation of the Unit 
Bed Efficiency 

Summatio*l of collection 
rates for all UBEs; 
Calculation of the total 
filtration efficiency 

f a d  hoc assumptiota pertaining to 
[ the aerosol concentration distri- | 
~bution between successive UBEsJ  

1 
~ Ad h~c fommlaconela- 1 

tmg Unit Bed Efficiency 
with total filtration 
efficiency 

Fig. 2. Ad hoc scheme for computing the total filtration efficiency employed in existing filtration 
theory. 

* In cases where the UBE is composed of a single collector element, the unit-bed efficiency is termed the single- 
element efficiency (Davies, 1973; Tardos, 1977). 
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In order to cumulatively sum the aerosol collection rates over all collector elements 
composing the bed, and thus calculate the total filter efficiency, other ad hoc assumptions 
have been invoked (Tardos et ai., 1978; Shapiro et al., 1986b) pertaining to the filter bed 
structure and spatial aerosol concentration distribution existing within the filter bed 
interstices. As a result, the following formula was proposed, correlating the total and single- 
element efficiencies: 

= 1 - e x p ( - ~ c L / a ) .  (3) 

The exact nature of the non-dimensional porosity-dependent coefficient, a, is controversial 
(Dietz, 1977; Tardos, 1977). In many cases the choice of g was simply phenomenologically 
dictated so as to effect a better correlation of the theory with experimental data obtained for 
selected aerosols (Zahedi and Melcher, 1976, 1977; Zieve et al., 1978). Other formulas 
correlating ~/with r/c have also been proposed in the literature (see e.g. Tien, 1989), each being 
based upon several ad hoc assumptions pertaining to the aerosol distribution existing within 
the filter bed. 

In order to secure agreement between theoretical filtration efficiencies calculated from (3) 
and experimental data obtained for aerosols (covering a wide range of particle diameters), 
various geometric models of unit-bed elements have been proposed. Among these are 
capillaries (Jackson and Calvert, 1966), constricted tubes (Payatakes and Neira, 1977) and 
sphere- (or circular cylinder-) in-cell (Happel, 1958; Kuwabara, 1959; Neale and Nader, 
1974) models, each characterized by its own distinctive local velocity field and external force 
field prevailing within the UBE. 

More realistic models of porous filter beds consist of periodic arrays of spheres and 
cylinders, within which microvelocity fields have been calculated for several spatially 
periodic geometries (Snyder and Stewart, 1966; Sorensen and Stewart, 1974; Sangani and 
Acrivos, 1982a, b; Zick and Homsy, 1982). For such periodic models of porous filters the 
UBE is identified with the elementary unit-cell of the spatially periodic array. Aerosol 
collection in spatially periodic models of porous filters has been considered by Gal et al. 
(1985) for granular and by Kao et al. (1986) for fibrous filters. In spite of the apparently 
realistic representative velocity field calculated for such models, subsequent calculations of 
filtration efficiency performed during each of these two studies are nevertheless still 
described by the ad hoc scheme depicted in Fig. 2. Indeed, the aerosol collection problem was 
formulated within the single UBE, ultimately resulting in calculations of the unit- 
bed efficiency, which--upon using equation (3)---was correlated with the total filtration 
efficiency. 

Existing ad hoc filtration models, described by the scheme shown in Fig. 2, suffer from 
their inability to theoretically substantiate the fundamental assumptions underlying calcu- 
lations of unit-bed (and, subsequently, total) filtration efficiences. In fact, the efforts of Gal et 
al. (1985) and Kao et al. (1986) to employ more realistic spatially periodic velocity field and 
external force field models in calculating the unit-bed efficiency are meaningless and 
inconsistent with the very concept of the latter quantity, as in all cases their aerosol 
collection problem within the UBE was formulated on an ad hoc basis. 

A precise definition of unit-bed efficiency may be unambiguously assigned only to a truly 
isolated collector, i.e. one embedded in an infinitely-extended, otherwise undistributed flow 
field (and/or external force field) possessing a spatially uniform aerosol concentration at the 
far upstream ('inlet') location. In our opinion this concept is inapplicable to dense porous 
filters, being physically inconsistent. Rather, it is only the total filter efficiency that possesses 
physical reality, as it is only this global quantity that can be experimentally measured. 

The present contribution describes a novel approach to the problem of diffusion- 
controlled aerosol filtration processes in porous filters. While.utilizing the conventional 
microscale description of aerosol transport and deposition processes accepted in classical 
filtration theory, it explicitly avoids ad hoc summation of the respective collection rates 
characterizing each individual UBE; it does not even utilize the concept of unit-bed 
efficiency. Rather than formulate the microscale aerosol filtration problem within the one 
representative UBE, the present theory begins with a comparable description of the aerosol 
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transport and collection processes within the whole porous filter bed. Accordingly, instead 
of the artificial (indeed, physically incorrect) boundary conditions imposed upon the aerosol 
concentration field between neighboring UBEs (as currently employed in the existing 
theory), our more physically realistic model imposes conditions of continuity of aerosol 
concentration and flux across adjacent faces separating contiguous UBEs- these being the 
unit-cells of the spatially periodic filter bed model. 

The proposed scheme ultimately describes the filter bed at a Darcy, rather than interstitial 
scale; as such, the bed is viewed at the former level of description as being a homogeneous 
convective-diffusive-'reactive' continuum, possessing uniform (i.e. position-independent) 
phenomenological transport coefficients. [The first-order, irreversible, chemical 'reaction'- 
like behavior at the macroscale arises from the permanent removal of the aerosol particles 
from the interstitial (microscale) fluid by deposition onto the filter bed collector elements.] 
These macrotransport coefficients consist, respectively, of the Darcy-scale mean velocity 
vector, O*, dispersion dyadic, D*, and scalar aerosol volumetric deposition rate coefficient, 
/~*. They are demonstrated to be independent of the filter macroscale geometry and can be 
rigorously calculated by employing generalized Taylor dispersion phenomena theory 
(Brenner, 1980a; 1982a). Recently, techniques for analysing the flow, dispersion and 
'disappearance' of inert (Brenner, 1980b) and chemically reactive (Shapiro and Brenner, 
1988) solute species in spatially periodic models of porous media have been proposed. In the 
present study we exploit these models to determine aerosol collection rates governed by 
combined diffusion, interception and external-force (gravitational, electrostatic, magnetic, 
etc.) filtration mechanisms prevailing within porous filters. 

The sequential process of calculating the total filtration efficiency via the proposed model 
is described schematically in Fig. 3. After a precise physico-mathematical formulation of the 
aerosol microtransport and deposition processes in the entire spatially periodic (model of 
the) filter bed, the three Darcy-scale transport coefficients are explicitly calculated (while 
introducing no ad hoc assumptions, such as is done in the classical theory). These Darcy- 
scale coefficients are subsequently used to describe the gross, coarse-scale filtration process 
at a continuum level. Solution of the coarse-scale transport and reaction problem thereby 
posed, immediately yields the total filtration efficiency [without utilizing ad hoc formulas of 
the type represented by equation (3)]. 

The requisite macro- or Darcy-scale transport and 'reaction' coefficients required above 
are ultimately calculated from a rigorous formulation and analysis of the physico-mathem- 
atical steady-state problem of aerosol transport and deposition within a single unit-cell of the 
bed. However, in contrast with the ad hoc formulation posed by the comparable aerosol 

Identification of the unit cell of a 
spatially periodic geometric filter 
model. Calculation of the velocity 
and the external force fields 

Microscale aerosol transport and ] 
deposition problem formulation 
within the entire (infinite) filter bed 

Calculation of the Darcy-scale transport 
coefficients by application of convective- 
dispersion theory for chemically reactive 
species 

] Durcy-scale (continuum level) formulation 
of the aerosol transport problem ] 

[ C~lculati~n of the total filtration 
efficiency, i] ] 

Fig. 3. Calculation of filtration efficiency by application of the proposed dispersion/reaction model. 
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transport problem within the single UBE (employed in the classical theory), the present unit- 
cell formulation derives rigorously from the general aerosol transport problem posed over 
the whole filter bed. Methodologically, our unit-cell analyses parallel existing computational 
schemes for determining the unit-bed efficiency, r/r, within the framework of classical 
filtration theory. In fact, our unit-cell analyses preserve the same aerosol collection 
mechanisms underlying the latter well-studied problems. However, in contrast with such 
previous studies, the present more fundamental approach for determining the filtration 
efficiency, r/, is free of the artificial decomposition of the problem into sequentially: (i) 
establishing the unit-bed efficiency; and (ii) subsequently summing the individual collection 
rates. In our scheme, these two artificially distinct steps appear more naturally in 
combination as the single inseparable physical process that they indeed are in nature. 

Practical applications of the proposed model abound. Its use exposes the conceptual 
limitations implicit in current models of diffusion-controlled aerosol filtration processes in 
granular bed and fibrous filters. Specifically, effects arising from collector packing arrange- 
ment, bed porosity and other filtration parameters may be systematically investigated. 
Moreover, the validity of fundamental assumptions underlying classical filtration theory 
[such as 'sticky' collector surfaces and the concomitant absence of particle re-entrainment 
(Tardos, 1977)] may also be scrutinized by comparison of the predictions of such theories 
with experimental data. 

