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S Y M B O L I C  D Y N A M I C S  O F  N O I S Y  C H A O S  

J.P. C R U T C H F I E L D  and N.H.  P A C K A R D  
Physics Board of Studies, University of California, Santa Cruz, California, USA 

One model of randomness observed in physical systems is that low-dimensional deterministic chaotic attractors underly 
the observations. A phenomenological theory of chaotic dynamics requires an accounting of the information flow from the 
observed system to the observer, the amount of information available in observations, and just how this information affects 
predictions of the system's future behavior. In an effort to develop such a description, we discuss the information theory of 
highly discretized observations of random behavior. Metric entropy and topological entropy are well-defined invariant 
measures of such an attractor's "level of chaos", and are computable using symbolic dynamics. Real physical systems that 
display low dimensional dynamics are, however, inevitably coupled to high-dimensional randomness, e.g. thermal noise. We 
investigate the effects of such fluctuations coupled to deterministic chaotic systems, in particular, the metric entropy's response 
to the fluctuations. We find that the entropy increases with a power law in the noise level, and that the convergence of the 
entropy and the effect of fluctuations can be cast as a scaling theory. We also argue that in addition to the metric entropy, 
there is a second scaling invariant quantity that characterizes a deterministic system with added fluctuations: I0, the maximum 
average information obtainable about the initial condition that produces a particular sequence of measurements (or symbols). 

1. The role of fluctuations in dynamical systems 
modeling 

The work of  Lorenz [1] and Ruelle and Takens 
[2] has led to the idea that randomness  observed 

in physical systems may  in some cases be modeled 

by low-dimensional chaotic attractors.  A growing 
body of  experimental evidence now supports  this 

view [3]. This data  also demonstrates  that  any 

purely deterministic model is incomplete, since the 
dynamics o f  physical systems is inevitably coupled 

to some source o f  fluctuations. We shall refer to 

these fluctuations as external fluctuations*. An- 

* We can give an unambiguous definition of this in terms of 
the ideas presented in this paper: External fluctuations may be 
regarded as a second dynamical system (coupled to the system 
of interest) with sufficiently high entropy hu so that all the 
information I from a measurement is lost after the typical time 
r used for sampling the first system. In other words, I/r ~ hu, 
where I/~ is the information acquisition rate. This allows for an 
operational definition of a non-deterministic source of random 
behavior as a deterministic system whose entropy is sufficiently 
large to preclude an observer's geometric reconstruction of the 
source's dynamics. All of our information quantities will be 
measured in bits and so, in particular, all logarithms will be 
taken to the base 2. 

t We will assume fluctuations to be drawn from a stationary 
ensemble at each time. 

other attribute that must  be incorporated into an 

accurate model for observed randomness  is 

fluctuations o f  the measuring instrument,  these 

we will call observational noise. Observational  noise 

differs markedly f rom heat bath fluctuations in 

that it does not  affect the temporal  evolution o f  the 

system being observed (assuming a classical mea- 

surement process); rather, it directly limits what  

may  be inferred about  the system under  study. We 

will be concerned only with the effects o f  external 
fluctuations here; for further discussion of  this 

classification o f  noise types see ref. 4. 

Incorpora t ion  o f  any kind o f  fluctuation into a 

dynamical  description implies that observables be- 
come average quantities, the average being taken 

over all possible fluctuationst.  For  the case o f  a 
chaotic deterministic dynamical  system, we are led 
to the idea that observables are average quantities, 

where the average is taken with respect to the 
asymptot ic  probabil i ty distribution. When 
fluctuations are added to such a system, they 
produce a new asymptot ic  probabil i ty distribution. 
A formal expression o f  how this distribution arises 
will be presented below. In referring to a proba-  
bility distribution P(x)  we will find it convenient to 
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also speak of the associated measure # defined by 

l~(A) = f P ( x )  dx, 

A 

where A is some set. 
We will be concerned with the effect of 

fluctuations on measurements of randomness, in 
particular, their effect on the metric entropy. As we 

shall see from numerical computations, the metric 
entropy is relatively insensitive to observational 
noise, but is strongly dependent on external 
fluctuations coupled to the dynamics; and so we 
will concentrate mostly on this latter case. The 
prototypical chaotic systems we shall use are iter- 
ated maps of the unit interval I onto itself: 
Xn+ 1 =f (x , ) ,  where f is some nonlinear function. 
These will also be referred to as one-dimensional 
maps. We will model the effects of  external 
fluctuations with a stochastic difference equation 
of the form 

xn +1 = f ( x . )  + ~,  (1) 

fluctuations approximates the zero noise invariant 
measure with arbitrary accuracy (strong con- 
vergence), and that all initial conditions have time 
averages that correspond to averages with respect 
to the invariant measure. 

We begin by reviewing entropy measurement 
techniques for deterministic systems. We will then 
investigate the effects of  external noise on the 
symbolic dynamics, and discover that the amount  
of  information I(n) about the initial condition that 

produces a symbol sequence of length n reaches a 
limit I0 at some particular length n,. that is de- 
pendent on and scales with the noise level. Further- 
more, the added noise produces entropy con- 
vergence features that also obey scaling laws. After 
describing the scaling features of the entropy, we 
will discuss numerical experiments in which we 
compute the scaling exponents for many different 
systems. We then describe an alternate entropy-like 
quantity similar in spirit to the Lyapunov charac- 
teristic exponent, conjecturing equality with the 
symbolic dynamics metric entropy. We conclude 
with an overview and a brief discussion of some 
experimental applications. 

where ~n is a delta-correlated random variable. 
Numerical experiments [5] indicate that the re- 
sponse of the metric entropy to the added 
fluctuations ~ is insensitive to the details of  their 
probability distribution. We will assume ~ to have 
zero mean, and to be evenly distributed over some 
finite interval, with a standard deviation, or noise 
level, a. 

For dynamical systems with added fluctuations 
there are not many rigorous results. Kifer [6] has 
proven that for hyperbolic attractors* the invari- 
ant measure converges weakly to the correct zero 
noise limit. Boyarsky [7] proved that for one- 
dimensional maps that have slope everywhere 
greater than one, there exists some noise level for 
which the invariant measure of the system with 

* In the context of one-dimensional maps, this means that 
the absolute value of the slope of the map must be greater 
than one everywhere on the attractor. 

2. Symbolic dynamics and entropy for deterministic 
systems 

We must first review the case of observing a 
deterministic dynamical system. We will consider 
time to be discrete, and the dynamical system to be 
a map f from a space of states M into itself, 
f :  M---~ M. We a s s u m e f h a s  some ergodic invariant 
measure/~. If  f has an attractor, we will restrict our 
attention to the attractor, and assume that almost 
all (with respect to Lebesque measure m) initial 
conditions approach the attractor and have tra- 
jectories that are asymptotically described by the 
measure/ i  on the attractor; i.e. that for almost all 
points the measure 

r l = l  
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converges weakly to ~. Oono and Osikawa [8] refer 

to this assumption as the "condition for observable 
chaos". 

This may seem like an amazing assumption from 
a mathematical viewpoint, but it is proven rig- 
orously for axiom-A systems, where ~ is the 

Bowen-Ruelle measure. For maps of the unit 
interval this assumption will hold for all maps that 

have an invariant measure that is absolutely con- 
tinuous with respect to Lebesque measure. Con- 
sideration of noise added to the dynamics also 
makes this assumption plausible for most physical 
contexts, as will be discussed in following section. 

The behavior of  a dynamical system f :  M - - , M  
can have many symbolic representations, each 
obtained by using a measurement partition, 
P = {P~ , . . . ,  Pq}, to divide the state space M into 
a finite number of  sets each of which is labeled with 
a symbol sg~{1 . . . . .  q}--= S. The time evolution 

(x0, xl, x2 . . . .  ) of  the dynamical system f :  M ~ M  is 
then translated into a sequence of  symbols labeling 
the partition elements visited by an orbit 

s = {So, s , ,  s 2 , . . . }  

and f itself is replaced by a shift operator a which 
re-indexes a symbol sequence; that is, 

= s ' ,  

where for each symbol in the sequence s ' ,  

S ;  = ( O ' ( S ) ) i  = S i + l .  

Thus the shift operator ~r merely moves the time 
origin of  a symbol sequence one place to the right. 

In the space of  all possible symbol sequences 

{s = (So, s, . . . .  )}, 

the observed or admissable sequences are those 
which satisfy 

x, = f '(xo) ePs,. 

The set of  admissable sequences 2; s along with the 
shift a is called a subshift. (S,y, a) is the symbolic 
dynamical system induced by f using the mea- 
surement partition P. 

