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Abstract 

This paper investigates morphological connected filters and, in particular, the so-called filters by reconstruction. 
A brief background is offered on the theory of morphological filtering. Then, the concept of connectivity is introduced 
within the morphological framework, which makes it possible to establish connected filters as those that do not introduce 
discontinuities or, in other words, that extend the input image flat zones. An important subset of connected filters is the 
class of filters by reconstruction, which allows to build connected filters that treat both the peaks and valleys of an input 
image while possessing a robustness property called the strong-property. The focus of our research is on the combination, 
by means of the sup- and inf-operations, of alternating filters by reconstruction when their component filters belong to 
a granulometry and an antigranulometry (by reconstruction). These operators will be investigated by means of the study 
of their grain and pore properties. Some commutation properties are introduced that facilitate the manipulation of filters 
by reconstruction. An important theoretical result of this paper is the establishment of a new family of strong 
morphological filters. Although most theoretical expressions refer to set operators, results are automatically extendable 
for non-binary (gray-level) functions. 

Zusammenfassung 

In diesem Artikel werden morphologische zusammenhtigende Filter, insbesondere sogenannte ‘Filter durch Rekon- 
struktion’, untersucht. Es wird eine kurze Diskussion der Theorie der morphologischen Filterung geboten. AnschlieBend 
wird in dieser Theorie der Begriff der ‘connectivity’ eingefiihrt, wodurch es maglich wird, zusammenhgngende Filter zu 
definieren. Diese zeichnen sich dadurch aus, dal3 sie keine Unstetigkeiten bewirken, d.h. Gebiete konstanter IntensitPt im 
Eingangsbild werden aufgeweitet. Ein wichtiger Spezialfall zusammenhlngender Filter sind Filter durch Rekonstruktion. 
Diese erlauben den Entwurf von zusammenhlngenden Filtern, welche zur Bearbeitung sowohl der Spitzen als such der 
Tiler eines Bildes geeignet sind und dabei ein als ‘starke Eigenschaft’ bezeichnetes robustes Verhalten besitzen. Unsere 
Forschung konzentriert sich auf die Kombination alternierender Filter durch Rekonstruktion mithilfe der sup- und 
inf-Operationen, wenn die Komponentenfilter (durch Rekonstruktion) einer Granulometrie und Antigranulometrie 
angeharen. Diese Operatoren werden durch Untersuchung ihrer Korn- und Poren-Eigenschaften studiert. Es werden 
Kommutations-Eigenschaften eingefiihrt, die die Behandlung von Filtern durch Rekonstruktion vereinfachen. Ein 
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wichtiges theoretisches Ergebnis dieser Arbeit ist die Definition einer neuen Familie von starken morphologischen 
Filtern. Obwohl sich die meisten theoretischen Ausdriicke auf Mengenoperatoren beziehen, sind die Ergebnise auto- 
matisch auf nichtbinare (Graustufen-) Funktionen erweiterbar. 

Ce papier presente une etude portant sur les filtres connect& morphologiques et en particulier ceux dits par 
reconstruction. Un bref apercu est d’abord donne sur la theorie du filtrage morphologique. Ensuite, le concept de 
connectivite est situ& dans le cadre morphologique, rendant possible la conception de filtres connect.5 qui n’introduisent 
pas de discontinuitts ou, en d’autres termes, qui Ctendent les regions uniformes de l’image dentree. Un sousensemble 
important des filtres connect& est la classe des filtres par reconstruction, qui permettent de construire des filtres 
connect& traitant a la fois les pits et les vallees dune image dentree tout en possedant une propriete de robustesse dite 
‘Propriete Forte’. Le but de notre recherche est base sur la combinaison, par l’utilisation des operateurs sup et min, de 
filtres alternes par reconstruction quand les filtres les composant appartiennent a une granulometrie ou une anti- 
granulometrie (par reconstruction). Ces operateurs seront etudies par leurs proprietes de pore et de grain. Des proprietes 
de commutation sont introduites qui facilitent la manipulation de filtres par reconstruction. Un resultat theorique 
important est l’etablissement d’une nouvelle famillie de filtres morphologiques forts. Bien que la plupart des expressions 
theoriques se referent a des optrateurs d’ensemble, les resultats sont automatiquement extensibles a des fonctions non 
binaires (niveaux de gris). 

Keywords: Mathematical morphology; Image analysis; Connectivity; Filter by reconstruction; Pyramid 

Introduction 

Mathematical morphology is a non-linear 
branch of the signal processing field that was born 
in the 1960s. Mathematical morphology concerns 
the application of set theory concepts to image 
analysis. References in this field are [17, 18-22, 35, 
371. The starting point of the treatment of connect- 
ivity, which allows us to talk about connected com- 
ponents of a set (or binary image) such as grains 
and pores, is the work by Matheron and Serra in 
the middle 1980s [26, 281. However, in [26,28] the 
notion of a connected operator is different from the 
grain-removing or pore-filling action that has finally 
prevailed (in fact, grain-removing and pore-filling 
operations appeared in [28] but they were not called 
connected). After this work, the treatment of con- 
nectivity has taken a somewhat different path, pos- 
sibly motivated by the influence of reconstruction 
algorithms that have been used to implement con- 
nected operators. The work by Serra and Salembier 
[41], updated in [42], was the next step, when they 
established the notion of a connected operator as 
a grain-removing and pore-filling operation. 

Grain-removing and pore-filling binary opera- 
tions have been used since the beginning of the 

image analysis field. The complete elimination of 
small connected groups of pixels is an operation 
that must have been used by ‘all’ researchers on 
some occasion. Mathematical morphology offers 
a framework in which to study those operations 
when they satisfy the increasingness requirement. 

Connected operators [4,7,41] do not introduce 
discontinuities. When they are applied to binary 
images, for example, either connected components 
of the foreground (grains) are removed or those of 
the background (pores) are filled. They are called 
morphological when they are increasing. Mor- 
phological connected filters, which are those 
morphological connected operators that are idem- 
potent, will be extensively treated in this paper. 
(Terms that have a precise meaning in mathemat- 
ical morphology are written in italics in this section; 
their definitions can be found in the next sections). 

For gray-level functions such as non-binary im- 
ages, morphological connected filtering uses what 
can be called a planar (or spatial) approach. For 
planar filters, the absolute differences in intensity 
values of the image pixels are not a factor. What 
matters are the structures that the input image 
possesses at each intensity level. Thus, each inten- 
sity level is processed independently (although this 
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is not how the filters are implemented in practice 
for efficiency reasons), and this fact makes mor- 
phological connected filtering robust and insensi- 
tive to certain illumination changes. 

Filters by reconstruction [4,41,42] are a class of 
connected filters that are composed of openings and 
closings by reconstruction, denoted in the following 
by j? and 4. When applied to a binary image (equi- 
valently represented by a set), the openings and 
closings by reconstruction treat each grain or pore 
independently from the rest of the grains and pores. 