2. MACROSCALE DESCRIPTION OF THE FILTRATION PROCESS 

This section addresses the microscale transport and deposition of aerosol particles within 
the filter bed, viewed at the interstitial continuum length scale, comparable to (or less than) 
the characteristic linear dimension 'a' of a collector element. This geometrical/kinematical 
description will be effected in its most general form, without explicitly assigning any a priori 
lattice/particle configuration to the filter bed. Explicitly, in this section we re-examine the 
equations governing the aerosol particles' motion in the filter interstices, as well as their 
collection on bed elements, in accordance with classical filtration theory. The main 
postulates and assumptions of that theory at this microscale level of description are also 
adopted in the dispersion model proposed in the present study. 

Consider identical, non-interacting, spherical aerosol particles of radii rv (rp << a) moving 
within the interstices of a porous filter (Fig. 1). Here, we consider inertialess Brownian 
aerosol particles whose stochastic motion is usually described by a Eulerian equation 
governing the microscale aerosol concentration P (Levich, 1962; Fuchs, 1964). Motion of 
larger (normally micrometer sized) particles is affected by inertial forces, neglected here. If 
deemed relevant, this force may also be incorporated into the model as an external force 
exerted upon the suspended particles (Fernandez de la Mora and Rosner, 1982). 

It will henceforth be supposed that all modes of interaction between neighboring aerosol 
particles (hydrodynamic, electric, magnetic, etc.) are negligible, so that each is effectively 
transported through the filter bed interstices as an isolated (Brownian) particle, independ- 
ently of the presence of the others. Moreover, any cumulative effects of the aerosol cloud 
upon either the flow field or external force field existing within the filter are neglected. These 
assumptions (usually accepted in the filtration theory) are justified when the aerosol 
concentration P is everywhere small. 

With these hypotheses the microscale conservation equation governing the temporal 
evolution of the aerosol particles' number density, P (R, t), within the interstitial fluid region 
may be written as 

~P 
~--~ + V. (JP) = 0 (4) 

Here, with J an operator, JP is the single-particle aerosol flux density vector, given generally 
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for the dilute systems to which our analysis is valid by the constitutive relation (Bird et al., 
1960) 

J P = ( U  + M . F -  D .V)P .  (5a) 

In general, due to wall effects arising from the aerosol particle's proximity to the collector 
surface, the (force-free) particle velocity vector U(R) at point R will differ from the 
undisturbed fluid velocity vector that would prevail in the absence of the particle. For this 
same reason, the respective spherical particle mobility, M, and molecular diffusivity, D, 
[which are related through the Stokes-Einstein equation, cf. (6)] will generally each be functions 
of R. Moreover, again by virtue of wall effects, they will generally be dyadics (Brenner and 
Gaydos, 1977) rather than scalars, reflecting the generally anisotropic nature of these 
quantities, even for spherical aerosol particles (Hirschfeld et al., 1984; Falade and Brenner, 
1985, 1988). However, the assumption that rp/a << 1 permits us to neglect such wall proximity 
effects provided that, simultaneously, the aerosol particle is not too close to the wall 
compared with its radius rp (Falade and Brenner, 1985, 1988). (Though the latter may appear 
to preclude the actual physical deposition of a particle onto the collector surface--which is, 
in fact, the primary subject of interest here--the deposition process will eventually be 
simulated [cf. equations (9) and (16)] by invoking the irreversible adsorption, P = 0 ,  
boundary condition on the collector surface.) Accordingly, at the level of description of the 
transport process at which this (mesoscale) boundary condition applies, the constitutive 
equation (5a) may be replaced by 

J P  = U P  + M F P  - D V P ,  (5b) 

in which U(R) is now identical to the fluid velocity, and the scalars M and D are R- 
independent constants, interrelated through the Stokes-Einstein equation 

D = k T M ,  (6) 

in which k T  is Boltzmann's factor. The aerosol particle mobility is given by the expression 

M = C/6zc/~rp, (7) 

where/~ is the viscosity of the suspending gas and C is Cunningham's slip-correction factor 
(Davies, 1973). For simplicity the system is regarded as isothermal, so that aerosol transport 
by thermophoresis (Hidy and Brock, 1970; Batchelor and Shen, 1985) is assumed absent. 

In cases where the external force, F, appearing in equation (5b) is derivable from a 
potential energy function V(R) (i.e. F = - V V), equation (5b) may be rewritten as 

J P  = U P  - De-E¢~}v  (ee{Bt) P ), (8) 

with E(R) = V ( R ) / k T ,  a non-dimensional potential. 
At the same microscale level of description that allows equation (5b) to appear in place of 

(5a), so too does the external force field F = F(R) appearing in (5b) differ from that in (5a), In 
particular, (5b) incorporates only those 'long-range' forces (gravitational, electrostatic, 
magnetic, etc.) exerted upon the aerosol particle when the distance of its center from the 
collecter surface is 'large' compared with its radius rp. Present in (5a), but excluded from (5b) 
[and consequently from (8) ], are the 'short-range', so-called dispersion forces (Mahanty and 
Ninham, 1976) exerted on the particle by the collector when the separation distance between 
them is comparable to, or less than the aerosol particle size r v It is these forces that are 
important in causing the particle's ultimate attachment to the collector surface (Fichman 
and Pnueli, 1985), but they are regarded as non-existent in describing the aerosol transport* 
at the coarser level of description of equation (5b) (Shapiro et al., 1990a). 

* These forces may, however, be important in the collection of fine particles from liquids (Prieve and 
Ruckenstein, 1974), corresponding to hydrosols rather than aerosols. 
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Though excluded from consideration in the latter, these forces are, nevertheless, implicitly 
included in the boundary condition imposed upon P at the collector surfaces S¢. Formula- 
tion of this condition requires several further hypotheses, usually accepted in classical 
filtration theory. Explicitly, it is assumed (L6flier, 1971; Tardos, 1977) that when the center of 
an aerosol particle approaches the collector's surface to within a distance comparable to its 
radius rp, it collides with (and permanently adheres to) the collector--never to be re- 
entrained. This permanent attachment arises (Friedlander, 1977) from the action of several 
dispersion forces, primarily of the van der Waals type. In the case of electrically charged 
aerosols, this attachment is facilitated by the electrostatic image force (Shapiro et al., 1983). 
Such situations are modelled by the assumption of zero aerosol concentration on the 
collector surface (Levich, 1962; Gupalo et al., 1985): 

P = 0  on S¢. (9a) 

For the submicrometer aerosol particles here considered, this boundary condition has been 
rigorously substantiated by Shapiro et al. (1989) by adapting the matched asymptotic 
expansion scheme (Van Dyke, 1975) of Brenner and Leal (1982) to such interfacial problems. 
This condition is sometimes reformulated (Ruckenstein and Prieve, 1973; Tardos, 1977) as 
applying instead on the hypothetical or virtual surface S~, situated at a distance rp beyond 
So: 

P = 0 on S'¢. (9b) 

The latter boundary condition presumably takes account of the effect of interception upon 
the diffusionally-controlled aerosol deposition process, a phenomenon whose quantification 
will be separately addressed in a later publication.* 

The preceding assumption of a 'sticky' collector surface, from which surface the possibility 
of re-entrainment is excluded and from which assumption derives boundary condition (9a) 
or (9b), is, in fact, strictly valid only for a 'clean' filter where the collector shapes and sizes 
have not been significantly altered by the cumulative aerosol deposition process (Payatakes 
and Gradon, 1980; Tien, 1989). For the dilute aerosols here assumed, such contamination of 
the collector surfaces occurs relatively slowly over time, thus justifying continued use of the 
'bare' surface boundary condition (9a) or (9b). 

3. DARCY-SCALE DESCRIPTION OF THE FILTRATION PROCESS 

3.1. Darcy-scale aerosol transport coefficients 

In principle, when the microscale aerosol concentration P is known everywhere within the 
filter's interstitial region, the filtration efficiency may be determined by integrating the 
aerosol collection rate (i.e. the flux n 'JP,  where n is the unit normal vector on Sc or S'c) over 
all of the collecting surfaces contained within the filter. However, the prior computation of P 
at each point R within the filter bed constitutes a formidable task, even if the geometric 
structure and packing arrangement of the porous filter are completely known, which in 
practice they generally are not. Even if such pointwise aerosol concentration distribution 
data, P, were indeed available, such exhaustively detailed information is generally unnecess- 
ary to determine gross parameters such as filtration efficiency. A more fruitful approach, 
pursued here, seeks to effect only a coarse-scale description of the aerosol convection, 
diffusion and deposition processes within the filter bed. Nevertheless, as will be shown, this 

* An alternative and more general formulation of the boundary condition on the collector surface arises upon 
viewing the aerosol particles as a species undergoing a first-order irreversible surface reaction with reactivity k 
(Shapiro and Brenner, 1988; Dungan et al., 1990); explicitly, n-JP = kP on Sc (or S~), with n the unit outer normal 
vector on Sc (or S'c). Our analysis can easily be extended to encompass this more general situation. However, in the 
interest of maintaining simplicity in this introductory paper, we prefer using boundary conditions of the type (9a) 
[or (9b) ]. 
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less detailed scheme suffices to establish the filtration efficiency. Implementation of this 
scheme is based upon the following model problem. 