The symbol sequences of  Xy are a coding for the 

orbits o f f :  M o M .  A finite sequence of symbols 
S n (sg . . . . . . .  1) defines an n-cylinder s n = {s : si sT, 

i = 0 . . . . .  n - 1 } which is a subset of  Z'f consisting 
of all sequences whose first n elements match with 
those of  sT. An n-cylinder s" corresponds to a set 

of  orbits that are "close" to one another in that 
their initial conditions and first n - 1 iterates fall 
in the same respective partition elements. Since 

these orbits must follow each other for at least 
n - 1 iterations, they must all have initial condi- 
tions that are close, belonging to some set U c M. 
We thus have a map A from n-cylinders to subsets 

of  M: 

,a(s . )  = { x l f ' ( x ) ~ P ~  ,, for i = 0 , . . . ,  n - 1}. 

To a different n-cylinder will correspond a different 

set of  orbits whose initial conditions are contained 
in some other set U ' c  M. M will become par- 
titioned into as many subsets as there are n- 
cylinders. As n is increased, this n-cylinder partition 
will become increasingly refined. The refinement 
caused by taking an increasing number of  symbols 
is illustrated in fig. 1, where M is the unit interval 

o I 

I!! 
Ill 

x I 
Fig. 1. Construction of the partition induced by taking n 
symbols (i.e. specifying an n-cylinder) with the measurement 
partition {[0, 0.5], (0.5, 0]}. The l-cylinder, 2-cylinder, 
3-cylinder, and 4-cylinder partitions are shown with successively 
shorter tic marks below the x-axis. 
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[0, I], and f is the quadratic logistic equation, 

f ( x ) = r x ( 1 - x ) ,  with r = 3 . 7 .  We have used 
the measurement partit ion formed by cutting 

the interval in half  at d = 0.5, the critical point of  

f where the slope vanishes. We will label the left 

subinterval "0"  and the right "1".  We see from the 

figure that the dividing points for the n-cylinder 
induced partit ion are simply the collection 

Id, f ' ( d ) , f  2(d) . . . . . .  / (n-l)(d)...} 

whenever the specified inverse images exist. If  the 

map is not everywhere two onto  one (i.e. r < 4), 

some of  the inverse images will not  exist, corre- 

sponding to the fact that some n-cylinders are 

non-admissable. Changing the measurement  par- 

tition clearly generates a different set of  admissable 

sequences, just as it generates different n-cylinder 
partitions. 

The usefulness o f  symbolic dynamics as a repre- 

sentation for the orbits o f  f can be captured in the 

following commutat ive  diagram: 

cr 

lt[ 

M ~'~/ 
f 

the at tractor  will have at least one symbol sequence 
representation. There are a few ambiguities in the 

labeling of  orbits by symbol sequences that  prevent 
n f rom being invertible, but  our  discussion of  the 

entropy will prove to be insensitive to the 

ambiguities*. 
The space o f  one-sided symbol sequences can 

easily be metrized by mapping  each symbol se- 

quence to a power series 

Sq~x ) 

where s(x) is the symbol labeling the measurement  

partit ion element containing x (the denomina tor  is 
2' only if the partit ion has two elements). For  the 

case of  a binary partition, this map identifies every 

sequence with a binary fraction whose value lies in 

[0, 1]. We will conveniently confuse s" with its 

binary fraction representation unless the dis- 
tinction is necessaryt.  

A Cantor  set structure in the symbol sequences 

of  the chaotic logistic equation is revealed in fig. 2 
by a sequence o f  probabili ty distributions for 

n-cylinder binary fractions: with the increase in 

length o f  the n-cylinder the distributions show 

successively more, a l though narrower,  peaks. An- 

other demonstra t ion o f  the Cantor  set structure of  

with the projection operator  

n(s,,, s, . . . .  ) = ~ , f - ' (P ,O"  
i = 0  

One can then study the simpler, albeit abstract, 
symbolic dynamical  system in order to answer 
various questions about  the original dynamical  
system. Within this construction,  every point  on 

* An example of one such ambituity is that there can be two 
symbol sequences that are nowhere the same, but label the same 
point on the interval: e.g. 100000.., and 011111 ,.. both label 
the same point x = 0.5 in the limit of infinite length. 

t Milnor and Thurston [9] show how to form a slightly more 
sophisticated "invariant coordinate" which is monotonic. Our 
entropy calculations do not require this feature, so we use the 
computationally simpler binary fraction. 

' • 3 1  

1 

I I i _j  " '  

4T 5 6 

09 , 

[]- 

- I0  s 

Fig. 2. The Cantor set structure of the subshift (Xj, a) is shown 
in this sequence of probability distributions for n-cylinders: 
n = 1, 2, 3, 4, 5, and 6. Each n-cylinder has been mapped onto 
the unit interval by using its binary fraction. In this example J 
is the quadratic logistic equation with r = 3.7. 
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2~r is the graph Of the distribution of symbols s 
(truncated to a finite n-cylinder with n = 12 and 
mapped onto the unit interval using its binary 
fraction) versus position x, illustrated in fig. 3. 

We will now embark on the task of character- 
izing the chaotic behavior in a dynamical system 
using topological and metric entropies, in that 
order. After giving their definitions, we will show 
how these quantities may be computed numerically 
using the symbol sequence representation of  orbits. 
Our analysis follows Shannon [10]. 

Heuristically, the topological entropy of  a dy- 
namical system measures the asymptotic growth 
rat~ of the number of resolvable orbits (using a 
given measurement partition) whose initial condi- 
tions are all close. Equivalently, the topological 
entropy quantifies the average time-rate h of 
spreading a subset over nearby subsets. This pro- 
cess is most easily illustrated by considering a 
collection of  subsets which form a "cover" of the 
state space M. The dynamic f spreads a single 
cover element over other elements after some time 

v 

0 
0 

L I I l 

Fig. 3. 2000 iterations of the 'logistic equation'  with r = 3.7, 
showing the Cantor  set structure o f  the distribution o f  se- 
quences in 2; I. Graphed is q~(s ~) against position x, where s 12 
is the sequence obtained from the initial condition x. The 
density o f  points on the x-axis is the asymptotic distribution of  
f o n  the unit interval; the density of  points on the y-axis is the 
Cantor distribution illustrated in the previous figure. 

t. The number of new cover elements N(t) visited 
by points in the original cover element can be 
written, 

N(t) ~ e h', 

where h > 0 for chaotic dynamical systems. With 
this geometric motivation, we will now consider a 
more formal definition of the topological entropy 
h [1 l]. 

For a compact topological space M, with an 
open cover U, let N(U) be the number of  sets in 
a subcover of  minimal cardinality. Two covers U 
and V may be "combined" to form a refinement W 

by 

W = U v V  

={AfqBIAeU and BeV} 

Now if f :  M ~ M  is a continuous map, the topo- 
logical entropy of f with respect to the cover U is 
defined as 

h(f,  U)  = lim log N(U"), 
n ~ o o  n 

where 

U"= U v f - I U v  .. .  v f - " U .  

The topological entropy h(f) of  the map itself is 
then the supremum of h(f, U) over all open covers 
U. 

The supremum is obtained only if the mea- 
surement partition is "good"  in that there is an 
unambiguous correspondence between orbits of J 
and symbol sequences. Only with such a good 
partition is the topological entropy of  _r/ obtained 
using partition P exactly hOe), the topological 
entropy of f. There is no general procedure for 
finding such a good partition, but we will give 
numerical evidence that such partitions are easily 
found for simple piecewise monotone maps of the 
unit interval. Given such a partition, however, we 
have a readily computable algorithm for h0r): 
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simply counting the number of n-cylinders. Note 
that in the space of symbol sequences S i, each 
n-cylinder s" is an open set, and the class of all 
n-cylinders is an open cover. Thus the topological 
entropy of the system (Z/, at) is given by 

lim log N(n) >h(of), 
n ~ ' x :  n 

where N(n) is the number of admissable n- 
cylinders*. N(n) is readily obtainable numerically, 
so this formula presents us with a computable 
algorithm for the topological entropyt. 

In presenting the topological entropy before the 
metric entropy we have purposely reversed their 
historical order because there is a sense in which 
the metric entropy is a generalization of the topo- 
logical entropy: the metric entropy also measures 
the asymptotic growth rate of the number of 
resolvable orbits (using a given measurement par- 
tition) having close initial conditions, but weights 
each orbit with its probability of occurrence. 

The definition of metric entropy for the dynam- 
ical system (M,f)  requires an invariant measure/7 
and a sigma-algebra of measurable subsets of M: 
more structure than needed for the definition of 
topological entropy. 