An important theoretical property of filters by 
reconstruction is the classical theorem (Theorem 1) 
that establishes the strong property of the ulternat- 

ing jilter by reconstruction ijy” (and of 74). Thus, an 
alternating filter by reconstruction is a tool (1) that 
is connected, (2) that possesses the strong property 
(which provides a desirable robustness against 
noise), and (3) that can treat both grains and pores 
(peaks and valleys for gray-level images). In the 
following it will be shown that $7 (and 74) are not 
the only connected operators that satisfy these de- 
sirable conditions. 

The focus of the research presented in this paper 
is on sup- and in&combinations of alternating filters 
by reconstruction. This way (of parallel nature) to 
combine alternating filters by reconstruction is 
different to the purely sequential manner that is 
employed by the ‘classical’ family of alternating 

sequential Jilters (by reconstruction). (Notice that 
both the sequential composition and the sup- and 
inf-composition of increasing operators is also in- 
creasing - the base of mathematical morphology.) 
Our goal is to introduce a new multi-scale operator 
composed of alternating filters by reconstruction 
that is idempotent, i.e., that is a morphological 
filter. The new filter, which possesses the strong 
property, constitutes a novel family that provides 
an alternative to the alternating sequential filter 
family as a multi-scale image analysis tool. 

The work presented in this paper comes in great 
part from the thesis work by Crespo [4], although 
some results (among them the important Theorem 
4 that establishes the idempotence and strong pro- 
perty of the new family of operators) appeared 
stated by Crespo et al. in [7]. In [6], some more 
results were outlined by Crespo and Serra as well as 
the practical application for segmentation of the 

novel family. In this paper, as in [4], we have 
attempted to study filters by reconstruction in 
a novel and systematic way by means of their grain 
and pore properties. Our study will focus on the 
effects of combinations of y” and $5 on the grains and 
pores of an input set. Two groups of families will be 
distinguished: 
(1) Granulometry { yi}, antigrunulometry {@i> and 

alternating filters { @iy”i} (composed of openings 
and closings by reconstruction). 

(2) The families formed by compositions under the 
sup- and inf-operators of alternating filters by 
reconstruction {@i, yi}. 

Regarding group (l), although the effects of (gene- 
ral) non-connected families of openings {yi>, clos- 
ings {qi} and alternating filters {qiyi} are well 
known, this is not the case when the component 
filters (openings and closings) are filters by recon- 
struction. In fact, the grain and pore properties of 
the first group of basic filters will enable us to 
investigate the more complicated combinations of 
filters constituted by the families in group (2). 

Idempotence is the defining property of mor- 
phological filters. When openings and closings by 
reconstruction are combined in order to build new 
operators, the idempotence of the resulting oper- 
ator is not guaranteed. We will see later both a case 
where idempotence exists (the new family of strong 
filters) and a case of non-idempotence in studying 
group (2). Another important result in this paper 
will be the determination of some instances when 
filters commute with the sup- and inf-operations 
(when the latter are applied to alternating filters by 
reconstruction). These properties greatly facilitate 
the manipulation and simplification of mathema- 
tical expressions. 

The outline of the paper is as follows. Section 1 
gives a general overview of morphological filters, 
and Section 2 focuses on the treatment of connec- 
tivity within the framework of mathematical mor- 
phology. Filters by reconstruction are discussed in 
Section 3. The following two sections will investi- 
gate the grain and pore properties of filters by 
reconstruction. Section 4 is devoted to the 
grain-pore properties of the granulometry {yi}, of 
the antigranulometry {&} and of the family of 
alternating filters {+ifi}. The following section, 
Section 5, studies the more complex properties of 
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combinations under the sup- and the in&operators 
of members of {@ifi}. 

Specifically, the originalities of our work are the 
following. In Section 3, Proposition 1 is new. The 
way to study in Section 4 the well-known families 
{jji} {$i> and { $iyi} by means of their grain and 
pore properties has not been done previously, and, 
in particular, some results in Section 4.3 are novel 
and fundamental to our work (expression (13) and, 
especially, expression (15)). Finally, the whole Sec- 
tion 5 is new. 

This paper introduces some theoretical results. 
Only the most important proofs are included. The 
interested reader can find the other proofs in [4]. 

1. Morphological filtering 

Morphological operators operate on an alge- 
braic structure called a complete lattice [3,37], 
which is the minimal structure required. 

The morphological filtering framework was 
established by Matheron and Serra in the 1980s. 
This section will provide a brief overview of the 
subject. References in this area are [13, 14, 23-25, 
27, 35-373. 

Definition 1. A set T is a complete lattice iE (a) 
there exists a partial ordering < over T, and (b) for 
any (finite or infinite) family {At} of elements in T, 
there exists: a smallest majorant //i/Ii called the 
‘sup’ (for supremum), and a greatest minorant Ai Ai 
called the ‘inf’ (for infimum). 

In practically all theoretical expressions in this 
paper, we will be working on the lattice Y(E), 
where E is a given set of points called a space and 
Y(E) denotes the set of all subsets of E (i.e., 
B(E) = {A: A E E}). In other words, inputs and 
outputs will be supposed to be sets or, equivalently, 
binary functions. The order relation < employed 
in the lattice Y(E) is the set inclusion G , whereas 
the sup v and inf A operations are the set 
union v and set intersection n, respectively. Binary 
images are examples of binary functions f: E + T 
where the space of points E is a grid of points (a 
subset of Z2, where Z denotes the set of integers) 
and T is a set of two ordered elements (for example, 

T = (0,l)). Even though we will work on the lat- 
tice P(E), results are extendable for gray-level func- 
tions by means of the so-called flat operators [12, 
17,18,35,40]. For the reader who is interested only 
in gray-level images, let us notice that the input set 
can be a thresholded version of gray-level image, 
and that the output set will be the thresholded (at 
identical threshold) output gray-level image. This is 
in fact exactly what happens using the (flat) oper- 
ators treated in this work. 

1.1. Building pieces: erosions E, dilations 6, openings 
y and closings cp 

Two elementary morphological operations are 
erosions and dilations, denoted, respectively, by 
E and 6. 

Mathematical morphology deals with increasing 
mappings. A mapping (or transformation) (I/ is 
increasing if it preserves the ordering, i.e., if 
two inputs are ordered then their outputs are like- 
wise ordered. For an increasing set operator 
$:9(E) + P(E), A < B * $(A) < #(B), where 
A, B E P(E). The sup, the inf and the sequential 
composition of increasing operators is increasing. 

Definition 2. Let E be any space. The mappings 
$:9(E) -+ 9(E) that commute with the inf (or, 
respectively, the sup) are called erosions E (respec- 
tively, dilations 6). That is, for all Ai E B(E), 
&( A\iAi) = Ai &(Ai) (respectively, 6(ViAi) = 

Vim). 