Suppose that clean (particle-free) air flows through the filter. At time t = 0 let a cloud of 
aerosol particles be instantaneously introduced into some interstitial region of the filter bed. 
Each particle will be transported through the interstices by diffusion and convection, with 
some being deposited on the collector surfaces. We will not focus on the pointwise aerosol 
concentration, P, per se, but rather will attempt to characterize the aggregate transport of 
the aerosol cloud as a whole by considering the temporal evolution of the following three 
moments of this distribution: 

M o = f P(R,t)d3R, (10a) 
J 

1 f~ RP(R,t)d3R ' R= oo _ ,  
(lOb) 

1 f~  (R_R)2P(R,t)d3R, (10c) (AR)2 = 

with d3R a microscale volume element. Each of the above integrations is to be performed 
over the effectively infinite interstitial region ~ of the entire bed. 

Mo(t) represents the 0th moment of the concentration distribution, namely the total number 
of aerosol particles remaining within the interstitial filter bed domain at time t.'t fi is 
the displacement at time t of the aerosol cloud's center from its original position at t = 0, 

whereas the dyadic (AR) z represents the mean square displacement of the aerosol cloud 
about this moving center. Because, on average, P diminishes with time owing to the removal 
of some aerosol particles from the gas stream by the collectors (i.e. Mo is not conserved), 
and (AR) 2 are defined above, not in an absolute sense (which would only be appropriate in 
the absence of deposition), but rather in a normalized sense with respect to the total number 
M0 of residual aerosol particles remaining within the filter at time t. This normalization is 
effected by the appearance of Mo in the respective denominators of equations (10b, c). 

The three global quantities represented by the trio of equations (10a-c) depend upon the 
time, t, as well as in general upon the initial microscale spatial distribution of aerosol 
particles (the 'cloud') within the interstitial region. We seek to investigate those circum- 
stances for which the corresponding trio of phenomenological coefficients defined as 
(Brenner and Gaydos, 1977; Brenner, 1980b; Shapiro and Brenner, 1988): 

d 
/(* = - lim ~ In M o, ~ 11 a) 

t ~ o ~  

dR 
[1" = lim - -  (1 lb) 

t - ~  dt ' 

1 . d AR 2 ) ,  ( l lc)  

not only exist, but are also independent of the initial aerosol distribution. When such 
circumstances obtain, these coefficients constitute macroscale phenomenological para- 
meters, characterizing the mean transport of the aerosol cloud as a whole. 

Explicitly, /(* asymptotically describes the long-time rate of diminution of the total 
number of aerosol particles present in the cloud; IJ* and l)*, respectively, represent the 
velocity vector of the aerosol cloud's number center and its dispcrsivity dyadic. When/(* ,  
U* and D* prove to be independent of the initial spatial distribution of aerosol particles 

t Particles deposited on the collector surfaces are, of course, regarded as having been permanently rem°ved fr°m 
the interstitial region "g'~, so that Mo necessarily diminishes monotonically with time. 
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within the filter--in particular, of the initial number of such particles introduced--these 
coefficients then constitute fundamental phenomenological properties of the aerosol trans- 
port and deposition processes described at the macro- or Darcy-scale. At this scale of 
description the filter may be regarded as a continuum within which the aerosol is 
transported at a mean velocity, tl*, dispersed about this mean velocity at a rate governed by 
the aerosol dispersivity, I)*, and permanently 'removed' from this effective continuum at a 
rate governed by the (specific) 'reactivity' /(* of the volumetrically homogeneously 
distributed aerosol 'sinks'. 

3.2. Aerosol filtration process viewed at the coarse scale 

As a consequence of the above facts, the 'Lagrangian' constants K*, U* and D* may be 
interpreted (Shapiro and Brenner, 1988) as phenomenological transport coefficients ap- 
pearing in the following Eulerian convection-diffusion-reaction equation governing the 
transport and temporalevolution of an averaged or mean Darcy-scale, aerosol number 
density concentration, P, (yet to be precisely defined): 

~/5 
- -  + U* 'VP - D*: VVP 4- K*P = 0. (12) 
~t 

Herein, V-~/tSR represents the gradient with respect to the coarse-scale (i.e. continuum- 
scale) position vector, R, for which the magnitude of the 'differential' displacement vector A 
satisfies the inequality [ A R I -> a;/5 is correlated with the microscale aerosol number density 
concentration, P, by averaging of the latter over a representative volume within the filter 
bed, the linear dimension of which volume exceeds the mean collector size a. The precise. 
definitions of both/5 and R, as well as the precise physico-mathematical meaning of the 
phrase 'asymptotically long-time' introduced in (11), remain uncertain in the absence of any 
quantification of the filter's geometrical structure. These issues will be resolved in the next 
section, at least for a spatially periodic geometric model of a filter bed. 

It is noteworthy that, whereas at a microscale level of description the aerosol may be 
viewed as a species undergoing surface reaction at an effectively infinite rate upon the 
individual collector surfaces, at the Darcy-scale level the aerosol appears rather as a species 
undergoing a volumetric reaction at a finite rate (characterized by the bulk reactivity 
coefficient K*). 

Once the three phenomenological coefficients K*, U* and I$* are known, calculation of 
the filtration efficiency may be effected by solving a steady-state version of equation (12) (cf. 
Section 6). Calculation of this filtration efficiency thus effectively reduces to determining 
these three coefficients for given aerosol physical properties and a prescribed microscale 
filter bed configuration. The problem thereby posed is solved in the next section for a 
spatially periodic model of the filter bed. 

4. THEORETICAL CALCULATION OF THE DARCY-SCALE AEROSOL 
DEPOSITION AND TRANSPORT COEFFICIENTS /(*, ~* AND ]D* FOR 

A LATTICE MODEL OF A POROUS FILTER 

The fundamental phenomenological coefficients K*, U* and D* represent the asymptotic 
Darcy-scale manifestation of the microscale aerosol transport and deposition processes 
occurring in the filter bed interstices. Accordingly, their calculation devolves upon know- 
ledge of both the filter's microscale geometry and the aerosol's microtransport pheno- 
menological coefficients appearing in the interstitial microtransport equation. In addition to 
the aerosol's molecular diffusion coefficient, D, and mobility, M, (which in most cases of 
interest may be regarded as known constants), knowledge of the fluid velocity field and 
external force field exerted on the aerosol particles within the filters is also required. These 
depend inter alia upon the collector configuration and packing arrangement. Substantial 
conceptual difficulties arise when attempting to determine K*, U* and D* without any 
a priori assumptions (Crapiste et al., 1986) regarding the geometric structure of the bed. 
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Fig. 4. Spatially periodic porous filter. Microscale view. 

4.1. Spa t ia l l y  per iodic  f i l ter  mode l  

Without  assuming any specific collector shape(s) or  sizes, it will nevertheless be supposed 
that  the filter bed possesses a spatially periodic or lattice structure* (Brillouin, 1953; 
Brenner, 1980b). Equivalently, the filter may  be represented by an arbi trar i ly chosen unit-cell 
(Fig. 4), indefinitely repeated along the directions of the three basic lattice vectors i~(i = I, 
2, 3). Within each unit-cell the number  of collector elements, as well as their shapes and sizes, 
may  be selected to most  closely approx imate  the disordered micros t ructure  of  the real filter 
bed of interest. 

Due  to the p rope r ty  of spat ial  periodicity,  a general  posi t ion vector  R niay be 
decomposed  into a respective sum of local, bounded  (r) and global, unbounded  (Rn) posit ion 
vectors, in accordance with the relation 

R = R .  + r. (13) 

Here, the discont inuous global posit ion vector, R,, locating the nth unit-cell in the lattice is 
related to the trio of  basic lattice vectors by the expression 

R n = n l l l  + n 2 1 2 + n 3 1 3 ,  ( n k = 0  , +1 ,  +2 ,  + 3  . . . .  ; k =  1, 2, 3). (14) 

Owing to the assumed spatially periodic representat ion of the filter bed geometry,  the 
microscale external force field, F (R), may  also be assumed to be a spatially periodic field, and 
hence to be a function, F(r), only of the local posit ion vector, r, independent  of  n. Moreover ,  
in c ircumstances where the interstitial air flow is effectively incompressible and the 
unidirectional macroscale  fluid velocity vector  homogeneous  (i.e. cons tant  R =-R,), we may  

* Although aerosol filtration in porous filters possessing spatially periodic structures has been considered in 
several prior studies (Havlicek, 1961; Davies, 1973; Gal et al., 1985; Kao et al., 1986), granular and fibrous filters are 
not spatially periodic. This fact does not, however, exclude use of the proposed model for analysing practically 
important (i.e. disordered) systems. Spatially periodic models of porous beds constitute a more faithful physical 
representation of real filter structures than do commonly used cellular (spherical or Cylindrical) models (Davies, 
1973; Tardos et al., 1978; Shapiro et al., 1986b, 1988a). The proposed filter configuration is understood to be a 
simple model of the actual geometric mode of arrangement of the collectors comprising the filter bed; this bed may, 
in fact, be disordered. 
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also suppose U(R) to be spatially periodic, and hence of the functional form U(r). On the 
other hand, the aerosol concentration, P, is not a spatially periodic function and hence is 
viewed as being of the functional form P = P(R,, r, t). 