If P = {Pi} is a finite measurable partition of M 
with p elements, we define the entropy of P as 

P 

H~(P) = - ~ fi(Pi) log(fi(P~)). 
i ~ l  

Given two partitions P and Q, their refinement is 

PvQ={PinQj[PieP  and Q#~Q}. 

The metric entropy of f with respect to the par- 
tition P is defined by 

h~(f, P) = limlH~ (P"), 

where 

P " = P v f - i p v  . . .  v f  1-"P. 

Finally, the metric entropy o f f  itself is 

hi, = sup h (f, P), 
P 

where the supremum is taken over all partitions P. 
As for the topological entropy, the supremum is 

obtained only for special partitions; Kolmogorov++ 
proved that the desired requirement is that the 
partition be generating. This is the case if the 
smallest sigma-algebra containing A(s °) for all 
n > 0 coincides with the sigma-algebra of mea- 
surable subsets in M. In simpler terms, a partition 
is generating if, as the length of all sequences 
becomes large, the sequences label individual 
points. Thus, only if P is a generating partition we 
have 

h~(f) = hz (f, P). 

* For the case of symbolic dynamics, this formula for the 
topological entropy was first introduced by Parry [12], but is 
essentially the same as the "channel capacity" introduced by 
Shannon [10]. 

t Crutchfield and Shaw [13] have developed other algorithms 
to compute the topological entropy of a map f based on 
representing the dynamics as a branching process with a 
deterministic transition matrix. For certain cases, these tech- 
niques allow one to analytically calculate the topological en- 
tropy and so to study, for example, the convergence of the 
topological entropy directly (c.f. ref. 14). These techniques are 
related to the kneading calculus of Milnor and Thurston [9]. 

:~ This theorem as well as the original definition of metric 
entropy are presented in Kolmogorov [15]. 

Again, if we label the elements of the partition P 
with symbols, the entropy of h~(aj) is exactly 
h~ 0 c, P), with 

I~(s") = f dfi = fi(A(s")). 
A(s'~) 

Note that the entropy h. of (Zs-, a) is equal to h~ (f) 
only if the measurement partition is generating. 
For arbitrary measurement partitions, 

h.(o~h ~< h , ~ .  
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Assuming a generating measurement partition, 
the identification between n-cylinders and elements 
of the refinement P" allows us to estimate the 
measure of  each element of P" by accumulating a 
frequency histogram for the observed n-cylinders. 
(Note that P" is exactly the n-cylinder partition 
illustrated in fig. 1 for n = 4.) We may then obtain 
an n-symbol estimate for the topological entropy 
from either 

log N ( n )  
h(n)  - 

n 

o r  

h(n)  = log N ( n )  - log N(n  - 1), 

and estimates for the metric entropy from 

t 

.4 
0 

4 4 
\ I i ;  t I / ;  / k " ',. 

\ l[ l l l l ,  l l t l  t l  \ l \ l  

11! 7 v < 
Lf 

r 

24 
n 

Fig. 4. Entropy convergence for the logistic equation 
f (x)  = r x ( l -  x), with r = 3.7; the solid line represents hu(n) 
and the oscillating dashed line represents h(n). 2 × 108 iter- 
ations were used. The horizontal dashed line is the Lyapunov 
characteristic exponent. 

,65 

h, - / / , ( n )  
n 

o r  

h,(n) - H , ( n  - 1). 

It is easily shown that the latter estimate for h~ 
converges more quickly than the former [10], so all 
of  our numerical computations of  h,(n) will use 
this expression. Fig. 4 illustrates an example com- 
putation o fh(n)  and h~(n) for the logistic equation, 
f ( x ) = r x ( l - x )  at a typical parameter value, 
r = 3.7. 

In order to illustrate the dependence of the 
entropy on the measurement partition used, we 
have computed h(13) and h~(13) for a range of 
binary (two-element) measurement partitions; the 
results are illustrated in fig. 5. We call the location 
x = d at which we decide whether a point x on an 
orbit is either a "0" or a "1" the decision point. For 
two values of  the decision point, d = 0.5 and 
d = 0 .8 39 . . . ( a n  inverse image of the critical 
point), h~(13) is maximized, giving evidence that 
these values of  d yield a generating partition. Note 
that h,(13) is greater than the Lyapunov character- 

0.2 d 1.0 

Fig. 5. h(13) (upper curve) and h,(13) for the logistic equation 
with r = 3.7, using different measurement partitions obtained 
by varying the decision point d. h(13) is actually an average of  
h(6) . . . . .  h(13) to eliminate the oscillitory effects. The upper 
horizontal line is the topological entropy calculated to one part 
in 106 with the kneading determinant [13, 14]. The lower 
horizontal line is the Lyapunov characteristic exponent calcu- 
lated to within 0.1%. 

istic exponent (to be discussed in more detail 
shortly) because the metric entropy has not con- 
verged by thirteen symbols (cf. fig. 4). 

From the above definition of  the metric entropy, 
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it is easy to see that h >~h~,, since h(f ,P")  is 
maximized when each element of pn is equally 
probable (i.e. ~(PT)= 1IN(n) for all i). In this 
case, the formula for the metric entropy reduces to 
that for the topological entropy. This is also evi- 
dent from a theorem due to Goodwyn [16] and 
Dinaburg [17], which states that 

Or equivalently, if a continuous ergodic invariant 
measure/~ exists, then the characteristic exponent 
is given by 

1 

2 = f l o g f ( x ) l  d/L 

0 

h = sup h~,, 
# 

where the supremum is taken over all invariant 
measures #. 

One of the primary roles of entropy in dynam- 
ical systems theory is that it is an invariant [15], 
which is to say that any two dynamical systems 
( M , f , # )  and (M',f',#') have the same metric 
entropy if they are related by a isomorphism that 
preserves measure. We will not use this fact at all 
in our entropy calculations for deterministic sys- 
tems, but when noise is added to the dynamics, we 
will address the question of how the invariance of 
the entropy is affected. 

We now introduce Lyapunov characteristic ex- 
ponents as another measure of chaos, and discuss 
their relationship to the entropies described above. 
The Lyapunov characteristic exponents measure 
the average asymptotic divergence rate of nearby 
trajectories in different directions of a system's 
state space [l 8, 19]. For our one dimensional exam- 
pies, f :  I~L there is only one characteristic ex- 
ponent 2. It can be easily calculated since the 
divergence of nearby trajectories is simply propor- 
tional to the derivative o f f  [19]: 

• 1 N 

* In the general case, the exponents are a'function of initial 
condition, so the sum must be integrated over the attractor, but 
we will consider only the case of an ergodic attractor where the 
exponents are constant almost everywhere with respect to the 
asymptotic invariant measure• 

t Curry's underestimate of the entropy is probably due to the 
fact that the partition he chose was not generating• 

If M is an axiom-A attractor, there is a pre- 
scription for constructing a partition which is 
generating, and the equality of the metric entropy 
hu and the sum of the positive Lyapunov character- 
istic exponents can be proven [20]. In fact, when- 
ever an absolutely continuous invariant measure 
exists, a theorem due to Piesin [21] shows that the 
metric entropy of a diffeomorphism is equal to the 
sum of  the positive exponents*. Ruelle [22] proved 
that for any C 2 map that has an absolutely con- 
tinuous invariant measure 

4 +  h~,~<~ i ,  
i 

where the 2i + are all the positive Lyapunov charac- 
teristic exponents, and he has conjectured that 
equality holds. For a wide class of maps of the unit 
interval, Ledrappier [23] has shown that an ergodic 
measure having positive metric entropy is abso- 
lutely continuous with respect to Lebesque mea- 
sure if and only if the metric entropy is equal to the 
Lyapunov exponent. Shimada [24] obtained good 
numerical agreement between the characteristic 
exponent and the metric entropy for the Lorenz 
attractor and its induced symbolic dynamics using 
only 9 symbols, and Curry [25] has computed a 
metric entropy slightly lower than the positive 
characteristic exponent for a two-dimensional 
diffeomorphism (H6non's map)t .  Our numerical 
results for several maps of the unit interval (includ- 
ing the logistic equation) indicate that the metric 
entropy is indeed equal to the Lyapunov exponent, 
supporting Ruelle's conjecture and indicating the 
existence of an absolutely continuous invariant 
measure whose probability distribution is well 
approximated by a frequency histogram. 
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3. Symbolic dynamics and entropy in the presence of 
noise 

One of the reasons that there are so few results 
on the response of the metric entropy to added 
fluctuations is that there are problems with the 
definition of  metric entropy (as well as its com- 
putation) in the presence of  fluctuations. There are 
also problems with the definition and computation 
of Lyapunov characteristic exponents for systems 
with added fluctuations. Some of the problems 
associated with the metric entropy are: 

(1) There is no clear definition of  a generating 
partition for a deterministic system with added 
noise. Increasingly long sequences of  mea- 
surements can no longer isolate the system into an 
arbitrarily fine partition element (where for 
fineness we mean 1~o use Lebesque measure on the 
unit interval). 