Before defining what a morphological filter is, let 
us establish the idempotence concept. A trans- 
formation $ is idempotent when if $ is applied twice 
it leaves the first output unchanged. Mathema- 
tically, this can be expressed as $$(A) = $($(A)) 
= @(A), V’A E B(E), or equivalently, working dir- 

ectly with operators, as I& = $. 

Definition 3. A mapping t+G is a morphological Jilter 
if and only if it is increasing and idempotent. 

An operator II/ is anti-extensive (or, respectively, 
extensive) if $ < I (respectively, $ > I), where I rep- 
resents the identity operator (for all A E B(E), 
Z(A) = A). 
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Definition 4. An opening y (or, respectively, a clos- 
ing cp) is an anti-extensive (respectively, extensive) 
morphological filter. 

The names ‘algebraic openings’ and ‘algebraic 
closings’ are also used in the literature to refer to 
these most general types of openings and closings. 
(Algebraic closings are also called Moore-family 
closings.) 

In a space E provided with translation such as 
the Euclidean space R2 ($8 symbolizes the set of real 
numbers) or 2’, well-known types of openings and 
closings are the ‘standard’ (or structural) mor- 
phological openings and closings, symbolized by 
yB and (pB, which consist of a Minkowski set addi- 
tion followed by the dual Minkowski set substra- 
ction [ll, 321 (or vice versa). The subscript B 
denotes the so-called structuring element that is 
used by these filters. The erosions and dilations that 
employ Minkowski set operations are often de- 
noted by &g and 8g. We are not going to study the 
Minkowski addition and substraction nor to 
give their definitions, which can be found in 
[ l&20-221. Notice that slightly different defini- 
tions are commonly used, fact that must be taken 
into account for computing yB and vs. 

Any opening has a dual closing (and vice versa), 
and in general each morphological operation has 
a dual operator. Two operators $I and ti2 are the 
dual of each other if 

$1 = ZV2ZC, (1) 

where I” is the complementation operator. For all 
A E P(E), Z’(A) = A’, where A” is the complement 
ofthesetA(AvA’=E,A~A~=~).Clearly,if11/~ 
and It/z satisfy (l), then (cIz = Z”lc/lZc. 

The alternating compositions of an opening and 
a closing (py and y(p are idempotent, i.e., they are 
filters, called alternating jilters. 

Let us define next the important concept of 
granulometry and antigranulometry, formalized by 
Matheron [21,22]. 

Definition 5. A family of openings {yi} (or, respec- 
tively, of closings {Cpi}), where i E S = { 1, . . . , n>, is 
a granulometry (respectively, an antigranulometry) if 
for all i, j E S: i < j * yi 2 Yj (respectively, ‘pi < cpj). 

1.2, A -Filters, v -Jilters and strong jilters 

Matheron [24,25,27] (all concepts presented in 
this section have been introduced by Matheron) 
has investigated the following expressions for in- 
creasing mappings $: $(I A II/) and $(I v @. Using 
the fact that for increasing operators 1+9 and $i, 

$(/jitii) G Ai($tii) and $C//iti) > Vi(VWi), it 

can be shown that 

$(Z * $) G * A *II/ G ti> (2) 

$(Z v $) 2 *v W 2 II/. (3) 

However, there exist some mappings for which 
the first or the second (or both) of the previous sets 
of inequalities (2) and (3) is an equality. These are 
the A -overjilters and the v -underfilters, which are 
defined in the following. First, however, let us de- 
fine the concepts of overfilter and underfilter. 

Definition 6. An increasing mapping $ is an A - 

overfilter (or, respectively, an underfilter) if and only 
if $$ 3 Ic, (respectively, $$ 6 $). 

Definition 7. An increasing mapping + is an A - 

overfilter (or, respectively, an v -underJilter) if and 
only if $ = $(Z A t+b) (respectively, @ = $(Z v (I/)). 

Definition 8. An increasing mapping $ is an A - 

filter (or, respectively, an v -Jilter) if and only if $ is 
an A -overfilter and an underfilter (respectively, an 
v -underfilter and an overfilter). 

Next, the important concept of strong Jilter is 
defined. As stated in Corollary 1, strong filters are 
robust in the sense that input variations (such as, 
for example, noise) within certain boundaries cause 
no variation in the output. 

Definition 9. A filter $ is strong if and only if $ is 
both an A -filter and an v-filter, i.e., I,$ = 

$(Z A $) = $(I v ICI). 

Corollary 1. Let $ be a Jilter from .9’(E) to P(E). Zf 
J/ is strong, then for all A, B E P(E): A A $(A) 
< B < A v @(A) * $(A) = cC/(B). 

Corollary 1 can be interpreted as follows. If A is 
an uncorrupted input signal, then a strong filter 
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II/ computes the same output for corrupted signals Definition 10. A family of operators {$i}, where 
whose values are within the boundaries A A $(A) iES = {l,..., n}, forms a pyramid if and only if for 
and A v $(A). Fig. 1 illustrates this for functions. all j, k E S, j > k, 31 such that tij = $rtik. 

Table 1 summarizes the properties of the most 
common morphological filters y, cp, (py and y(p. We 
can observe that (py (or, respectively, ycp) is an 
A -filter (respectively, v -filter). In fact, the implica- 
tion in the other sense is also true; i.e., all mappings 
that are A -filters (or, respectively, v -filters) can be 
expressed in the form of (py (respectively, ycp). When 
y and cp satisfy more restricted conditions than just 
Definition 4, other properties can be inferred as will 
be seen later in the paper. 

In words, {$i} is a pyramid if any level j of the 
hierarchy can be reached by applying a member of 
{$i} to a finer (smaller index) level k. Let us note, 
however, that sometimes the term of pyramid is 
applied only to a family of operators that constitute 
a semigroup. 

Within the class of morphological filters, cases 
that satisfy the previous definition are (a) 
granulometries {yi}, (b) antigranulometries (Cpi}, 
and (c) alternating sequential jilters (ASF). An ASF 
[38] is an ordered sequential composition of 
(Piyi (or of its dual) such as ASFi = Cpiyi ... 
qjyj ... (plyI, where i > j > 1, and where yi and 
(Pi belong, respectively, to a granulometry and an 
antigranulometry. 

1.3. Pyramids 

The following definition of pyramid [41] applies 
both to morphological and non-morphological 
pyramids such as the Gaussian pyramid. 

Fig. 1. Strong filter example. If f is an input function and 

y = $(f), where t/j is a strong filter, for any function h between 

fand 9, it is true that $(h) = +(f) = g. 

Table 1 
Properties of openings y, of closings cp, and of alternating filters 

(PY and Y(P 

Y 

cp 

cpy 

y(P 

A -over- 
ldempotent filter 

Yes Yes 

Yes Yes 

Yes Yes 

Yes No 

v -under- 

filter 

Yes 

Yes 

No 
Yes 

Strong 

filter 

Yes 

Yes 

No 

No 

2. Connectivity in mathematical morphology 

Connectivity is introduced in mathematical 
morphology by the operation that extracts the con- 
nected components of a set. As will be seen in this 
section, those operators that do not break the con- 
nected components of either the foreground or 
the background of an image are called connected 
operators. 