The interstitial velocity, U(r), may, in principle, be calculated (albeit numerically, rather 
than analytically) for a specified collector geometry, filter packing arrangement and 
prescribed mean Darcy-scale flow rate (filter-face velocity) or mean Darcy-scale pressure 
gradient (pressure drop across the filter). Indeed, results for macroscopically uniform flows 
through simple arrays of spheres (Sorensen and Stewart, 1974; Sangani and Acrivos, 1982a; 
Zick and Homsy, 1982) and cylinders (Sangani and Acrivos, 1982b; Larson and Higdon, 
1986; Edwards et al., 1988) are already available. Moreover, when the external force 
experienced by the particle is caused by an externally applied electrostatic field, its potential 
E may be obtained by solving Laplace's equation for the spatially periodic particle array 
(Jackson, 1971). 

With the microscale fields, U (r), F (r), explicitly available and aerosol phenomenological 
coefficients, D and M, respectively, given by equations (6) and (7), the propagation and 
deposition of an aerosol cloud through the filter bed of a specified spatially periodic 
geometry is governed by equation (4), which, in the present circumstances, adopts the form 

aP 
a-T + v . ( JP)  = 0 (r6rf {n}, t >0), (15) 

where the aerosol flux density, JP, is given by equation (5b); here, V = a/dr denotes the 
intracell gradient operator. 

Boundary condition (9a) may be rewritten in the intracellular form 

P = 0  for r~S¢{n}. (16) 

Here, rr {n} and Sc {n}, respectively, represent the interstitial (fluid) space and the collector 
surface contained within the nth unit-cell. 

Continuity conditions (Brenner, 1980b) 

e (R , - lk ,  r +lk, t )=e(R, ,r , t )  (r~ark), (17a) 

VP(R. --lk, r+lk,  t )=VP(R. , r , t )  (r ~ ark), (17b) 

are imposed across the superficial (generally curvilinear) unit-cell surfaces dr k (k = 1, 2, 3). 
Boundary conditions at infinity, 

[R. IS(P, JP)-*(0,0) as IR . I - - ,~  (m=0 ,1 ,2  . . . .  ), (18) 

assure sufficiently rapid decay of the aerosol density at distant points. 
Formulation of the microscale problem defining P is completed by imposing the initial 

condition 
P(R., r, 0) =f(R., r) (19) 

at time t = 0, with f(R., r) the initial aerosol distribution within the filter bed. 
In contrast with the existing approach, where aerosol transport is considered only within 

the single UBE, equations (15)-(19) describe exactly the real physical process of propagation 
and deposition of the aerosol particles throughout the whole (spatially periodic) filter bed. 
As a well-posed mathematical problem, equations (15)-(19) may (at least in principle) be 
explicitly solved. This solution may be directly and rigorously used [without the necessity of 
utilizing the ad hoc formula (3)] to calculate the filter efficiency. However, as previously 
discussed, for the latter goal such an exhaustively detailed microscale solution P is 
unnecessary. Accordingly, we seek instead to obtain only the coarse-grained macroscale 
aerosol concentration field /~(ll, t), governed by the transport and reaction/deposition 
equation (12). Towards this goal we will employ the method of moments (Aris, 1956; 
Brenner, 1980b) to effect the calculation of the three phenomenological coefficients K*, U* 
and !)* required in this macrotransport equation, other than via their fundamental 
definitions (10)--(11), which require a priori knowledge of the detailed distribution, P. These 
calculations are performed in Appendix A. The computational effort required necessitates 
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calculation of only the leading eigensolutions (~o, qJo) and )~o of the pair of adjoint 
eigenvalue problems (A11)-(A12), together with a determination of the time-independent 
vector B-field, governed by equations (A17a-d)--all within but a single unit-cell of the 
infinitely extended porous filter bed. 

4.2. Darcy-scale aerosol concentration distribution 

The average or Darcy-scale aerosol concentration,/5, is exactly defined for our spatially 
periodic model via integration of the microscale concentration field, P, over the interstitial 
unit-cell volume: 

def. 1 fr /5(R,, t) . . . .  P(R,, r, t)d3 r, (20) 
"CO 

where to is the unit-cell superficial volume. It may be shown (Shapiro and Brenner, 1988) 
that for asymptotically long times (t >> 12/D)/5 is governed by the Darcy-scale equation (12) 
possessing phenomenological transport coefficients K*, U* and !)* determined in Appendix 
A, provided that the coarse-grained position vector R appearing in (12) is identified with the 
discrete global position vector, R., (Brenner, 1980b). 

4.3. Validity of the Darcy-scale description 

As discussed above [see also equation (A7)], the coarse-scale transport coefficients exist 
for times greatly exceeding the characteristic intracell transport time, i.e. 

t >> 12/D, (21) 

where I is the characteristic unit-cell dimension. Physically, this represents the time interval 
during which the microscale aerosol density, P, itself attains a kind of self-similar, 
asymptotic, intracell distribution. Consequently, the latter inequality delineates the range of 
validity of the Darcy-scale equation (12). Observe, however, that this characteristic 
microscale time is much less than the characteristic time for Darcy- or macroscale transport, 
i.e. the characteristic time required for translational motion within the filter bed of the 
aerosol cloud as a whole. The latter time scale is given by L~ Uo, with Uo the superficial air 
velocity and L the filter thickness. Thus, the condition of applicability of the proposed 
coarse-scale description of aerosol transport and deposition in filters of finite thickness may 
be formulated as 

Uol/D ~. L/l. (22) 

The left- and right-hand sides of (22), respectively, represent the characteristic microscale 
Peclet number and number of collector layers contained within the filter. Because l is 
generally small (l ~ a), the inequality (22) is normally satisfied by both fibrous (Davies, 1973) 
and granular (Tardos, 1977) filters when collecting submicrometer aerosols. 

5. ONE-DIMENSIONAL FILTER MODEL 

5.1 Mean cross-sectional aerosol concentration distribution 

Knowledge of the phenomenological macrotransport coefficients /(*, U* and !)* 
appearing in the macrotransport equation (12) governing/~, permits their eventual use in 
calculating the filtration efficiency, ~/. It is demonstrated (see Appendix A) that these three 
coefficients are independent of the initial aerosol spatial concentration distribution. As such, 
they may be regarded as material properties of the macrocontinuum, characterizing the 
Darcy-scale deposition and transport processes for a given aerosol and filter bed, i r r e s~ t -  
ive of the filter's (finite) macroscopic cross-sectional shape, qo, as well as of the inlet aerosol 
concentration distribution. In principle, equation (12) may be solved pointwise to obtain the 
macroscale aerosol distribution, /5, at each point, R, within the filter bed. In turn, this 
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Fig. 5. Porous filter. Macroscale view. 

detailed information may be used to calculate the filtration efficiency ~/. In practice, however, 
this pointwise aerosol distribution (even at this coarse level of description) is still 
unnecessarily detailed if our sole purpose is to calculate ~/. This goal may be achieved by 
considering the mean cross-sectional aerosol concentration 

Pf(x,t) def" l fqo /5(x,q, t)dq, (23) 

where qo is the two-dimensional domain characterizing the filter's areal cross-section, S, and 
x is the axial cartesian coordinate measured along the air flow direction (see Fig. 5). 

5.2. One-&mensional axial aerosol transport equation 

The coarse-scale aerosol concentration within qo may be described by the vector q = i I ql 
+ i2q 2, characterized as in Fig. 5 by the two (generally curvilinear) coordinates (ql,q2) 
(Happel and Brenner, 1973). Consequently, the generic macroscale position vector R may be 
decomposed into the orthogonal sum 

= ixx + q. (24) 

The objective of this section is to eliminate details of the q-dependence of the aerosol 
concentration /5, thereby passing to the cross-sectionally averaged description/~f of the 
aerosol concentration field, defined by equation (23). Analogous to our earlier remarks 
concerning/5, it is not/sf itself that constitutes the main focus of interest, but rather the 
effective phenomenological coefficients/('f, 0f and/Sf governing the aerosol's axial depos- 
itional diminution and transport rates. These scalar coefficients, respectively, represent the 
mean aerosol axial reactivity, velocity and dispersivity. All three appear in the one- 
dimensional axial transport equation 

~/sf [7 t~/5 f _ ~2/5f  
dr" f t~X --  D f ~ - x 2  + K f P f  = O (25) 

governing the axial aerosol distribution/sf(x, t), subject to the appropriate initial condition 
/st(x,0) [obtained by subsequent integrations of f(R.,r) appearing in (19) over the 
interstitial unit-cell volume, via equation (20), and over the filter cross-sectional area, via 
equation (23)1. In this section we will determine these three phenomenological coefficients in 
terms of the comparable Darcy-scale phenomenological coefficients K*, U* and !)*. 

5.3. Mean axial aerosol transport coefficients 

Consider (as in Section 3) the model problem of the propagation, diffusion and deposition 
of an aerosol cloud within the filter. Now, however, we will describe this process at the 
macroscale using equation (12) with coefficients K*, U* and 1)*, here regarded as known 
constants. 
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The nature of the aerosol transport process within the filter cross-section is materially 
different from that along the filter-bed axis. Aerosol transport within the filter cross-section, 
qo, is hindered by the presence of the filter walls t3¢1o. Therefore, for sufficiently long times, the 
cross-sectional aerosol distribution effectively attains an asymptotic terminal state. How- 
ever, aerosol transport in the axial direction is undisturbed, provided that sufficient filter 
thickness obtains. 