(2) A related problem is that the entropy with 
respect to a particular partition diverges as the 
partition is made increasingly fine [26], rendering 
problematic the definition of a " t rue" entropy that 
is independent of partition. 

(3) Even using a coarse (e.g. binary) partition, a 
fixed point with added noise will have nonzero 
entropy if a partition divider is placed on the fixed 
point*. (This entropy would then give an estimate 
of the external noise in the system.) 

(4) The effect of adding noise will depend on 
what coordinate system the noise is added to. One 

* This example is due to Doyne Farmer. 
"~ The fact that the observed asymptotic probability distribu- 

tions will depend on the coordinate system used suggests that 
if one has some a priori reason for believing the noise to have 
a particular distribution (e.g. Gaussian), one should, in prin- 
ciple, be able to adjust the coordinate system used to observe 
the system until the noise displays the correct distribution. An 
experimentalist 's model would thus include the specification of  
a physically preferred coordinate system in which the noise was 
added. Most  systems may be too complicated to give any clue 
about the "correct" noise distribution, however. For example, 
in fluid systems with some underlying low-dimensional chaotic 
attractor, even if we assume that the fluid is being driven by 
thermal noise, it is not a priori clear what form will be taken 
by the noise terms added to the equations of  motion on the 
attractor, since the thermal noise will undoubtedly be filtered by 
many dynamical effects. 

might hope that the response of the metric entropy 
to noise should be independent in the limit of  small 
noise, but this point is "not yet clear from the 

theoryt.  
In spite of these problems, we may take a 

well-defined operational approach to the mea- 
surement of  metric entropy in the presence of 
noise: the algorithm embodied in the definitions 
and estimates yields an unambiguous value of the 
metric entropy with respect to a particular mea- 
surement partition. Any sequence of  measurements 
on a physical system will produce a string of 
observed symbols; our operational approach will 
give a measure of the predictability of this string. 
The measurement partition we will use will be of 
the same form as that used for the deterministic 

one-dimensional maps, namely a binary partition 
of  the form {[0, d), [d, 1]} where 0 < d < 1. Given 
this kind of binary partition, one may again ask if 
there is a value of d that maximizes the entropy, 
and we find empirically in fig. 6 that d = 0.5 gives 
a maximum value just as it does for the deter- 
ministic case illustrated in fig. 5. This is partial 

.65 

/ 
0 1 i i i 

,2 d 1.0 

Fig. 6. Entropy hu with respect to a binary measurement  
partition {10, d), [d, 1]} as a function of  the decision point d, for 
the logistic equation with r = 3.7 and added noise of  width 

= 2 7. Compare fig. 5. 
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justification for our use of this particular mea- 
surement partition, but because we are considering 
only binary partitions, we have not escaped points 
(1) and (2) above. We must again stress that the 
metric entropy of a noisy process like eq. (1) 
depends on the measurement partition used, but 
we will take the liberty of referring to the "metric 
entropy" of such a system as that computed using 
the measurement partition {[0, 0.5), [0.5, 1]} unless 
otherwise noted. Though the entropy h~ diverges as 
the measurement partition becomes fine [26], we 
may still conjecture that for measurement par- 
titions with coarser resolution than the noise 
level*, our computations give an invariant, well- 
defined value for hut. To begin the discussion of 
our numerical computations of the entropy in the 
presence of noise we will first examine a few 
properties of the asymptotic probability distribu- 
tions both of the noisy map on the interval and of 
the shift on the space of observed sequences 2;/. 

Before considering entropy computation, we will 
first remark on a few features of the invariant 
measure, which will in turn have certain impli- 
cations for entropy measurements. In the deter- 
ministic case f :  M ~ M ,  the asymptotic invariant 
distribution function/~(x) is the fixed point of the 
Frobenius-Perron operator L/given by 

_ e ( y )  
( c / e  )( x ) = =  ,,xff I 

This operator may be written as a Fredholm 
equation 

(Lye)(x) = f r( f(y)  - x ) e ( y  ) dy, (2) 
3 

where the equivalence is established by integrating 

* We mean here that the size of  the smallest partition 
element must  be larger than the induced noise level. The 
induced noise level is obtained from the width of the 
distribution of the added noise by multiplying this width by 
the map 's  max imum slope. 

t The well-defined value must  still be obtained using a 
supremum over partitions of  a given resolution similar to the 
supremum illustrated in fig. 6. 

the right-hand side using a change of variables 

y '  -~ f(y).  
If noise ~ (with a distribution P~(~) having zero 

mean and width (r) is added to the deterministic 
map, forming the noisy map 

x. +1 =f~(x.) =f(xo) + ~., 

an additional average must take place with respect 
to the noise: 

(Lj~e)(x) = frOC(y) + ~ - x )P, (~)P(y)dy  

= f e . ( [ ( y )  - x )P(y)  dy. (3) 

Thus we see that the deterministic Frobenius- 
Perron operator is generalized to include the effects 
of fluctuations by simply replacing the delta func- 
tion in eq. (2) by the noise distribution function. 
This formalism has been used by Schraiman, 
Wayne, and Martin [27], as well as Haken and 
Meyer-Kress [28], Takahashi [29], and Fe- 
igenbaum and Hasslacher [30]. The asymptetic 
probability distribution for the noisy map is in 
principle numerically computable using eq. (3). We 
have not used this expression to compute the 
distribution (our entropy computations are based 
on frequency histograms instead), but we may use 
eq. (3) to infer at least one qualitative property of 
the asymptotic distribution/~(x) on the unit inter- 
val: Since the distribution must be invariant under 
the noisy Frobenius-Perron operator, which in- 
cludes a convolution of the noise distribution, the 
asymptotic distribution/~(x) will have no structure 
on length scales less than the noise level a. 

The primary difference between the symbolic 
dynamics of a purely deterministic system and that 
of a deterministic system with added noise is the 
nature of the identification between a particular 
symbol sequence and the set of initial conditions 
that might have produced that sequence. For the 
deterministic case there is a direct correspondence 
between symbol sequences and sub-intervals of the 
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unit interval, with the sub-intervals becoming in- 
creasingly small as the symbol sequences get longer 
(cf. the construction of the n-cylinder partition 
illustrated in fig. 1). When noise is added, instead 
of there being a sub-interval, every point of which 
produces a particular sequence, there is a set of 
points which have some probability of producing 
a particular sequence. We will label the probability 
distribution of finding the sequence s" for an initial 
condition x as P~(x). 

For the deterministic case, we have 

/'s.(X) = X~s.~, 

where Xt,,b I is the characteristic function over the 
interval [a, b]: 

X~,)(x) = {101 forx~A(s"),  
for xCA (s"), 

and where d (s") is the set of initial conditions that 
can produce s" for the deterministic case. We may 
then use the Frobenius-Perron equation to find 
Ps, +,(x) from Ps,(x). First, for the deterministic 
case, this gives 

Xj~.+~)(x): f 6(f(y)-x)ff(y)dy. 

When noise is added, P~,(x)=X4~,) becomes 
smeared because we must use the noisy 
Frobenius-Perron operator, which includes a con- 

* Actually, the width decreases only when the slope evaluated 
at the appropriate inverse image of  the deterministic divider is 
greater than one. It appears, however (as illustrated in the 
following figure) that even when there are occasional con- 
tributions of  slopes less than one, as for the logistic equation, 
the fact that the "average asymptotic slope" is greater than one 
causes the width of  the distributions P~,(x) to approach a limit. 
If the "average asymptotic slope" (this quantity is really well 
defined only for purely deterministic systems) is less than one 
(i.e. when the attractor is a periodic orbit) P~,(x) diverges to 
cover the entire interval, since in this case all initial conditions 
end up giving the same periodic symbol sequence. 

t We are also using the fact that /~(x)  does not change much 
over the width of  Ps,(x). 

volution of the noise distribution Po: 

P~, + ,(x) = fP~ff(y)  - x)Ps,(y) dy. (4) 

The smearing of the partition boundaries, or di- 
viders, that takes place with each application of 
this operator decreases with successive 
applications*. The effective width of a partition 
element increases by a/ f (y i ) l  i, where the yi are the 
appropriate inverse images of the deterministic 
divider. Another way of phrasing this observation 
is that averaging over fluctuations of width a at 
each of n iterations is equivalent, for the purposes 
of constructing P~.(x), to averaging over n sets of 
fluctuations of the initial condition each having a 
magnitude a ~ [f'(yi)l -i. The convergence of the 
P~.(x) to a distribution of a fixed width is illus- 
trated for the logistic equation (r = 3.7) in fig. 7a. 
Note that log Ps,(X) appears parabolic for large n 
in the semi-log plots of fig. 7, indicating that Ps.(x) 
is Gaussian, as might be expected from the re- 
peated convolution of eq. (4). 