2.1. The point opening yx 

Let us assume that the space E is provided with 
a definition of connectivity. For all pairs of points 
x, y in E, it is possible to establish whether they are 
connected or not. For example, when the space of 
points E is Rz or HZ (associated with the usual 
connectivity), a pair of points x, y in a set A is said 
to be connected if there exists a path linking x and 
y that is also included in A. 

Connectivity is established more generally in 
[37] by means of the connected class concept. 
A connected class %? in B(E) is a subset of 9(E) 
such that (a) 0 E 59 and for all x E E, (x} E V; and (b) 
for each family %‘i in V, A\iCi # 8 implies Vi Ci E %?, 
No definition of neighborhood relationships (i.e., 



J. Crespo et al. /Signal Processing 47 (1995) 201-225 201 

no particular topology) has been assumed for E in 
the definition of the connected class %?. 

The subclass SB, that has all members of V that 
contain x (i.e., %ZX = {C: x E C E V}) defines an 
opening called point opening [37]. The point open- 
ing of a point x, denoted by yX, has as invariant 
class (i.e., the class formed by those sets that are left 
unchanged by yJ gXu (0). For all x E E, A E .9(E) 

y,(A) = v {C: c E %?!,, c d A}. (4) 

The operation yX is therefore idempotent (i.e., 

Y&,(A)) = y,(A) or, equivalently, yXyX = Y,) and 
anti-extensive (i.e., y,(A) < A or, equivalently, 

YX G 1). Properties satisfied by y,(A) are: 

(a) Vx E E, yJ{x>) = {x}; (b) VA E S(E), vx, Y E 

E, y,(A) and y,,(A) are equal or disjoint; and 
(c) VA E P(E), x$A implies y,(A) = 8. 

When we associate, for example, the operation 
yX with the usual connectivity in Z2, the opening 
yx(A), A E P(Z2), can be defined as the union of all 
paths that contain x and that are included in A. Fig. 
2 shows an example of the results of yx(A), where 
the set A comprises the black regions and x belongs 
to a connected component of A. 

When a space E is equipped with the opening yX, 
connectivity issues in E can be expressed using yX. 
We can establish, for example, whether or not a set 
A E P(E) is connected (a set A is connected if and 
only if A = y,(A), x E A), and whether or not a pair 
of points x, y belong to the same connected com- 
ponent in A (x, y belong to the same connected 
component in A if and only if x G y,,(A) or, equiva- 
lently, if and only if y,(A) = y,(A) # 0). 

(a) Input set A 

I 

xl 

(b) rzl(A) 

x2 

(c) ‘i’=,(A) 

Fig. 3. y,, ‘p,, y,l”: one-dimensional example. 

The dual operation of yX is the closing cpX that is 
equal to E\y,l”(A), for all AEP(E), where \ de- 
notes set difference. Fig. 3 shows a one-dimensional 
example of the dual operations yX and cp,., along 
with the pore extraction operation. 

The operation that extracts the pore to which 
a point x of the space E belongs is not the dual 
operation of the grain extraction operation. Fig. 
3(d) shows a pore extraction operation. For a point 
x of E, two equivalent ways to extract the pore to 
which x belongs are y-J’ or Z”rp,. In the following, 
the first way y,l’ has been (arbitrarily) chosen. 

(a) (b) 

Fig. 2. Connected component extraction. The opening y,(A) 

extracts the connected component of A to which x belongs. 

(a) Input set A (in black), (b) y,(A). 

2.2. Connected filters 

Connected filters belong to a class of operators 
that consider the connectivity of an input set A, 
A E 9(E). Connected operators ensure that if two 
points x, y in E are connected in A or in A’ (fore- 
ground and background are regarded symmetri- 
cally), then the pair x, y will be connected operators 
to process grains and pores in an all-or-nothing 
way. If a grain is to be removed (i.e., the grain is 
modified), then all its component points will be 
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removed. Likewise for pores: either they are filled 
or they are left unchanged. On the other hand, 
non-connected operators process sets without any 
restriction on changes of connectivity from the in- 
put set to the output set. In particular, a mor- 
phological non-connected operator must satisfy 
only the increasingness requirement. 

The following definition of a connected operator 
is due to Serra and Matheron. Let us define first the 
concept of flat zone [41], which is defined more 
generally for functions rather than for sets. 

Definition 11. Let E be a space equipped with 
yX and T a complete lattice. The flat zones of 
a function f: E + T are defined as the (largest) 
connected components of points x E E with the 
same function value. 

Definition 12. An operator + is connected if and 
only if it extends the flat zones of the input function. 

Definition 12, which applies both to binary and 
gray-level morphology, does not establish how 
each intensity level of an input function is pro- 
cessed. However, in the following all connected 
operators are supposed to be flat, in the sense that 
they process each intensity level of an input func- 
tion independently from the rest. In addition, even 
though only increasing connected operators will be 
studied in the following, observe that Definition 12 
also applies to non-increasing operators. For the 
binary case, an equivalent definition of connected 
operator is that in [41], which applies only to 
binary morphology: an operator $:9’(E) -+ 9’(E) 
is said to be connected if and only if both set 
subtractions A\$(A) and $(A)\,4 are formed ex- 
clusively by connected components of A or of its 
complement A”. 

Fig. 4 (where the space connectivity is eight-con- 
nectivity) illustrates the previous definitions. All 
pixels in an image belong to a flat zone, and iso- 
lated pixels constitute their own flat zone. Another 
gray-level example is shown in Fig. 5. In this figure, 
connected filters have been cascaded (to form 
a connected alternating sequential filter (ASF) 
pyramid), and a certain flat zone has been marked 
at several stages to show the flat zone inclusion 
property. 

(4 

Fig. 4. Flat zones example. For an input gray level image (a), 
part (b) shows its four flat zones, i.e., those connected regions 
with a same function value. Notice that there are two flat zones 
with intensity value 2 (and not one) because pixels with value 
2 form two separated regions. Part (c) shows the flat zones of 
a connected operation performed on (a). Observe the flat zone 
inclusion relation between (b) and (c). Note: eight-connectivity 
has been assumed for the space of points. (a) Input image I,. 
(b) Flat zones of lo (four). (c) Flat zones of $(I,) (where 1(1 is 
a connected operator). 

In the following, only sets will appear in theore- 
tical expressions. The flat zone of a point x is the 
connected component of the set or of its comp- 
lement to which x belongs. This can be expressed 
using the operator F, employed in [4,7]. The oper- 
ator F, is defined as F, = yx v yJ”, i.e., F, is the 
grain or pore, whichever is not empty, to which 
x belongs. (Notice that y,(A) # 0 + y,l’(A) = 
y&4”) = 0 and vice versa.) For set operators 
$:9(E) -+ P(E), Definition 12 can be expressed as 
follows: an operator is connected if and only if 
F,$ > F,. 