Thus, for times greatly exceeding the characteristic time for cross-sectional transport, the 
aerosol cloud as an integral entity is transported only along the x axis. In such circumstances 
the axial aerosol transport process is grossly quantified by the following global quantities 
(Brenner, 1980a; Shapiro and Brenner, 1986, 1987): 

fq M~o = dq dx P(x, q, t), (26a) 

2=~- Z -  dq dxxP(x,q,t), (26b1 
o - o o  

( x_  •)2 - 1 dq d x ( x -  2)2 p(x,q,t), (26c) 
M 

x O  o - -  o~  

respectively, expressing the total aerosol 'mass', the axial position of the center of mass of the 
aerosol cloud and the aerosol's axial dispersion with respect to this moving mass center, all 
at time t. Further remarks will be offered below as to how large the filter bed thickness must 
be to justify the infinite-domain definitions (26). 

The scalar global phenomenological coefficients /(f, ~Jf and /)f governing the cross- 
sectionally averaged aerosol deposition and transport rates are expressed in terms of the 
three global parameters defined in equations (26a-c) via the following relationships 
(Brenner, 1980a; Shapiro and Brenner, 1986, 1987): 

/(f = - lim - - , d i n  M~o (27a) 
t -  ~ dt 

d£ 
tTf = lim -~, (27b) 

~ (it 

- 1 d 
Dr =~ lirn ~ (x - ~)2. (27c) 

As before, the coefficients Kf, Uf and/)r are expected to prove independent of the mode of 
initial introduction of the aerosol cloud into the filter, as well as of the total initial aerosol 
content. 

In Appendix B the mean axial transport coefficients K¢, Uf and/)r are explicitly expressed 
in terms of the Darcy-scale coefficients K*, U* and I)* [see equations (B13), (B14)]. In 
particular, for the cross-sectionally isotropic filter bed, Of and/)f are given by the respective 
axial components G~ and /5~ of the Darcy-scale velocity U* and dispersivity I)* [see 
equations (B16a, b) together with decomposition (Bla, b). 

5.4. Applicability of equation (25) to filter beds of finite thickness 

Several remarks are in order concerning the application to a bed of finite thickness, L, of 
the one-dimensional equation (25), whose phenomenological coefficients Kf, Uf and/)f were 
originally derived for an infinitely-extended filter bed in the axial direction. Generally 
speaking, equation (25)--with phenomenological coefficients derived as indicated above--is 
valid for times, t, exceeding the characteristic time 12/[11)¢¢[[ for cross-sectional aerosol 
transport, with l~ a characteristic linear cross-sectional dimension and [[ Dq¢[[ an appro- 
priate norm of the cross-sectional dyadic i)~q [see decomposition (B lb)]. On the other hand, 
this characteristic time must be much less than that required for axial aerosol transport 
through the entire bed (of length L), namely L~ Uf; otherwise, the aerosol particle may have 
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exited from the bed before having had the opportunity to 'equilibrate transversely' by 
attaining its Boltzmann distribution [cf. equation (BI0)] in qo. Thus, a necessary condition 
governing the applicability of (25) is obviously 

lq [.7~ L 
II f)qqll "~ lq  " (28) 

Usually, as a result of convective dispersion (Taylor, 1953, 1954a, b), the dispersivity norm 
II f~qqll appearing in (28) greatly exceeds the aerosol's molecular diffusivity, D. Consequently, 
the limitation (28) imposed upon the filter's linear dimensions, L and lq, as well as upon its 
operating conditions, is not as severe as might superficially appear. 

In circumstances where the axial and transverse (cross-sectional) aerosol transport 
processes are not coupled [cf. equations (B2a, b) and (B15)], the aerosol redistribution 
occurring within each filter cross-section x = const, towards the Boltzmann distribution 
does not preclude the use of (25) for times preceding the cessation of this redistribution 
process. In this case the effective axial equation (25) is valid almost immediately following 
introduction of the aerosol cloud into the filter bed. (In this case the equilibrium time is of the 
order of the characteristic intracell aerosol transport time.) Therefore, when (B 15) obtains, 
the restriction (28) becomes inoperative and hence need not be imposed; instead, only the 
milder condition (22), established earlier, limits the domain of applicability of (25). 

6. F I L T R A T I O N  E F F I C I E N C Y  

6.1. Steady-state aerosol filtration problem 

Equation (25) governs the asymptotically long-time, transversely-averaged concentration 
distribution of an aerosol cloud propagating and depositing within a porous filter that 
extends indefinitely in the axial direction. As described above, this process is inherently time 
dependent. On the other hand, real porous filters possess finite thicknesses and their 
performance is characterized by an almost steady-state deposition process. While the latter 
problem differs formally from the model problem of propagation and deposition of an 
aerosol cloud in a porous medium, we observe that the steady-state aerosol filtration process 
may be viewed as a continuous source problem (Gill and Sankarasubramanian, 1972) in 
which each subsequent portion of aerosol particles entering the filter propagates and 
deposits within the filter medium independently of any particles earlier introduced. 
Superposition of all contributions issuing from such successive portions is described by the 
steady-state version of equation (25), namely 

- d2jtsf - dJSf KfJt~f=0. (29) 
Of d--d- ~ -  - -  U f - . ~ X -  

The applicability of equation (29) was formally substantiated and discussed by Shapiro et al. 
(1988b). 

Continuity of the aerosol flux across the filter inlet requires imposing the boundary 
condition 

UoPin = [-Tfl~f  - -  /~f~.f at x = 0. (30a) 

Analogously, at the filter outlet, 

VoPou, = O, p ,  - B, at x = L. (30b) 

Thus, the ratio Pout/Pin will necessarily appear as an independent parameter governing the 
axial aerosol concentration distribution/~e. 

In contrast, classical filtration theory fails to predict any dependence of/~f upon the ratio 
Pout~Pin. This disparity is here resolved by noting that the classical model supposes the 
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aerosol  to be 'diffusion' (dispersion)-free at the macroscale,  despite the fact that  it undergoes 
diffusion at the microscale (see e.g. Tardos ,  1977; Tien, 1989). The present model  rectifies this 
omission by incorpora t ing  macroscale  dispersion into the description. Inclusion of this 
addit ional  t ranspor t  mechanism necessitates the use of boundary  condit ions at both  x = 0 
and x = L when formulat ing the filtration prob lem in order  that  the mathemat ica l  
boundary-va lue  p rob lem governing the second-order  equat ion (29) be uniquely posed.* 

The engineering significance of the functional dependence of/l~f upon the ratio Pout//Pin 
derives f rom the dependence of this concentra t ion distr ibution upon  the detailed manner  in 
which the penetrant  aerosol  is removed at the filter outlet. The latter effect may  be impor tan t  
for very short  filters, but is generally insignificant in situations of practical importance,  
where the filter is sufficiently long. For  such cases the boundary  condit ion at the filter outlet 
is specified here in the form (Danckwerts ,  1953; Wehner  and Wilhelm, 1956): 

d-of 
- - -  = 0 at x = L. (30c) 
dx 

This bounda ry  condit ion is further discussed and justified in the theory of chemical reactors 
by Pearson  (1959), Bischoff (1961), Fan  and Ahn (1962) and Bass et al. (1988). Use of this 
condit ion instead of (30b) eliminates the dependence of Of upon  the ratio Po, t/P~,. 

6.2. Solution of the aerosol filtration equations 

Equat ions  (21), (22a) and (22c) possess the solution 

-of (xf) Uo 21 exp [22(ff f - £ ) ]  - 22 exp [21 (~f - i ) ]  
Pin Uf 221exp(- 22 E) + 2 2 e x p ( -  2x/S) 

wherein 

with 

(31) 

Xf : x U f / D f ,  E = LUf/Df,  (32a, b) 

1 1 1 21 = ~ [  +(1  +4gf)U2],  22 = ~ [ 1 - - ( 1  +4ef)1/2],  (33a, b) 

ef = / ( f / ) r / ~ 2  (34) 

which are dimensionless quantities. These results may  be used to obtain the filtration 
effÉciency, defined by (1) or  (2), in the form 

AI -- 22 (35) 
q =  1 22exp(_22 /S)+~zZexp(_)v l /S  ). 

6.3. Limiting cases of aerosol filtration 

Two limiting cases are of special interest. 

Case (i): gf > • 1. Here,  (35) reduces to 

1 (36) 

* In fact, as indicated by (2), the ratio Po~t/Pi, completely determines the filter efficiency (and the converse). This 
observation, as well as formula (2) itself, implicitly assumes that the aerosol transport process preceding the filter 
inlet and after the filter outlet is dispersion free. In more general situations, where the latter assumption does not 
necessarily obtain, the filtration efficiency must be calculated by solving the aerosol transport problem within the 
porous filter bed simultaneously with that in the two effectively semi-infinite regions, respectively, preceding the 
filter inlet and following the filter outlet. In this case Pi, and Pout, appearing in equation (2) defining the filtration 
efficiency, should be understood, respectively, as aerosol concentrations existing at locations far upstream from the 
filter inlet and far downstream from the filter exit (Bass et al., 1988). 
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The inequality (i) and concomitant efficiency formula (36) are obviously valid when the filter 
face velocity, Uo, is sufficiently small, whereupon axial aerosol transport occurs primarily by 
diffusion. [Strictly, for this case, one has to substantiate the applicability of the Danckwerts 
boundary condition (22c), which is normally regarded as valid in circumstances wherein 
aerosol convective transport dominates (or is at least comparable to) diffusive transport. 
However, when the dimensionless parameter (/~f//~f)l/2 L appearing in (36) is much larger 
than unity, corresponding to a sufficiently long filter, the boundary condition (22c) continues 
to seem appropriate.] Further investigations are obviously required to delineate the extent 
to which case (i) describes any practically important aerosol filtration regimes. 