We see, then, that the picture of bins (elements 
of an n-cylinder partition) being split into sub-bins 
(elements of an (n + 1)-cylinder partition) for the 
purely deterministic map (cf. fig. 1) is replaced by 
probability distributions splitting into daughter 
probability distributions for a deterministic map 
with added noise. Consider the situation when the 
width of the distribution P~.(x) is large compared 
to the size of the deterministic bin (i.e. the length 
of A(s")): Because Ps,(x) converges to a distribu- 
tion of fixed width for large enough n, daughter 
distributions have nearly the same width (and in 
fact nearly coincide), as illustrated in fig. 8. Since 
the probability of s" is given by 

u(s") = fl"s.(x)P(x) dx, 

we see that for large enough n t 

~ ( s " l )  ~ ~(s"0). (5) 
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Fig. 7. (a) For a fixed noise level, shown is P~,(x) for n = 8, 9, 11, 13, 15, 16, and 18 (the values of  n corresponding to splitting of 
this particular series of  bins in the deterministic case). (b) Fixing n = 14, shown is P~,,(x) for the deterministic case and for two noise 
levels ~r = 2  -~° and cr = 2  -7. The sequence used was s~S=(010101110111111010) (the shorter sequences are truncations: 
s ~ = (01010111), etc.). 
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Fig. 8. Splitting of P,,7(x) into two daughter  distributions P~,7~ 
and P,,70. The top distribution is Ps,7(x), the second distribution 
is P,,~, and the third is P~,~0. s~7 is the same as used in the 
previous figure. 

This condition has some interesting implications 
that we will now discuss. 

p~,(x) is the distribution of initial conditions 
that produce the sequence s". We may then ask 
how much information about the initial condition 
is obtained by observing the sequence s", given the 
asymptotic distribution on the unit interval P(x). 
The appropriate informational measure turns out 
to be [31, 32] 

I(s") = f Ps,(x) log~rtx~ dx. (6) 

Then the average information obtained by speci- 
fying n symbols is 

I(n)=~p(s")I(s"). (7) 
s n 

For n large enough so that the width of Ps,(x) has 
reached its noisy asymptotic value we may use the 
conditions #(s"l) ~ #(s"0) and P~,o(X) ~ P~,~(x) to 
deduce that I(n) ~ I(n + 1), which means that for 
large enough n, observation of additional symbols 
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gives no additional information about the initial 
condition. Stated another way, in the presence of 
noise, the attainable information about the initial 
condition reaches some maximum value I0, which 
clearly depends on the noise level. The situation is 
illustrated schematically in fig. 9. For any given 
noise level, we may augment our conjecture that a 
well-defined metric entropy exists, and conjecture 
the existence of two well-defined invariant quan- 
tities that characterize a deterministic system with 
noise: h~, and I0*. 

fying 

Var P~,(x) > Var Xd(.~,)(x). 

The finite state Markov property insures that the 
entropy reaches its converged value for n ~> m; we 
will call this phenomenon the noise floor, and say 
that the convergence knee occurs at n = m. Fig. 10 
shows that as the noise level is increased, the 
convergence knee occurs for smaller values of m. 
The following section shows how these effects may 
be described in terms of a scaling theory. 

"2 
v 
H 

I o 

n 

Fig. 9. Schematic illustration of the effect of noise on the 
attainable information, given by eq. (7), from a sequence of n 
measurements, or symbols. The straight line corresponds to the 
deterministic case. 

We may also use the condition # ( s ' 0 ) g  p ( s ' l )  
for n large enough to deduce entropy convergence 
properties. Convergence of  the entropy for finite 
length n symbol sequences is exactly the condition 
that the symbolic dynamics be equivalent to an 
m-state Markov process, where m is the least 
integer that produces a distribution Ps,(x) satis- 

* Of course we must still include the proviso that the mea- 
surement partition has coarser resolution than the noise level as 
long as we use our algorithm to compute h u. Rob Shaw 
[3J makes a similar conjecture for an entropy-like quantity 
computed using a measurement partition with resolution finer 
than the noise. We will discuss the relationship between these 
ideas in section 6. 

1 This can be considered as the topologicalpressure for finite 
symbol sequences in the presence of noise because we may 
assume that h~(oo,0)= 2 (cf. discussion above), and in our 
numerical computations we actually use 2 for the value of 
h,,(oo, 0). 

.59 

.49 
0 24 

t)  

Fig. 10. Entropy convergence of the logistic equation at the 
parameter value where two bands join to one, 
r = 3.67857 . . . .  for increasing noise levels a = 2-18 . . . . .  2 -  7. 
The Lyapunov characteristic exponent is shown by the dashed 
line. 

4. Scaling properties of entropy measurement 

Considering the entropy as a function of  both 
N -- 2" and a, we may define the normalized excess 
entropy t as 

flu(N, 6) - hu(N' cr) - hu(oo , O) 
h A ~ ,  O) 

We then find that the data illustrated in fig. 10 
displays power law behavior in N: 

flu(N, O) ~ N -~, 

and power law behavior in a: 

h-.(~, ~) ~ ~ ,  
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(where ~ has been approximated by N = 224) [5]. 
The least squares fits used to estimate the con- 

vergence exponent ~ and the noise exponent fl are 
quite good (cf. table I). The scaling in N is visible 
in the zero noise curve of fig. 10, and the power law 
increase with noise is illustrated in fig. 11. 

Our observation that the metric entropy in- 
creases with a power law in response to added 
fluctuations is reminiscent of some results concern- 
ing the response of the Lyapunov characteristic 
exponent to added fluctuations. It has been shown 
for maps with a quadratic maximum that at the 
asymptotic limit of a band merging cascade (i.e. at 
the onset of chaos) noise added to the dynamics 
cause a power law increase in the Lyapunov char- 
acteristic exponent [4, 27, 33]. The cause of this 
power law must, however, be fundamentally 
different from the cause of the power law reported 
here. Their derivation of power law behavior of the 
Lyapunov characteristic exponent at band merging 
cascades (as well as similar results near tangent 
bifurcations) relies on the change in the attractor's 
geometry (i.e. the structure of the attractor on the 
unit interval) as noise is added. Furthermore, only 
the nearness to crucial bifurcation parameter val- 
ues allows the change in the attractor's geometry 

.004 

Fig. 11. Power  law increase of  h',(r. = 24, or) for the logist ic m a p  
at r = 3.67857 . . .  where two bands  jo in  to one. 

to be systematically described using renor- 
malization group techniques. The power law be- 
havior we describe here appears to hold more 
generally, including parameter values away from 
bifurcation cascades, where the geometry of the 
attractor changes very little with added noise. 

Table  I 

Numer ica l  ca lcula t ions  of  scal ing exponents  

System 7 fl 

Logis t ic  r = 3.9 0.48 + 0.2 0.56 -L- 0.05 (1.0) 0.86 
Logist ic r = 3.7 0.4 + 0.2 0.53 + 0.05 (1.3) 0.76 

Logist ic  2--.1 bands  0.38 + 0.02 0.52 + 0.01 (0,9) 0.73 
Logist ic  4--*2 bands  - -  0.51 + 0.02 (1.5) - -  
Logist ic  r c - -  0.345 + 0.01 (1.0) - -  
Logis t ic  2--* 1 bands  

(funct ion space per tu rba t ion)  0.38 + 0.02 0,53 + 0.01 (1.0) 0.72 
Collet  and  E c k m a n n  m a p  

(2- ,1  band)  0.41 +__0.1 (0.80) 0.62 + 0 . 1  0.66 
Tent,  s = 1.43 0.55 ___ 0.1 (0.86) 1.01 + 0.01 (0.95) 0.55 
Tent,  2--* 1 bands  0.50 + 0.02 (0.82) 1.06 + 0.08 (35) 0.47 
Tent,  2--* 1 bands  

(funct ion space pe r tu rba t ion)  0.51 +_ 0.1 1.05 + 0.08 0.49 
Cusp m a p  - -  1.04 ___ 0.05 (4.3) - -  
R a n d o m  walk  - -  0.92 + 0.05 (0.05) - -  
Tora l  a u t o m o r p h i s m  - -  0.9 + 0.02 (0.5) - -  

Note:  numbers  in parentheses  are cons tan t s  of  p ropor t iona l i ty .  
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The two numerically observed power laws in N 
and a lead us to posit the scaling hypothesis that 
h-~(N, 0) is a homogeneous function of N and 0, 
namely, that 

17,(2~'N, 2 -~a) = 2/7~(N, a), 

where 2 is an arbitrary change in scale. This sort 
of scaling hypothesis has beefi studied extensively 
in critical phenomena [34], and it is easily shown 
that the homogeneity of  ~(N,  0) in both variables 
implies that ,tT,(N, 0) may be written as a function 
of a single scaling variable multiplied by a power 
law. This reduction may be accomplished in two 
different ways: 

~,(N, a) = aaH(Na¢/0 

or 

flu(N, a) = U -  ~H'(aU-'~/¢). 