Clearly, the class of connected operators is closed 
under the operations sup, inf and the sequential 
composition of connected operators [41]. Figs. 
6 and 7 show that discontinuities can be intro- 
duced by non-connected operators and that they 
modify the shape of the preserved connected 
components. 

The ‘standard’ morphological openings yB and 
closings qe are connected in one-dimensional 
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(b) Flat zone F’, in ZO (c) Flat zone F,, in level 1 

(d) Flat zone F,, in level 2 (e) Flat zone FzO in level 3 

Fig. 5. Flat zone extension: gray-level example. In this figure, a certain flat zone F,, has been marked at the outputs of an ASF 

connected pyramid (x,, is a pixel that belongs to the head of the cameraman). The higher the pyramid level, the more severe has been the 

filtering applied. Notice the flat zone inclusion relationship. 

spaces when the structuring element B is connected. 
(In this case they are also filters by reconstruction, 
which will be defined later.) However, in two- 
dimensions yB and qe are not connected. 

3. Filters by reconstruction 

This section discusses an important group of con- 
netted filters, to so-called filters by reconstruction. 
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Fig. 6. Differences between a non-connected and a connected 
opening. In this example, one of the two grains of (a) has been 
broken in (b). Notice that image (b) shows a discontinuity that 
does not exist in (a). (a) Input set (in black), (b) non-connected 
opening, (c) connected opening. 

Filters by reconstruction are defined by means of 
the concepts of trivial opening y. and trivial closing 
(po, which appeared in [28]. 

Definition 13. Let E be any space. An opening 
yo: P(E) -+ 9(E) is a trivial opening if for all input 
sets A E P(E) 

IJO = 

A if A satisfies an increasing criterion, 

8 if A does not satisfy the increasing criterion. 

Example 1. Examples of increasing criteria and the 
trivial openings defined by them are the following. 
(a) Standard morphological opening yB: y. would 

leave the input set A invariant if yB(A) # 8; on 
the other hand, if ye(A) = 0 then ye(A) = 8. 

(b) Area: ye(A) = A if the area of A is larger than 
a certain number; otherwise, ye(A) = 0. 

We can see that the criterion used for y. can be 
anisotropic and shape dependent (such as in case 
(a) of Example 1) but that y. does not modify 
shapes since the input set is either preserved or 
removed. 

Definition 14. Let E be any space. A closing 
cpo : P(E) + P(E) is a trivial closing if for all 
A E P(E) 

cpo(A) = 

E if A satisfies an increasing criterion, 

A if A does not satisfy the increasing criterion. 

Definition 15. Let E be a space equipped with yX. 
An opening f: P(E) + P(E) is an opening by recon- 
struction if and only if it is connected and 

where y. is a trivial opening. 

Thus, the output of an opening by reconstruction 
y” performed on an input set A is the set formed by 
all connected components of A that satisfy the 
increasing criterion of the trivial opening y. that is 
associated with V. 

Definition 16. Let E be a space equipped with yX. 
A closing @:9(E) + B(E) is a closing by recon- 
struction if and only if it is connected and 

where cpo is a trivial closing. 

The concepts of opening and closing by recon- 
struction appeared in [28,41] (although not under 
those names in [28]). From the definitions of y” and 
@, it is clear that: (1) the fact that y” and 4 are 
connected implies that y, which is anti-extensive, 
exclusively removes grains and that 4, which is 
extensive, exclusively fills pores; and (2) y” treats 
each grain and 4 treats each pore independently 
from the rest of grains and pores, respectively, of 
the input set. In this paper, we will call filters by 
reconstruction those combinations of openings 7 and 
closings 4 by reconstruction that are idempotent. 

The grain extraction operation yX and its dual cpX 
(see Section 2.1) are an opening by reconstruction 
and a closing by reconstruction, respectively. When 
the grain extraction operation yX is sequentially 
composed (or cascaded) with any opening by re- 
construction 7, it is true that TyX = y,jj. 

The following theorem [41] establishes that al- 
ternating filters are strong filters under certain con- 
ditions. This is a variant of a (more general) the- 
orem by Matheron and Serra, which appeared in 
[28] that proved this property of the alternating 
filter y(p under different requirements for y and cp. 
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(b) Non-connected cpy(Zo) 

(d) Connected I 

(c) Discontinuities (in black) of (b) 

(e) Discontinuities (in black) of (d) 

Fig. 7. Comparison between non-connected and connected filters: connected filters do not introduce discontinuities and, as a conse- 

quence, maintain the shape of the preserved features. 
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Theorem 1. Let y” and 4 be respectively an opening 
and a closing by reconstruction. The connected alter- 
nating jilters @ and y”@ are strong. 

As commented in Section 1.2, Matheron estab- 
lished that an A -filter (or, respectively, an v -filter) 
can be expressed in the form of (py (respectively, ycp). 
Since $y” and j+ are strong (i.e., they are both an 
A -filter and an v -filter), we can expect to find an 
equivalent expression for them in the dual form of, 
respectively, y(p and yq. The following new proposi- 
tion gives such a dual form for the alternating filter 
jjq by reconstruction. 

Proposition 1. Let 7 and I$ be, respectively, an open- 
ing and a closing by reconstruction. Then, jZj5 = I@’ 
where y’ = I A jCj. 

Proof of Proposition 1. (i) @(I A y”@) d +j$ = y”& 
and (ii) @(I A 74) > j$(I A 74) = y”@. 0 

In Proposition 1, the expression I A y”cj? is an 
opening because @ is strong and, therefore, an 
A -filter [27]. The proof is easy: (a) I A @ $ I; 

and (b) (1 A ?$)(I A 74) = i A jb$ A y”@(l A y$) = 

I A 76. Clearly, Proposition 1 applies dually to 
@y’: $7 = Y(l v @y”). 

Reconstruction algorithms [l, 1533, 351 are 
a simple way to compute filters by reconstruction, 
and extremely efficient algorithms based on waiting 
queues are available [2,29,30,43-451. Recon- 
struction algorithms employ what are called 
geodesic operators [13, 163. We notice that filters by 
reconstruction are sometimes defined in the litera- 
ture [lo, 331 by means of a reconstruction algo- 
rithm (i.e., using an algorithmic definition). 

4. Study of the families {yi}, {&> and {@jji): 
grain-pore properties 

4.1. The granulometry {Fi> 

Openings by reconstruction were defined in De- 
finition 15. In this section we are going to study the 
effect of these filters on grains and pores of the 
input set. In particular, the behavior of these types 
of openings when they form granulometries (see 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(a) Input set A 

. . . . . . . . . . . .._.... . . . . . . ..__. 