Case (ii): ~f ( < 1. Here, equation (35) adopts the elementary form 

r/= 1 - exp Uf ] (37) 

in which circumstance the filtration efficiency is independent of the macroscale axial 
dispersivity, /)f. It would appear that many practically important filtration operating 
conditions fall within the purview of case (ii). Indeed, calculations of the mean axial transport 
coefficients Kf, Uf and/)f reported in the next section, and subsequent evaluation of el, show 
that the inequality (ii) governing this case is achieved at sufficiently high values of the 
characteristic microscale Peclet number. 

6.4. Character is t ic  f i l t rat ion length, If 

Equation (37) may be rewritten alternatively as 

'l = 1 - e x p ( -  L / l f ) ,  (38) 

with 

If = V f / K f  (39) 

the characteristic filtration length (Leers, 1957). For the case h < < 1 considered here, If 
appears as the single intrinsic filtration parameter characterizing the efficiency of the 
collection process for a given aerosol and for specified operating conditions, irrespective of 
the filter's macroscale geometry (i.e. the linear size and cross-sectional shape of the filter bed 
as a whole). 

Equation (38) may be also compared with an analogous exponential form derived by 
integration of the filtration-rate expression 

d / ~ f  = - 2 / ~ f  (40) 
dx 

first suggested by Iwasaki (1937) [see also Tien (1989)] after analysing experimental data 
obtained for sand filters. The parameter 2 appearing in (40) (which possesses units of 
reciprocal length) is termed the filter coefficient. Comparison of the solution of (40) with 
equation (38) yields If = 2-1. In Iwasaki's (1937) approach [as developed in Tien's (1989) 
monograph] the filter coefficient, 2, is regarded as a fundamental experimental parameter, 
which is related to the unit-bed efficiency. In contrast with the above cited works of Leers 
and Iwasaki, in our contribution the existence of If (or 2) is rigorously demonstrated from 
the fundamental aerosol transport and deposition equations; moreover, its numerical value 
may be rationally derived via equation (39) from the fundamental axial aerosol trans- 
port/reaction coefficients Of and/('f, rather than having to be obtained experimentally. 

It is noteworthy that a functional similarity exists between the respective efficiency 
formulas (3) and (38), each predicting an exponential dependence of filtration efficiency upon 
filter-bed thickness, L. However, whereas (3) represents an ad hoc, virtually semi-empirical 
expression, its rational alternative (38) was derived by rigorous physico-mathematical 
arguments applied under well-defined limiting asymptotic conditions to a physically 
realistic (albeit idealized) geometrical model of the filter bed. Although only the two 

AS 21:1-H 
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phenomenological coefficients /(r and Uf seem to be required in the filtration efficiency 
calculation (38), explicit knowledge of Dt is nevertheless also required to assure fulfillment of 
the inequality ef < < 1 underlying the validity of (38). 

7. EXAMPLE. F ILTRATION OF DIFFUSIONAL AEROSOLS BY FIBROUS 
FILTERS 

The theory developed here was implemented by calculation of the filtration efficiency of a 
fibrous filter collecting fine aerosol particles possessing diameters dp < 0.1 #m. Specifically, 
we studied the situation where Brownian diffusion dominates over all other deposition 
mechanisms, namely, over interception, inertia and external forces, which were neglected. 
For simplicity, the geometric microstructure of the filter bed was modelled by a square array 
of circular cylinders with their axes perpendicular to the mean air flow direction (see Fig. 6). 
As a first step, calculations of the spatially periodic Navier-Stokes velocity field in such an 
array were performed for various bed void fractions. These calculations, as well as the 
subsequent numerical integration of the pertinent unit-cell boundary-value problems [see 
equations (AI l a)-(Al2d) and (A17a-d)] were performed by finite element methods. Details 
of the computational scheme employed, together with the results obtained for the flow field, 
are presented by Edwards et al. (1989). 

Results. The coarse-scale aerosol transport coefficients were calculated as functions of the 
characteristic microscale Peclet number Pe = 2a Uo/D. For simplicity, the characteristic 
microscale Reynolds number was chosen to be zero. A comprehensive parametric investiga- 
tion of the effects of Reynolds number, as well as of other characteristic filtration parameters, 
will be reported in a forthcoming contribution (Shapiro et al., 1990b). 

For the preceding filter-bed geometry the Darcy-scale aerosol velocity vector, I2", was 
determined to lie parallel to the mean air flow direction. The Darcy-scale aerosol dispersivity 
dyadic was characterized by its longitudinal (/)xx) and lateral (Dyy) components, both of 
which were computed. As the geometric configuration of the filter bed considered is 
characterized by the absence of coupling between aerosol transport in the longitudinal and 
lateral directions, the mean axial aerosol velocity, t_Tf, and dispersivity,/Sf, are, respectively, 
given by their Darcy-scale counterparts, t..7* and/Sxx [see equations (B16a, b)]. Moreover, 
the calculated data showed for Pe ~> 1 that the macroscale aerosol transport coefficients 
obey the inequality er 4 1 [see equation (34) and case (ii) of section 6]. Consequently, the high 
Peclet number aerosol collection process may be uniquely characterized solely by the 
characteristic filtration length, If. 

@@@ 

@@@ 
U 

I t  

Fig. 6. Spatially periodic model of a fibrous filter used in computations. 
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Table 1. Comparison of characteristic filtration lengths, If, with available data 
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Characteristic filtration length, If (cm) 
Aerosol 
particle Filter-face Stechkina and Fuchs (1966) 
diameter velocity Present Experimental, 
dp (/am) Uo, (cm s - l )  theory Formula (43) Formula (44) Lee (1977) 

0.035 10 0.105 0.048 0.040 0.128 
0.035 30 0.315 0.099 0.084 0.203 
0.05 3 0.081 0.039 0.033 0.124 
0.05 10 0.267 0.088 0.075 0.191 
0.07 3 0.116 0.050 0.043 0.168 
0,07 10 0.386 0.113 0.096 0.298 
0.1 1 0.098 0.045 0.038 0.279 
0A 3 0.289 0.093 0.079 0.384 
0.1 10 0.856 0.210 0.178 0.800 

7.1. Comparison with previous results 

Calculated values of If were compared with theoretical results of Stechkina and Fuchs 
(1966) and with the experimental data tabulated by Lee (1977). Computations of the 
characteristic filtration length were specifically performed for the filtration parameters 
(reported in the latter study), corresponding to the collection of diffusional aerosol particles 
by Dacron filters of thickness L = 0.354 cm composed of 11/~m diameter fibers. Results for a 
filter characterized by a void fraction of e = 0.849 which was collecting 0.035-0.1 #m 
diameter dioctyl phthalate aerosol particles are summarized in Table 1. Experimental values 
of If were calculated from Lee's (1977) filtration efficiency data by the formula [cf. (38)]: 

L 
If = ln(1-~/)" (41) 

The theoretical data of Stechkina and Fuchs (1966), who calculated the single-fiber efficiency 
for diffusional aerosol collection (from the Kuwabara flow field) in the form 

r/c = 2 .9Ku-  t / a p e - 2 / 3  + 0.624 Pe-  1, (42) 

with Ku = - 1/2 in (1 - e )  - e/2 - ~2/4 the Kuwabara number is also included in Table 1. As 
already mentioned in the Introduction, the correlation (3) between the single fiber efficiency, 
r/c, and the total filter efficiency, r/, depends upon the exact form of the coefficient ~ appearing 
therein. Davies (1973) used ct = 2(1 - e ) /n ,  which in combination with (3) and (38) yields the 
following expression for If: 

If 1 lZ 
2a 1 - e 4r/c" (43) 

On the other hand, Lee (1977) and Lee and Liu (1982a, b) suggested another formula for ~, 
which differs from that of Davies (1973) by the factor e. With Lee's expression for ~t, If 
becomes 

/f 8 ~z 
2a 1 - e 4r/c (44) 

The values of If computed from both (43) and (44), with r/c evaluated from (42), are listed in 
Table 1. As can be seen, the values of the characteristic filtration length calculated using the 
theory of Stechkina and Fuchs (1966) [and either equation (43) or (44)] are significantly 
lower than the experimentally measured if. As such, the existing 'single fiber efficiency' 
theory of Stechkina and Fuchs' systematically overestimates the total efficiency of the filter. 
On the other hand, the values of If calculated using the proposed dispersion/reaction theory, 
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reasonably fit the experimental data of Lee (1977)--even for the oversimplified, parallel fiber, 
filter-bed microstructure chosen for our computations. 

Of course, the limited computational results presented in this section are insufficient to 
fully assess the merits of the filtration model proposed in this study. A much more 
comprehensive investigation of aerosol filtration based upon the present model will be 
presented in a subsequent paper (Shapiro et al., 1990b). 

8. DISCUSSION AND SUMMARY 

The proposed dispersion/reaction model of aerosol transport and deposition phenomena 
in porous media constitutes a novel fundamental contribution to the classical theory of 
aerosol filtration by porous filter beds. This contribution frees the classical theory of many 
implicit and explicit ad hoc assumptions. Central points underlying the proposed scheme 
consist of: (i) representing a filter bed as a spatially periodic porous medium; (ii) viewing the 
aerosol filtration process as consisting of combined interstitial convective and dispersion 
phenomena, accompanied by irreversible deposition on the filter bed collector particles; and 
(iii) subsequently passing from the microscale or interstitial view to a coarser macro- or 
Darcy-scale description of the phenomena. 