(8) 
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Fig. 12. All the data shown in fig. 10 are replotted here using 
the homogeneous function representation of  eq. (8). The fact 
that all the data points lie on a well-defined function is 
verification of  the scaling hypothesis. 

Since we are interested primarily in the response of 
h-u(N, a)  to noise, we will concentrate on the first 
scaling representation of/7,(N, 0). 

The scaling hypothesis may be tested empirically 
(i.e. using data from a numerical simulation) by 
graphing a -~5~(N, 0) as a function of the scaling 
variable Na p/s , and observing whether or not the 
data lie on a well-defined function H(Na~/'O. The 
results of  this procedure applied to the data shown 
in fig. l0 are displayed in fig. 12, where we see a 
convincing numerical verification of the scaling 
hypothesis. It is interesting to note that while in 
critical phenomena, scaling often occurs only 
asymptotically ("asymptotically" means a ~ 0  or 
N ~  in this context) for this dynamical system 
we see scaling for all a and N. 

We see in fig. 12 that all of  the convergence 
knees are mapped to a single knee of H(Naa/O. 
This signals another scaling relation describing the 
convergence knee, since this implies that the set of  
(N, a)  for which a convergence knee occurs must 
satisfy 

Na - ~/p = constant. 

Either N or a may be regarded as dependent 
variables, N~(a) or ac(N), in this relation that 
defines the condition for the occurrence of a con- 
vergence knee. And at the convergence knee we 
may write either 

Nc(a) ~ a ~ or a~(N) ... N1/% 

where we find the convergence knee exponent is 
given by 

co =7/f t .  (9) 

The same result may be obtained from an eigen- 
value equation 

a~(N) N¢(2a) 

ac(2U)) Uc(a ) ~c, 

where m = log ~c. 
We have, then, two equivalent interpretations of 

the eigenvalue x: First, it is the factor by which the 
converence knee noise level a¢ must decrease if we 
are to observe convergence using symbol sequences 
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of  length n + 1 = log(2N) rather  than of  length 
n = log(N). Second, if we decrease the noise level 
by a factor  of  2, then x gives the relative increase 
in the length of  symbol  sequence at which we will 
find convergence, x will p robab ly  be easier to 
directly measure  than the exponents  and,  at least, 
it provides a simple way to summarize  the net effect 
o f  noise on en t ropy  convergence.  Values of  o~ 
derived f rom fl and ? are tabulated in table I. 

The type o f  relationship between different scal- 
ing exponents  exemplified by eq. (9) is quite com- 
m o n  in the study of  critical phenomena .  The 
scaling exponents  may  be viewed as parameters  
that  describe a surface £,(N, a )  over  the (N, a )  
plane. This surface is shown in fig. 13, which 
illustrates the geometrical  significance of  the scal- 

ing exponents  7, fl, and ~o. 

We study four different one-dimensional  maps  
of  the unit interval: 

(i) the logistic equat ion,  f ( x )  = r x ( l  - x )  for 
five pa ramete r  values, r = 3.9, r = 3.7 (i.e. two 
" typica l"  chaotic pa ramete r  values), r = 
3 .67857 , . .  (where two bands merge into one), 
r = 3 .59257 . . .  (where four bands merge into two), 
and r = 3.5699456 . . .  (the onset o f  chaos); 

(ii) the tent map:  

sx, for 0 < x  ~<0.5, 
f ( x )  = s(1 - x),  for 0.5 < x < 1, 

with s = 1.43 (a " typica l"  chaotic  pa rame te r  value 
with topological  en t ropy approx imate ly  equal to 
that  o f  the logistic equat ion at r = 3.7) and s = x f 2  
(the pa ramete r  value where two bands  join to one); 

(iii) Collet and Eckmann ' s  map:  

5. Further numerical experiments 

We will now discuss the results obta ined f rom 
simulating several different systems. For  each sys- 
tem we have computed  the convergence and noise 
exponents;  the results are tabulated in table I. We 
will first describe each of  the systems studied, then 
discuss the numerical  results. 

T 
z" 

- 6  

- I 0  9(cr) 

0 log(N) = n 2 4  

f(x) 

2X, 

(x - 0.5) 2 
1 

5 ' 

2(1 - x ) ,  

for 0 < x  < 0 . 5 - 6 ,  

for 0 . 5 - 6  ~<x 

~ < 0 . 5 + 6  

for 0 . 5 + 6 < x < 1 ,  

with 6 = 1/6 (the pa ramete r  value where two bands  

join to one); and 
(iv) the cusp map:  

f ( x )  = a ( l  - [2x - l I' +{), 

with ~ = - 0.05 and a = 0 .66445776. . .  (one of  the 
pa ramete r  values where two bands join to one for 

this E). 
We include one two-dimensional  system, the 

linear toral au tomorph i sm whose matr ix  is 

,] 
Fig. 13. All the data shown in fig. 10 are replotted as a three 
dimensional surface. The slope of the line along the front face 
is - ?, and the slope of the line along the right face is /L The 
intersection of  these two surfaces defines a line of slope ~o in the 
proper projection onto the scaling variable Na';. 

There is a general procedure  for construct ing a 
M a r k o v  part i t ion (that is generating) for such a 
map  [35], and we use this as the measurement  

parti t ion.  
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Another system we study has one of  the simplest 

possible deterministic parts; a random walk on the 
circle (we have identified the ends of the unit 
interval to prevent escape of  the orbit): 

~ (x)  = x + ~ [mod 1], 

where the circle is coordinatized by the unit inter- 
val (with 0 and I identified, and the usual measure- 
ment partition {[0, 0.5), [0.5, 1)} is used to produce 
the symbol seqquences. The deterministic part  of  
this map is simply the identity, f (x) = x, which has 
no attractor, and which clearly has zero entropy 
(the symbol sequence is periodic). As noise is 
added, however, every sequence becomes possible, 
through for small noise levels, long sequences of  0's 
and l 's will be most probable. As we have done for 
maps of the unit interval, we may, for this system, 
numerically accumulate probability histograms for 
n-cylinders and compute h, as before*. We find 
that hu(n) converges almost immediately to h u, i.e. 

hu(2) ~ h~(~)t .  
Before discussing the other numerical results 

contained in table I, we will consider a question 

concerning the nature of  the fluctuations, and how 
they are coupled to the deterministic system. Eq. 
(1) represents a very specific model for external 
fluctuations, namely additive noise. There are, 
however, many alternatives to perturbing the de- 
terministic function by simply adding noise; one 
example is multiplicative noise (for the logistic 
equation this is equivalent to adding noise to the 

parameter:]:). A natural question then arises: which 
method of  adding noise correctly models external 
fluctuations in a physical system? 

* The probabilities of the n-cylinders (and hence h u itself) are 
analytically computable using techniques from the theory of 
random walks; this calculation will be presented in a future 
paper. 

t This result is similar to the entropy convergence of the toral 
automorphism. 

J; Crutchfield, Farmer, and Huberman [4] have shown for the 
logistic equation that for any ensemble of additive fluctuations 
{¢} there is an equivalent ensemble {~'} of parametric 
fluctuations (with a different distribution than that for ¢, in 
general) that will yield the same time averages over trajectories. 

Perturbations of  a physical system may best be 
thought of  as a perturbation of  the dynamics, and 
not simply a perturbation of  the trajectory. A 
"correct" model for perturbations of  a deter- 
ministic function f e F ( M ) =  {f: M ~ M }  would 
choose a function at each time step from an 
ensemble of  functions, with the ensemble centered 
about the deterministic zero noise limitf.  Additive 
noise simply represents a choice from an ensemble 
that extends along a one-parameter family of  
functions q---*fq: M--*M: x--~f(x)+ q. We have 
modeled the more general case by expanding the 
function f in a Taylor series (for convenience we 
will now consider a map on the unit interval: 
M = [0, 1]), and perturb each coefficient sepa- 

rately: 

f¢(x) = (ao + ~o) + (a, + COx + (a2 + ¢2)x 2 . . . .  (10)  

where each ¢~ is an independent random variable 
with zero mean, and where {a~} represent the 
Taylor coefficients of  the deterministic function. 
For example, when we take the deterministic func- 
tion to be the logistic map, f ( x ) =  rx(1 - x ) ,  the 

deterministic coefficients are {a0 = 0, a~ = r, 
a 2 = - r ,  a i = 0  for all i :>2}. 