(b) %(A) 

___,.. .._.... . . . . ..__.. 

(c) %(A) 

Fig. 8. Granulometry by reconstruction {yi}: one-dimensional 
example. 

Definition 5) is most important in the following 
work. Although example figures display one- 
dimensional examples, results are valid also for 
two-dimensional spaces (and in general for any 
space equipped with a point opening yJ. 

A granulometry (pi> is by definition an ordered 
family. Fig. 8 shows an input set A in a one-dimen- 
sional space and two outputs y1 (A) and y”Z (A). No- 
tice that the subindex of the filters forming 
a granulometry just means the relative ordering (in 
this case jji (A) > y2(,4)) but no assumption should 
be made regarding any structuring element. (In fact, 
a granulometry can be built without using any 
structuring element.) 

Two major characteristics can be observed in 
Fig. 8: 
(1) Pores grow in size as the index in the 

granulometry increases. 
(2) The grains in yi((A), for all i, are identical to 

those in the input set A. 
The first effect can be expressed mathematically 

as, for all x E E 

y,~“Y~ 2 Y.xI'yji, j G 6 (5) 

and the second effect as 

y,?(A) Z 8 = y,7(A) = r&t), VA E Y(E). (6) 

The grains in vi(A) are in A, for all levels i. In 
a family {yi), grains are passed to coarser (greater 
subindex) levels or eliminated. Notice that for non- 
connected openings y, expression (5) would still be 
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(a) Input set A (a) Input set A 

@I +1(A) (b) ihTl(A) 

-I . . . . . . . . . . . . . . . . . . . . . . . . . . ,... . . L 
(4 dzC4) 

Fig. 9. Antigranulometry by reconstruction {A}: one-dimen- 
sional example. 

true but not expression (6) (for non-connected 
openings, instead of expression (6) we have only 

that LY 6 L). 
Clearly, flat zones of the output y”i(A) grow as the 

index of the granulometry. i increases. 

(7) 

4.2. The antigranulometry (4i> 

Properties of granulometries by 
apply dually to antigranulometries 
tion. Only the formulas are stated. 
shown in Fig. 9. 

reconstruction 
by reconstruc- 
An example is 

(8) 

A E W), (9) 

(10) 

Compare with the corresponding expressions for 
the granulometry. Notice that the grain and pore 
properties of @ can be called ‘dual’ of those of 7, but 
expressions (8)-(10) are not strictly the dual of, 
respectively, expressions (5)-(7). 

4.3. Family of alternating jlters {~ir”i) 

Alternating filters by reconstruction are sequen- 
tial compositions of an opening and a closing by 

Fig. 10. Family of alternating filters by reconstruction {GiTi}: 
one-dimensional example. 

reconstruction; i.e., QSF and $jj. By combining both 
an opening and a closing, the resulting operation 
both removes grains and fills pores. In this 
section the effects of the alternating filter 47, and in 
particular the effects of members of the family 
{~iv”i> on the grains and pores of an input set are 
studied. In the family (@iTi), the component fami- 
lies {hi > and {@i} f orm, respectively, a granulometry 
and an antigranulometry. An example of alter- 
nating filters by reconstruction can be seen in 
Fig. 10. 

In this section we notice that expression (13) and, 
especially, expression (15) are new and fundamental 
to our work. Expression (11) and expression (14) 
have been established in [41]. All other expressions 
follow easily from the general properties of open- 
ings and closings [37]. 

The main characteristics of alternating filters are 
summarized below. Properties that apply to @and 
the relationships between different levels of the 
family {@iFi} are discussed. 

- There is no order relation between $7 and I: 
I $ 47 6 I. That is, the filter @ is neither an 
opening nor a closing. 

- There is an ordering between rjjj and $j [41]: 

Expression (11) is not generally true when the 
filters y” and 6 are not filters by reconstruction. 
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. . . . . . . . ___ __ . ___ 

(4 “@il%l (A)” 

. . . I.. . 

(b) “&Ti2 (A)” 

. . . __ __ 

Fig. 11. Impossible case. This case is not possible: notice that 
pores are not disjoint and that they are not nested. 

From [28], it is known that expression (11) is 
equivalent to the equality 
___ 
Y(PY = $7. (12) 

- The pores @(A) come from y”(A), A E P(E) 

y,@(A) = 0 * y,l”@$4) = y,Z”y”(A). (13) 

The same cannot be said for grains. The grains of 
@y”(A) are not identical to the grains of 4(A). 
Only the expression y,@y”(A) < y&j(A) is valid, 
as is also true for non-connected y and cp. 

- Alternating filters by reconstruction possess 
a leftwards absorption property [41]: 

Q.i?j@*Y”p = ~P~PP, j G P (14) 

This can be deduced from Eq. (12). 
- Even though both families {yi> and ($i} are 

ordered, there is no order relation between differ- 
ent levels of the family {$iyi>: 

$iyli $G @jFj 4 $iTi3 i Zj. 

- All pores of {@iyi} are not nested but some are. 
Let A E 9((E). For any pair of levels the following 
expression is true: 

Y,I”~iv”i(A)nY,z’~j~j(A) f 8 

* Yxl”4iyi(A) < Yxl’qjTj(A)9 i 6 j. (15) 

The reason is that pores of @i?<(A) are a subset of 
those Of pi, which are nested for different levels 
(see expression (5)). Fig. 11 shows an impossible 
case that does not satisfy expressions (15). 
Only a subset of pores are nested: there exist 
pores in finer levels that do not exist (they are 
filled) in coarser levels. Remember that there is 
no ordering in the family {@ijri}. 

~ Unfortunately, little can be said about grains at 
different levels of {@iyi}. There exists no order 
relation between the grains. 

- There is no flat zone inclusion relation between 
different levels of {@iyi> (as expected from the 
lack of relation between grains at several 
levels). 

FX&fn 2 Fx+jYj, j 6 n. (16) 

The grain and pore properties of alternating filters 
$7 have been discussed. As is well known, it goes 
without saying that the filter @y” is idempotent, 
i.e., it is a filter ($jGjy” = @p since (a) #@y” > 
ij+~ = 47, and (b) @y”@y” < @j%jy” = 43. 

5. Compositions of alternating filters {@iTi} under 
the inf and the SUP: //YE 1 @iTi and Vy= 1 Cjiyi 

Compositions of members of the family {@ijji}, 
where {fi} and {@i} form a granulometry and anti- 
granulometry, respectively, are the focus of this 
section. Our motivation is to establish when the 
composition of several levels of alternating filters 
by reconstruction is a Jilter, i.e., when the resulting 
operator shows idempotence. In [41,42-J, other 
multilevel morphological structures are presented. 
However, except the classical cases constitued by 
alternating sequential filters and self-dual centers 
[39] by reconstruction (the latter possessing limited 
simplifying capabilities - the higher the level, the 
output is closer to the original image -), the other 
multilevel pyramids (residues [34] and constrast 
[31] operators), are not morphological filters. Our 
goal is to discover a new family of operators that 
shows idempotence (i.e., it is a family of filters) and 
that constitutes an alternative to the alternating 
sequential filter family as a multi-scale image analy- 
sis tool. 