Instead of the misleading concept of a unit-bed efficiency, qc, we naturally introduce and 
rigorously calculate three Darcy-scale aerosol macrotransport coefficients. These constitute 
physically objective, experimentally accessible quantities, in terms of which the filtration 
efficiency, r/, is easily determined. These Darcy-scale phenomenological coefficients (each of 
which is, in principle, separately measurable rather than being lumped together) provide a 
new conceptual framework for understanding aerosol transport and filtration processes 
within porous filters; the underlying analysis derives, in part, from our earlier theory 
(Shapiro and Brenner, 1988; Dungan et al., 1990) of heterogeneous chemical reactions in 
porous media--in particular involving irreversible, infinitely rapid, surface reaction phen- 
omena on the bed particles. The present approach can be used to delineate the range (if 
indeed any exists) for which the classical concept of unit-bed efficiency results in a viable, 
albeit somewhat empirical, method for designing porous aerosol filters. 

Existing filtration theory separates, on an ad hoc basis, the influence of local bed 
microstructure from that of global or macroscale filter thickness, L. In contrast, our 
proposed model fuses these distinct geometric influences via a rigorous physico-mathemat- 
ical scheme that clearly describes the circumstances under which the aerosol filtration 
process can be described by Leers' (1957) characteristic filtration length, lf, as an intrinsic 
filtration parameter. 

Despite its apparent complexity compared with standard unit-bed efficiency methods, the 
proposed dispersion/reaction macrotransport model is based upon a well-posed aerosol 
microtransport problem, which can accordingly be treated by standard analytical and/or 
numerical methods. Computations, performed by finite element methods, of the coarse-scale 
transport coefficients characterizing the diffusional aerosol particles in spatially periodic 
fibrous media, yielded values of the characteristic filtration length in accordance with the 
available experimental data of Lee (1977). 

While the proposed dispersion/reaction model of aerosol filtration bodes useful in 
examining several fundamental assumptions underlying the transport and collection of 
micrometer and submicrometer aerosols, its real advantage lies more, perhaps, in its ability 
to systematically rationalize the quantitative effects of aerosol properties, bed structure and 
filtration operating parameters upon aerosol filtration efficiency. These questions will be 
addressed in a future publication (Shapiro et al., 1990b). 

Moreover, the proposed model is able to account for the following parameters and 
processes (which cannot strictly be addressed by current single-element efficiency theories): 
(i) polydisperse structure of the filter bed; (ii) irregularity of collector shapes; (iii) non- 
spherical nature of the aerosol particles; and (iv) kinetics of chemical conversion of aerosols 
upon collector surfaces (in circumstances where actual, rather than fictitious chemical 
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reactions occur). These research agenda items represent longer-term areas of investigation of 
potential value arising from the proposed filtration model. 

By placing the transport and deposition of fine particles within a porous media upon a 
firmer physico-mathematical basis than has hitherto existed, our theory potentially impacts 
adjacent engineering areas concerned with the behavior of fluid-particle systems; included 
are deep-bed filtration (Payatakes et al., 1973; Rajagopalan and Tien, 1979) and particle 
separation processes (Watson, 1973; Lin and Benguigui, 1983). Related research areas are 
addressed elsewhere (Shapiro and Brenner, 1988). 
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A P P E N D I X  A. M E T H O D  O F  M O M E N T S  

Defne intracellular local and total polyadic moments of the aerosol number density, P, by the respective 
expressions 

Pm(r,t)=~ R~P(R.,r, t), (Ala) 
n 

Mm(t) = Jrl'f Pro(r, t)dar, (Alb) 

for m = 0, I, 2 . . . . .  Here 

n n l = - o o n 2 ~ - ~ n 3 = - ~  
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The zero-order total moment, Mo, defined by (A !) with m = 0, represents a version of the equivalent formula (10a) 
for the spatially periodic porous filter model. Similarly, the displacement, R, of the aerosol cloud's center of mass as 
well as its dispersion, (AR) 2, at time t, respectively, defined by (10b, c), may be expressed in terms of the first three 
total moments Mo, M1,M2 as (Brenner, 1980b; Shapiro and Brenner, 1988) 

MI 
R--- (A2a) 

Mo' 
(AR)2 _= M2 Ml M1 (A2b) 

M o Mo 2 

Because the phenomenological coefficients/(*, I J* and 1)* required in the theory are to be calculated via (1 I) from 
knowledge of the long-time behavior of Mo, R and (A R) 2 , their calculation can obviously be effected by establishing 
the comparable asymptotic properties of Mo, M1 and M 2. 

Towards this end, we consider first the asymptotic behavior of Po, P I and P2. Multiply equations (15) and (16) by 
R.", sum over all of the infinitely many unit-cells, and use boundary conditions (18) to obtain (Brenner, 1980b) 

c)Pm 
- - - -  + V ' (JP  m) = 0, (A3a) 
8t 

Pm = 0 on S~. (A3b) 

P,, must also obey certain so-called 'jump' conditions imposed across the unit-cell faces &k. These are obtained by 
employing the continuity conditions (17) to obtain (Brenner, 1980b) 

~Po~:0, ~VPo~ =0, (A4a, h) 

~P,~=-~rPo] ,  [ V P , ~ = - [ V ( r P 0 )  ~, (A4c. d) 

[a2~=[P,P,/Po~, ~VP2]=~V(P,P,/Po) ]. (A4e, I) 

Generically, [[ F ]] denotes the change in the value of the tensor-valued function, F, across equivalent points lying on 
opposite cell faces, defined explicitly by the expression 

~- F ]~ = F(r + lk) -- F(r). (A5) 

To complete the problem statement defining the local moments, Pro, the initial condition (19) is employed to obtain 

P,~(r, 0)= ~R~'f(R., r). (A6) 
n 

Temporal evolution and intracellular transport of the local moments, P,,.,within a unit-cell is governed by the 
system of equations (A3)-(A6). Although none of the local moments exhibits a steady-state solution, all achieve 
asymptotic, long-time, limiting forms for times, t, satisfying the inequality 

t >> 12/D, (A7) 

where/=max {111 ], It21,1/31}. 

A.1. Zero-order moments 
Consider the zero-order moment problem for Po posed by equations (A3a, b), (A6) (with re=O) and (A4a, b). 

Shapiro and Brenner (1988) showed that the asymptotic long-time solution of this problem may be expressed as 

P0 (r, t) -~ Ao h (r) @o (r) exp (200 ( 1 + exp), (A8) 

where 'exp', appearing without an argument, denotes a function decaying exponentially rapidly with time; 
additionally, 

h (r) = exp [ -  E (r) ], (A9) 

Ao= frfo(r)~Po(r)d3r. (AI0) 

In (A8) and (A 10) the quantities 2 o, @o (r) and q'o (r), respectively, represent the common leading eigenvalue and 
corresponding eigenfunctions (Courant and Hilbert, 1966) of the following pair of adjoint eigenvalue problems 
(EVPs): 

(i) Characteristic EVP: 

V.(hJ@) + 2h~ = 0 in rf, (A1 la) 
q) = 0 on S0, (A 11 b) 

~q~]=0, ~V~] =0; (Allc, d) 

(ii) Adjoint EVP: 
hU • VW + V • (hDV~P) = 2h~P in rf, (A 12a) 

~P=0 on Sc, (A12b) 

~W]) =0, ~-VtP~ =0. (A12c, d) 
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The leading eigenfunctions Oo and tF o, together with their common eigenvalue 20, may be explicitly calculated for 
a prescribed unit-cell geometry and given microscale phenomenological functions U(r), E(r), D. Note that • o and 
~o are each non-negative within rt (Shapiro and Brenner, 1988) thus assuring the same property for Po (at least for 
asymptotically long times). These eigenfunctions (which are generally defined only to within arbitrary constant 
multipliers) are here chosen so as to satisfy the following integral normalization conditio¢~: 

fr h(r)~F0(r)Oo (r)d3 r 1. (A13) 
r 

The asymptotically long-time [cf. (A7)] expression for the zero-order total moment, Me, obtained by integration 
of (A8) over the unit-cell interstitial domain rr, is 

Me(t )  = ,4oexp(2ot)(1 + exp), (A14) 

where 

A.2. First-order moments 

/1 o = Ao fr, h (r) • o (r) d 3 r. (A15) 

Subject to a posteriori verification, assume the following asymptotic functional form for PI: 

P1 (r, t) ~- A o h(r)Oo(r ) exp (Aot) JUt + B(r) + exp], (A16) 

with U a constant vector and B(r) an intracell vector field, each to be determined. Introduce (A16) into (A3) (with m 
= 1) and (A4c, d), and use (A8) to derive the following system of equations governing the B field: 

V. [hJ(OoB)] + 2ohOoB = - hOoU in if, (A17a) 

B = finite on S¢, (Al7b) 

~a]= -[[r], [VB] =0. (A17c, d) 

To obtain the requisite value of tJ, multiply both sides of(A17a) by q% (r)d a r, integrate over rr, and use equations 
(AI la)-(A12d) together with the divergence theorem and jump conditions (A17c, d). This eventually yields 

/ *  

l[J= / h[UO o ~Fo+O(OoV~o-qJoV O0)]dar. (A18) 
O r  f 

Integration of (A16) over the interstitial unit-cell domain furnishes the first-order total moment 

MI (t) ~- .4o exp (2o t) (Ut + B + exp), (A19) 

with B given by 

= A0,~ ° l t" h(r)O°(r)B(r)d3 r. (A20) 
o r  f 

It may be demonstrated (Shapiro and Brenner, 1988) that the B-field problem posed by (A17a-d) possesses a 
solution which is uniquely determined only to within an arbitrary additive constant vector. This ambiguity will be 
shown to be without effect upon the mathematical expressions for the final physical results, explicitly upon the 
values of the phenomenological coefficients K*, U* and I)*. 