The entries in table I labeled "function space 
perturbation" represent noise added as in eq. (10) 
up to sixth order. Comparing the noise exponents 
for these systems with the noise exponents ob- 
tained from simple additive fluctuations, we see 
agreement to within numerical error. This result 
gives some confidence that models using additive 
fluctuations may reflect behavior of  physical sys- 
tems with external fluctuations quite well. 

We will now summarize a few interesting aspects 
of  the results listed in table I. Some of  the results 
may be coincidentally similar and lead to er- 
roneous extrapolations. Conjectures based on 
these results must be verified with further numer- 
ical work as well as theoretical progress. The 
largest error in most of  these computations is due 
to inaccuracy in the estimation of  h~ in the absence 
of noise; we have assumed the conjecture h~ = 2 
(supported by our numerical evidence) and so 
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estimate h~ by the Lyapunov characteristic ex- 
ponent 2 computed using 107 iterations (giving an 

accuracy of ~ 0.1~o). 
The convergence exponents show no discernable 

features. For the logistic equation, the convergence 
exponent decreases from 7 = 0.48 at r = 3.9 as the 
parameter is lowered; at rc there is no power law 
convergence. In fact, it is easy to show that at rc 

log n 
h ~ ( n  ) ~ - -  

17 

The fact that all of  the maps at 2--+ 1 band joining 
parameter values do not agree in their convergence 
exponents reveals that the convergence exponent is 
not constant under topological conjugacy (for all 
such maps h = 0.5). There is no known general 
technique to compute the convergence exponents, 
but for special cases (e.g. tent maps at band 

joinings) 7 can be computed exactly to be 7 = 0.5 
for 2--,1 band merging [26]. This value agrees 
extremely well with the numerical value quoted in 
table I. 

Both the random walk and the toral auto- 
morphism have/3 ~ 0.9 (we see no particular the- 
oretical reason for such a close match). For the 

logistic map,/3 decreases from ~ 0.56 at r = 3.9 to 
0.34 at the onset of chaos*, r~ = 3.5699456 . . . .  

For Collet and Eckmann's  map at band joinings, 
we find/3 ~ 0.6, indicating that the noise exponent 
is neither a topological invariant nor universal for 
quadratic maps. 

For all the tent maps simulated, we have/3 ~ 1.0, 
the same value of/3 as obtained for the cusp map. 
This leads us to the conjecture: everywhere expan- 

ding maps t  have a noise exponent/3 = 1. There are 
other reasons for such a conjecture besides the 
numerical results listed in table I, for instance, the 
structure of  the asymptotic probability distribution 
on the unit interval. Maps with a critical point 

* This value for fl agrees with the power law increase of the 
Lyapunov characteristic exponent at r c for the logistic equation 
[4, 27, 33]. 

tA map f: 1--*1 is everywhere expanding if if' 1 > 1 for all 
points on the attractor. 

(where the slope vanishes) have distributions with 
infinite singularities, expanding maps do not. 

For maps with critical points, these singularities 
lead to a very non-uniform probability distribution 
of symbol sequences. In this case, the highly proba- 
ble sequences are less affected by noise, and do not 
readily yield new observable sequences. Con- 

sequently, the entropy increases more slowly with 
noise level for maps with critical points. The first 
class of seven examples in table I with low noise 
exponehts consists of  maps with critical points; 
whereas the maps in the second class of six exam- 
ples listed in the table have relatively high noise 
exponents, but no critical points. 

6. Lyapunov characteristic exponents and other 
measures of  chaos in the presence of fluctuations 

In the context of deterministic systems, we have 
seen that for an attractor on the unit interval with 
one positive Lyapunov characteristic exponent 2 
and an absolutely continuous invariant measure/~ 
[22], 

h~ <~ )~, 

and we have presented numerical evidence for 
equality, The purpose of this section is to see how 
this kind of result may be generalized to include 
systems with added fluctuations. 

Just as the definition of metric entropy is prob- 
lematic for systems with added fluctuations, so is 
the definition of Lyapunov characteristic ex- 
ponents. For one-dimensional maps, the Ly- 
apunov characteristic exponent can no longer be 
defined as the average slope of the map because the 
derivative of the noisy map is not defined. Two 
approaches to this problem have appeared in the 
literature. The first technique is to compute Ly- 
apunov characteristic exponents numerically by 
using the deterministic slope of the map along a 
noisy trajectory [4, 33, 36]. These computations 
give quite good results at the asymptotic limit of 
band merging cascades, where the numerical re- 
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suits can be checked against theoretical predictions 
[27, 33]. This may seem surprising, but the numer- 
ical results are probably good for the same reason 
that the theoretical predictions can be made: at 
band merging cascades, the response of the Ly- 
apunov characteristic exponent is dominated by 
the change in the geometrical structure of the 
attractor* when noise is added. 

The second definition of Lyapunov character- 
istic exponents in the presence of noise is due to 
Schraiman, Wayne, and Martin [27]: 

2 = l i m  1 .lo_l(fT(x) ) -  (f"~(x +E)) 
n~c~,~On ~ (~ ' 

where iteration of the noisy map is given by eq. (1), 
and where ( . . . )  denotes an average over the 
ensemble of noise fluctuations. The noise ampli- 
tude must be small enough, and the limits taken 
carefully for this definition to make sense. When 
thought of as a measure of the initial spreading 
rate of two noise distributions whose means are 
separated by E, this expression for 2 is close to a 
third formulation o; Lyapunov characteristic ex- 
ponents in the presence of noise which we will now 
discuss (equivalence may eventually be proven). 

We have defined h~ in terms of symbolic dynam- 
ics (with a generating measurement partition), but 
there is another important alternate measure of a 
system's information generation in terms of the 
average initial spreading rate of narrow probability 
distributionst. This formulation has been dis- 
cussed by Shaw [38]; Farmer, Crutchfield, Froe- 
hling, Packard, and Shaw [39]; and Farmer [32]. 
The spreading rate of sharp distributions is close in 
spirit to the definition of Lyapunov characteristic 

* By "geometrical structure," we mean the band like struc- 
ture of  the attractor near r c [37]. 

5" Here we are identifying a narrow probability distribution 
with the ensemble of  states the system may be in after a (precise 
but finite) measurement.  The time evolution of  a sharp distribu- 
tion is obtained by application of  the Frobenius-Perron oper- 
ator as in eq. (2) (see eq. (3) for the case o f  added noise). The 
evolution of  a sharp probability distribution is illustrated quite 
graphically in the movie "Mixing Properties of  Strange Attrac- 
tors," made by Doyne Farmer. 

exponents (since the spreading of very sharp distri- 
butions is governed by the slope of the map) and 
the correspondence can be made exact for 
sufficiently simple maps (e.g. piecewise expanding 
maps). The main reason for discussing this spread- 
ing rate here is that it generalizes quite naturally to 
systems with added fluctuations, and such a mea- 
sure may in fact be the most appropriate gener- 
alization of Lyapunov characteristic exponents for 
such systems. We will now define the spreading 
rate and discuss a few qualitative features for 
different examples, then outline some conjectures 
relating this picture to the symbolic dynamics 
quantities already discussed. 

As we have noted previously, a one-dimensional 
map f :  I~I  has an associated Frobenius-Perron 
operator on the space of probability distributions 
on I given by 

(L/P)(x) = f 6(f(y) - x)p(y) dy. 

If f has an asymptotic ergodic invariant measure fi, 
then its distribution function/~(x) must be a fixed 
point of the operator L I. Non-equilibrium distribu- 
tion functions P(x) approach/~(x) under succes- 
sive iterations of Lj: The essential idea is to formu- 
late an informational measure of the rate that P(x) 
approaches/~(x). 

To begin, the measure of the amount of informa- 
tion contained in P(x) relative to /~(x) is 

fP(x) l o g ~  dx. 

Now consider how much information is obtained 
by making a measurement using a measurement 
partition A = {Ai}. If  the system is found in the ith 
partition element, the amount of information ob- 
tained is 

= -- log/~(Ai). 

dx 

(ll) 
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As time passes, if the system is chaotic, the infor- 
mation obtained by the measurement is lost be- 
cause the distribution XA, spreads: 

f lo L}X~,(x) d l , ( t )=  L:XA(X), g- -~ (x )  x. 