We will study the compositions of members 
of the family {@ifi} under the inf operator 

(i.e., A;= 1 @iTi) and under the sup operator 
(i.e., VT= 1 nisi). Therefore, we employ a composi- 
tion manner of parallel nature that is radically 
different to the sequential composition way used 
to build alternating sequential filters. Notice 
that increasingness (the foundation of morpho- 
logical filtering) is preserved when operators are 
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(1) composed sequentially or (2) composed by 
means of the sup- and inf-operations. Thus, in this 
paper we explore the second way to obtain new 
morphological operators. We will discover one case 
(the new family of filters) where idempotence and 
the strong property exist. 

Sections 5.1 and 5.2 provide the base results that 
are necessary for subsequent results presented later 
in Sections 5.3-5.6. Therefore, if the reader is most 
interested in the final results, he or she can skip the 
first two sections and start reading Section 5.3. 

5.1. Grain and pore properties of { &'= I nisi} 

The grain and pore properties of the family 
{&‘= 1 @iTi} are studied in this section. First, gen- 
eral properties will be presented, and then some 
theorems and propositions will follow. They will 
lead to the finding that the family {&‘= 1 ~ir”i> 
forms a new family of strong filters. 

5. I. 1. General properties 
The following properties follow easily from the 

properties of the component families {pi} and {ei>, 
which were discussed in Section 4.1. 

l-l m-l 

- From the lack of ordering between 4y” and I, 
neither does there exist any order between 
/j:=r @iyi and I: 

That is, Anzl @iyi is neither an opening nor 
a closing. 

- The pores of {A:= 1 @iyi} are nested: 

This follows from the fact that {A;= 1 nisi} is an 
ordered family: 

ii 4iv”i G ih $iFi, j G n. (18) 

- The grains of {A:= 1 $iyi} are (inversely) nested. 
This is obvious from (18). For all x E E, 

Yx(&@i5i)GYx(b$ilil)3 j6n. (19) 

- There is no flat zone inclusion, i.e., 

F~(~@iYi)TF~(~4ijri), j<n. (20) 

- . . . . . . . . . - I _____.._., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v . . . .._..._. 

(a) Input set A 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(b) +,1%(A) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(~1 G52?264) 

. . . . . . . . . . . . . . . . . 

(4 &(1,2) h%(A) 

Fig. 12. Family of alternating filters by reconstruction {G,fi} and Al=, C&T,: one-dimensional example. Notie that ~~~~ = 
&l)&ji (i.e., @,j$ belongs to the class {A;= 1 @ji}). 
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An example can be observed in Fig. 12. Compa- 
ring Fig. 12(b) and (d), it can be seen that the 
grain in the middle of &y”l(A) (notice that 
qiy”r(A) is equal to A!=i $iyi(A), i.e., it belongs 
to the class { &‘=i @iTi}) is not included in any 
grain Or pore Of A:= 1 ~iv”i(A). 

5.1.2. Propositions 
Some theoretical results follow that will be useful 

later to establish the family {Al= 1 @f$} (and its 

dual { Vy= 1 FiQi} as a new family of strong mor- 
phological filters. On the other hand, the family of 
operators {VI= 1 $iyi} (and its dual {Al= 1 TiQi}) is 
not a family of filters as will be shown later. In the 
following, only the family {Al= l ~iv”i} is investi- 
gated; however, all results apply dually to the fam- 
ily {VI= 1 Tiei}. 

As mentioned before, in general, grains in a cer- 
tain level Of { Vy= 1 @iyi(A)}y A E Y(E), are not in- 
cluded in grains or pores of subsequent coarser 
levels; the grain inclusion relation is inverted (see 
expression (19)). Thus, it can happen that a grain 
that exists at one level is broken in coarser levels 
(i.e., not included in either a grain or a pore of 
a coarser level). This is the reason why 
F,(A\1= 1 @iyi) $ F,(A\:= 1 4ijji),j < TI. On the other 
hand, expression (17) states that there is an inclu- 
sion relation of pores as the index of the family 
increases, i.e., as the primitive gets farther from the 
identity operator. 

Let us define some concepts that will be used in 
the following discussion. The concept of adjacency 
between two sets formalizes the intuitive notion of 
contiguity. Let A E B(E). Two flat zones F’(A) and 
F,,(A) are said to be adjacent if F,(A) v F,,(A) = 
Y~(F,(A) v F,,(A)), i.e., if F,(A) v F,.(A) is a con- 
nected set. The adjacent flat zones of x in an input 

set A, symbolized by d&l), are the pores (if x E A) 
or the grains (if x$A) that are adjacent to 
F,&‘,(A) = vX, {F,.(A): x’ E E, F,,(A) v F,(A) = 

rx(Fx,(A) v U4))). A n example of the adjacent 
flat zones of a point is shown in Fig. 13. 

The following propositions establish relation- 
ships between the grains and pores of A;= 1 ~ir”i(A), 
A E 9(E), and those of each level @iTi( 

Proposition 2. Let E be a space equipped with yx 
and A E.Y(E). Let {pi} and {@i>, where iES = 
(l,..., n}, be, respectively, a grunulometry and an 
untigrunulometry by reconstruction from 9(E) to 
Y(E). Zf x belongs to u pore of Al= 1 nisi, then 

3i0 E S: 7~1” ib $iv”i 

( > 

(A) 

Proposition 2 can be deduced easily from expres- 
sion (13). Thus, all pores of Al= 1 @ifi exist in 
a member of {@iTi( (and of {pi(A)}). 

There is a lack of ordering between Al= 1 t$iyi 
and I. In general, there is no ordering either be- 
tween an opening y and JJ(A~= 1 @ifi). However, 
there exists an ordering relation between some 
pores of the two aforesaid operators when the 
opening is a component of the granulometry by 
reconstruction used to build Al= 1 @iTi. This is 
stated in the following proposition. 

Proposition 3. Let E be a space equipped with yx 
and A Ed. Let {y”i} and {$i>, where iE S = 
{ 1, . . . , n}, be, respectively, a grunulometry and an 
untigrunulometry by reconstruction from 9(E) to 

Fig. 13. Adjacent flat zones of a point. (a) Input set A (in black); (b) sJ~(A): adjacent flat zones of x; (c) &,,(A): adjacent flat zones of y. 
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Y(E). Zf x belongs to a grain of (A:= 1 $ifi)(A)y then 

yxZcy”iO 
( > 

h 4iTi (A) < y,Z”Fi,(A), vil.3 E S. 
i=l 

Notice that Proposition 3 does not imply that 
Fp(Al= I kiwi) > ypp, which is not true. 