A.3. Second-order moments 

Subject to a posteriori verification, assume a long-time trial solution for P2 of the form 

P2 (r,t) ~ Aoh(r)Oo(r)ex p (2o0 [[J(l t 2 + 2.~¢'t + 2sym (lIB)t + H(r) + exp], (A21) 

with J a constant dyadic, H(r) an intracellular dyadic field to be determined and in which the operator 'sym' 
denotes the symmetric portion of the dyadic argument. To determine H(r), introduce (A21) into the problem posed 
by equations (A3a, b) (with m = 2) and (A4e, f) to obtain the following set of equations governing the H-field: 

V • [h J (O o H) ] - 20 h~o H = 2 [ J  + sym (UB) ] hoe, (A22a) 

H = finite on S¢, (A22b) 

[H~=[BB~, [VH~ = [V(BB)~. (A22c, d) 

To obtain the required value of .~, multiply both sides (A22a) by ~Fodar, integrate over r o and use equations 
(A 1 l a-A 12d) and (A17a-d) together with the divergence theorem and jump conditions (A22c, d) to obtain 

f. J =  - d s ' { U h O o ~ P o B B + D h [ ( V ~ P o ) O o B B - U / o V ( O o B B ) } - s y m ( U  hOo~PoBd3r). (A23) 
re tr 

The H-field, defined by equations (A22a-d) with Jr given by (A23), may be shown to possess a solution which is 
determined uniquely only to within an arbitrary additive constant dyadic. However, explicit knowledge of the H- 
field will prove unnecessary in deriving the values of the three Darcy-scale phenomenological coefficients. 
Accordingly, this lack of uniqueness will prove physically irrelevant. 

Integration of(A21) over the interstitial unit-cell domain furnishes the second-order total moment, M2, as t--* oo 
in the form 

M2(t) ~ "4o exp (20t)[UUt 2 +2~¢t + 2sym(UB)t + const. + exp]. (A24) 
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A.4. Darcy-scale phenomenological coefficients 

Having established the asymptotic behavior of the total moments M o, M1, M 2 in equations (A14), (A19) and 
(A24), respectively, the definitions (11 a-c) in conjunction with equations (A2a, b) now permit determination of/(*, 
U* and D* as 

/('* = - 2o, U* = U, 1)* = .~, (A25a, b, c) 

with [J given by (AI8) and J by (A23). Thus, all three Darcy-scale aerosol deposition and transport coefficients are 
each now expressed in terms of solutions of the unit-cell problems posed for ~o (r), Wo(r) and B (r) [as well as the 
prescribed microscale phenomenological data, namely U(r), Eft) and D]. 

The dispersivity, D*, may be computed from its alternative representation (Shapiro and Brenner, 1988) 

= D i h~°tP°(VB)1": (VB)d3r' (A26) i~* 
d .  rf 

which requires knowledge only of VB rather than of B itself; here (VIi) t is the transpose of the dyadic VB. Since the 
B-field is uniquely determined only to within an arbitrary additive constant vector [in consequence of being a 
solution of the problem posed by equations (A 17a-d)], it is evident that the alternative form (A26) of D* [cf. (A25c) 
jointly with (A23) ] is unaffected by this arbitrariness and is hence uniquely determined. Equation (A26) shows l)* to 
be both symmetric and positive definite. 

A P P E N D I X  B. C A L C U L A T I O N  O F  T H E  C R O S S - S E C T I O N A L  A V E R A G E D  

A X I A L  A E R O S O L  T R A N S P O R T  C O E F F I C I E N T S  

To establish the long-time behavior of the global quantities (27a-c), consider the aerosol cloud propagation 
through the filter continuum, as described by the Darcy-scale equation (12). In the most general situation the 
velocity vector, U*, may possess both x- and q-components, leading to the decomposition 

IA* = [Jx + l[J¢ (Bla) 

into respective axial and transverse components. Similarly, the dispersion dyadic, l)*, may include all nine 
(non-zero) scalar components (of which only six are independent), corresponding to its decomposition into the 
partitioned matrix 

F6~ I l)~q 7 
" ' :  NJ (Bib) 

Here, the direct or 'diagonal' dyadics [)xx(=-ixi~Dxx) and l)qq represent dispersivities parameterizing the res- 
pective axial and cross-sectional Fickian aerosol fluxes, whereas the off.diagonal dyadics, l)xeand l)qx - I)tx¢, 
constitute comparable coupling dispersivities. Constitutive equations for the cross-sectional (J~P) and axial (J~P) 
aerosol flux components may be written in the respective forms 

Jx P = Cx fi - 15~x" Vx/5 _ 15xq. Vq/5, (B2a) 

jq6= Uq 6 _ Dqx" V~/5 -- I)¢q" Vq P, (B2b) 

where V x -= ixtg/t3x and Vq = 8/dq denote respective gradient operators in the x- and q.<lirections. 
Introduce into (12) the aerosol concentration, P', defined via the transformation (Brenner, 1980a; Shapiro and 

Brenner, 1987) 

/5' (x, q, t) =/5(x,q, t) exp (/(* t), (B3) 

thereby obtaining 
~j t~  I 

- -  + Vq.(Jqe') + v~.(JxP')  = o. (B4) 
~t 

This equation must be solved subject to the boundary condition 

n . Jq /5 '=0  on3qo (B5) 

on the filter walls, as these walls are impermeable to penetration by the aerosol. Comparable axial boundary 
conditions are 

Ixl"(fi',Jx/5')-*(O, 0) as Ixl--,oo (B6) 

for m = 0, l, 2 , . . . .  specification of the initial condition, 

P'(x,q,0) = f(x, q), (B7) 

with f(x,q) = f([I) [of. (24)] a coarse-scale analog of the pointwise initial distribution (19), thereby completes the 
formulation of the problem posed for the modified aerosol concentration fi'. 

It is easily established by integration of (B4) over the filter volume {qo} w { - oo < x < ¢c } using boundary 
conditions (BS) and (B6) that 

; i  dx /5' (x,q,t)dq = const. (t > 0). (B8) 
- ~ c  o 

Use of (B8) together with (B3), (26a) and (27a) demonstrates that 
/~f = g*. (B9) 
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The problem posed for/5, by equations (B4)-(B7) does not explicitly entail any information pertaining to the 
aerosol diminution within the filter (other than that implicitly embodied in the macroscale transport coefficients 13" 
and I)*); as such, the problem is identical to one already treated by Brenner (1982b) using generalized Taylor 
dispersion phenomena theory formalism. Although Ur and Df may be explicitly calculated using the latter 
formalism, we will derive these coefficients by invoking the following simpler, albeit less rigorous, physical 
arguments. It may be shown (Brenner, 1982b) that for sufficiently long times (explicitly specified below) the spatial 
aerosol distribution within each filter cross-section x=eonst, reaches the asymptotic state characterized by the 
condition 

J q P '  = 0. (B10) 

The latter no-flux condition satisfies the requirement (B5) of impermeability of the filter walls to aerosol particles. It 
may be viewed as a generalization of the equilibrium Boltzmann distribution to the more general case where 
coupling exists between the cross-sectional and axial aerosol transport processes. Introduce into the latter equation 
the constitutive expression (B2b) [rewritten for Jq/~' with the use of (B3)] and pre-multiply both sides by l)~el to 
obtain 

Vq/~' = -- ~qql . 13q ]:~, + I)qql .l)qx Vx ~ ,  (B 11 a) 

Substitution of this expression for Vq/~' into equation (B2a) [rewritten for Jx/~'] thereby yields 

Jx/~' = (13x - l )  xq " f )  ~ql . 13q),5, _ ( f )  x _ D x¢ " Dq-¢ 1" f )  qx) " Vx/~'. (B 11 b) 

Upon comparison of the latter equation with the effective convective-dispersive constitutive equationt 

j.~,6, = ix Uf p ,  _ D r V x  P ,  (B12) 

for the axial flux, one obtains the following expressions for the axial transport coefficients Ut,/)f: 

LTf = ix" (13~ - Dx¢ "D¢'¢ 1 "13¢) (B13) 

and 

det I)* 
/)f - (B14) 

det I)¢¢" 

Moreover, for commonly encountered isotropic filter beds, 

f )¢x  = f )x¢  = O. (B15) 

This causes (B13) and (B14) to adopt the elementary forms 

/.Tf - ix" I3" -=/7*, /)f-=/)x:,. (B16a, b) 

f In fact, the axial flux equation (B 12) describes theconstitutive relationship existing for the asymptotically long- 
time, coarse-scale, 'pointwise' aerosol concentration P'. This contrasts with the comparable axial flux constitutive 
equation implicitly embodied in equation (25) pertaining only to the cross-sectionally averaged concentration/~f. 