Note that for t = 0, this equation reduces to eq. 
(11). We may now ask for the average information 
loss after a measurement, where the average is to 
be taken over all possible initial measurements* 

f(t) = ~(A31~(t) .  
i 

Farmer [32] has given an alternate (equivalent) 
expression for this quantity: 

] ( t )  = " - "  . . . . .  A "C~A" 1o /i(f(Ai)nAj) 
~lXlJt 3 /~ g-~OC(Ai))fi(Aj). 

For a deterministic system we then have the 
situation illustrated in fig. 14a. A sharp distribu- 
tion containing a significant amount of informa- 
tion I(0) gradually relaxes to the asymptotic distri- 
bution, at which point I(t)  = 0 for large enough t t .  
The slope of I(t)  well before it goes to zero is then 
a measure of the loss rate of initial information, 
which we shall call k~. k, has been conjectured to 
be equal to h, (Shaw [38]; Farmer, Crutchfield, 
Froehling,.Packard, Shaw [39]; Farmer [32]) for 
deterministic systems:~. 

For contrast, consider the case when the mea- 
surement partition is used simply to sample a white 
noise process. In this case, the probability of any 
measurement outcome is independent of all pre- 
vious outcomes, so I(t) goes to zero after the first 
time step, as illustrated in fig. 14b. 

When noise is added to a deterministic system, 
and a measurement partition finer than the noise 
level is used, we expect l ( t )  to behave something 
like fig. 14c. Much of the information obtained 
from an initial measurement using a measurement 
partition with a typical partition element size 
smaller than the noise level a is immediately lost as 
the sharp probability distribution XA, spreads out 
on the first time step into a distribution of width 
~a .  ~ ~ I(I)  then represents the true amount of 
information that can be obtained from a measure- 
ment; using any finer measurement partition can 
give no more information about the future behav- 
ior of the system. 

We are now in a position to phrase the conjec- 
tures relating this picture to the measurements of 
chaos using symbolic dynamics: (i) k, = h, and (ii) 

= I0. The noise level must, of course be small 
enough so that there is some time interval for 
which l(t)  displays a well defined constant slope. 
Numerical experiments are underway to check 
these conjectures. 

7. Concluding comments 

* Note that / ( t)  must  be distinguished from l(n) defined in 
eq. (7); l(n) is the rate that information (with respect to the 
previous n - I symbols) is acquired with the observation of new 
symbols, and l(t) is the average rate that information contained 
in an initial condition (using a particular measurement  par- 
tition) is lost. 

t This is actually a crude picture with details which may 
change for different systems; e.g.: (i) Phase coherent attractors 
have l ( t ) > 0  as t ~ o o  (cf. Farmer  et al, [39]); (ii) Rob Shaw 
[3] has pointed out that for maps with a critical point the initial 
slope of l(t) will be larger than h,, and then decrease to h,. 

Goldstein and Penrose [40] have introduced a similar 
information loss rate which, for certain systems, Goldstein [41] 
proved to be equal to the metric entropy. 

The effects of fluctuations added to chaotic 
deterministic dynamical systems reveal the concept 
of "infinitely precise points" as invalid in many 
contexts. A new mathematical foundation of  clas- 
sical mechanics is needed; one that uses primitives 
derived from noise processes. Ruelle [42] has made 
significant progress in this direction. Though the 
inclusion of fluctuations in a dynamical model 
adds many analytical complications to a subject 
already incompletely understood, there is hope, 
based on physical observations and numerical 
computations, that there may be several rewarding 
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(a) 

! 

(b) 

i o - -  

(c) 

Fig. 14. (a) Schematic representation of [(t) for a deterministic system. For certain systems (e.g. one dimensional maps with a critical 
point) the slope of l(t) will be greater than k~ at t = 1. (b) Schematic representation ofT(t) for measurements of a white noise process. 
(c) Schematic representation of l(t) for a deterministic system with added noise, where a measurement partition finer than the noise 
level has been assumed. 

simplifications lurking in the theory. Assuming 
such a theory may be formulated, most of  the 
numerical results presented here should be con- 
sequences of  the theory, so they will hopefully 
point the direction for some future theoretical 
developments. We will now review our results in 

this light. 
For a chaotic deterministic system, successive 

measurements (using a "good"  measurement par- 
tition) pinpoint the initial condition whose orbit 
produced the observations with arbitrary accuracy 
(i.e. an arbitrarily large amount  of  information 
about the initial condition may be obtained from 
an arbitrarily long sequence of measurements). 
When noise is added to the deterministic dynamics, 
we have observed that the initial condition may be 
specified only to within some uncertainty, even 
with an arbitrarily long sequence of measurements. 
This has led to the proposal that a chaotic system 
with added fluctuations is characterized by two 

invariant quantities: (i) I0" the maximum average 
information (about the initial condition) obtain- 

able from a sequence of  measurements; and (ii) h~: 
the average information generation rate (simply 
the metric entropy in the case of  a deterministic 

system)*. 

* We have also conjectured these two quantities to be equal 
to T 0 and ku, the maximum amount of information that can be 
stored in an initial condition, and the average loss rate of 
information after a measurement, respectively. 

I0 has not been computed numerically yet, but 
the information production rate h, (with respect to 
a given measurement partition) is easily computed 
using the same algorithms used to compute h, for 
deterministic systems. Upon pursuing the question 
of how h~ depends on the fluctuations added to the 
deterministic dynamics, we find that h, increases 
with a power law in the noise level a: h u ~ a ~. We 
have found that this power law increases seems to 
happen very generally (for all systems studied 
here). The exact value of  the noise exponent fl 
varies with the system under study, though our 
numerical experiments have led to the conjecture 
that a wide class of  systems (those reducible to a 
one-dimensional map f :  I ~ I  with Lf'l > 1) has a 
noise exponent fl = 1. We have combined the 
power law response of  h, with the power law 
convergence of the entropy as a function of the 
number of  symbols observed, to form a homoge- 
neous function description of  entropy mea- 
surement. In this context, a scaling hypothesis has 
been verified numerically. 

The power law increase in the metric entropy 
may be regarded as the discovery of a new phe- 
nomenon, an observable feature of  the information 
production properties of  any physical system that 
can successfully be modeled by a low dimensional 
chaotic dynamical system coupled to external 
fluctuations. There is a growing body of  very good 
experimental evidence that supports such a model; 
convincing one-dimensional return maps have 



222 J.P. Crutchfield and N.H. Packard/Symbolic dynamics of noisy chaos 

been obtained for fluid systems and for chemical 
systems*. 

The noise exponent should be measurable, given 
reasonable experimental accuracy, though we have 
no prediction for its value if the one-dimensional 
map that underlies the observed behavior has a 
critical point. So far, all the return maps construc- 
ted from experimental data appear to have a 
critical point (or several critical points). There are, 
however, many physical systems that should be 
describable by a one-dimensional return map 
whose slope (absolute value) is always greater than 
one. One example would be a Benard convection 
fluid system constrained to excite only those modes 
described by the Lorenz equations, which have a 
cusp-like one-dimensional return map. For these 
systems, we might expect a noise exponent of 
/3--1.  

Fluctuations are now generally recognized as the 
source of much of the diverse complexity we see in 
the world around us (especially in the biosphere). 
It has been hypothesized (by R. Shaw [46], for 
example) that what we call "diverse complexity" is 
a result of  intrinsic dynamical properties of some 
(complicated) dynamical system, in particular, of 
the system's information generating properties. 
The informational properties of most of the dy- 
namical systems underlying and producing this 
complexity are, however, poorly understood. One 
example of how the current picture of information 
generation in chaotic dynamical systems must be 
generalized, is that unlike the chaotic systems 
studied here, the information generated by the 
dynamics of complicated evolving systems like the 
biosphere is stored in physical structures, which 
then serve as the base for even more complicated 
evolution. There are many other similar problems 

* Cited here are "non-trivial" physical systems in which one 
might not naively expect to see low-dimensional chaos because 
of the many degrees of freedom that could potentially par- 
ticipate in the dynamics. Return maps have, of course, been 
successfully constructed for much simpler physical systems (e.g. 
electrical oscillator circuits) in which low-dimensional chaos is 
expected (cf. Crutchfield [43]; Packard, Crutchfield, Farmer, 
Shaw [44]; Gollub, Romer, and Socolar [45]) because of the few 
degrees of freedom involved. 

to be faced, but the results presented here will 
hopefully serve as a starting point for the study of 
the role fluctuations will play in the context of 
these more complicated systems. 
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