The next theorem is important since it will be 
used in the following section for establishing the 
cases for which some filters commute with the inf- 
and the sup-operators. 

Theorem 2. Let {hi> and {gi}, where iE S = 

U,..., n>, be, respectively, a granulometry and an 
antigranulometry by reconstruction. Then 

Proof. Let G be any grain of Al= 1 @iTi( 
A E P(E). Let x E G. 
Case 1. y,fi,,(l\l= 1 @iyi)(A) # 8 (i.e., yiO does not 
remove G from (&‘= 1 @iyi)(A)): then, G < 

Yx@i,fi,CA~= 1 4ir”i)tAh 

Case 2. ~x~i,(1\~=1 &y&A) = 8 (i.e., fi, removes 
G from (Al= 1 @iTi)(A If pi, remoues the grain G in 
the operation yi,,(Al=i @iFi), then 4i, fills the new 
pore yxlcy”iO( Al= 1 @iTi)( since (from Proposi- 
tion 3) yxlc7iO(A\l= 1 @iTi) < y,lcjjio(A) and 
x E @i,Y”i, tA). Then, Yx4ioYi,(/1\~= 1 qi”7i)tA) 2 

yx(A\I= 1 @iFi) = G, tfio E S. •I 

As a corollary, it can be deduced that if p > j, 
where p, j E S, then 

The grains of &‘= 1 @iyi(A), A E B(E), are not in 
general invariants under yi, i E S. Proposition 4 and 
Corollary 2 study, for a grain of Al= 1 @i&(,4) that 
is variant under a particular yiO) i,, E S, the corres- 
ponding grains at certain levels of &Fi(A) and their 
adjacent pores. This section concludes with Theo- 
rem 3, which states which grains are invariants 
under yi, for all i E S. 

Proposition 4. Let a connected set E be a space 
equipped with yx and A E B(E). Let (~ii> and (pi>, 

where icS = {l,..., n}, be, respectively, a granulo- 
metry and an antigranulometry by reconstruction 
from 9(E) to B(E). Let G # E be a grain of 

&‘= 1 @iYi(A) h t t a is variant under fi,, iO E S, and let 
x E G. Then 

y,~iy^i(A) > G, Vi ~ io, i E S. 

Corollary 2. All pores of Al= 1 giyi(A) that are ad- 
jacent pores to G come from at least one of the finer 
levels in ~j~j(A), where j < i,, and j E S. That is, 

3j < i,, j E S: P = y,,ZC@jyj(A), X’ E P. 

Theorem 3. Let E be a space equipped with yx 
and AE B(E). Let {yii> and {+i}, where i E S = 

{l,..., n}, be, respectively, a granulometry and 
an antigranulometry by reconstruction from 9(E) 
to Y(E). Then, ~11 grains of Al=t $ipi(A) that 
are adjacent to a pore of c&f,,(A) are invariant 
under y”. 

5.2. Grain and pore properties of { Vy= 1 $iyi > 

The importance of the family { Vy= 1 $iTi} is less 
than that of the family {Al= l @in}, as will be seen 
later where the idempotence of the members of the 
latter family will be shown. Notice that { Vf= 1 nisi} 
is not the dual family of {Al= I nisi}. A less exten- 
sive analysis than that of the previous section will 
be performed, and only one proposition is stated 
regarding the grain and pore properties of 

{VI= 1 @iTi>. 

AS was the case for the family {A;= 1 ~ir”i>, each 
pore of VI= 1 $ijji(A), where A E B(E), is a pore of 
a member of {@iTi( (and of {pi(A))). That is, for 
any x that belongs to a pore of //F= I ~iv”i(A) 

3i0 E S: Y~Z” 
( > 

it @iYi (A) = yxZ’@i,Yi,,(A) 

= YxZcYiO(A). (21) 

The following proposition takes the result of 
expression (21) further. 
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Proposition 5. Let E be a space equipped with yx 
and A E P(E). Let {pi} and {@t}, where i E S = 

{l,..., n>, be, respectively, a granulometry and an 
antigranulometry by reconstruction from P(E) to 
P(E). For all x E E 

= YJ”y”l(4 

5.3. Commutation properties 

In general increasing operators do not commute 
with the inf- or the sup-operations unless they are, 
respectively, erosions and dilations. As mentioned 
in Section 1.1, the inequalities that correspond 
when increasing operations are performed on the 
inf and sup of other operators are Icl(l\i~i) < 

Aiti$i, and $(Vitii) B Vi$tiz. 
In this section it is shown that in certain cases the 

previous inequalities can be transformed into 
equalities when the family {$i} is a family of alter- 
nating filters by reconstruction. This can greatly 
simplify the manipulation of sups and infs of 
alternating filters by reconstruction, as will be seen 
in the next section. Obviously, all results apply also 
to the dual operations. For some of the following 
results, it is not strictly necessary that all filters be 
filters by reconstruction, as stated in more detail 
in [4]. 

The following lemma, which is true for all Y and 
for all cp (connected or not), will be needed later. 

Lemma 1. Let y and cp be, respectively, an opening 
and a closing. Then, 

(4 (PY 2 I* (PY = cp. 
(b) (PY G L * (PY = Y. 

Proof. (a): (i) (py < cp, since Y < I; and (ii) (py 2 

Z=-VPY=cpY~cp. 
(b): (i) (py 2 y, since cp 2 Z and (ii) (py < Z * 
(PYY = (PY G Y. cl 

Proposition 6 states a case in which 4 can com- 
mute with the inf operation when the latter is per- 
formed on members of the family {nisi}. 

Proposition 6. Let E be a space equipped with yx. 
Let {yt> and (@i}, where i E S = { 1, . . . , n}, be, re- 
spectively, a granulometry and an antigranulometry 
by reconstruction. Then 

4 
( 1 

h @iFi = /2 @@ifi. 
i=l i=l 

Proof. Let A E B(E). A pore P = yJ”(Af= 1 ~i~ii) 
(A) # 8 belongs to a pore of a member of (~iv”i(A)) 
(from Proposition 2). Let us denote this member as 
$i,,Fi,(A). The pore P = Y,Z’~i,~i,(A) (and also 
P = YxZCyiO(A)) is greater than or equal to 
Y,Z”4iFi(A), ViE S. Therefore, 6 fills a pore 
YXZc(A~= ,$iTi)(A) # 0 if and only if @ fills the pores 
Y,Z”@iyi(A) # 0, Vi ES. (Notice that this proposi- 
tion also holds when the closing on the left is 
a standard morphological closing (pB when the 
structuring element B is a simply connected 
set.) 0 

The following proposition establishes a commu- 
tation property that arises when a filter by recon- 
struction that is a member of a family {@iyi> is 
applied to the inf of the family. 

Proposition 7. Let E be a space equipped with yx. 
Let {yt} and {@i}, where iES = (1, . . . . n} be, re- 
spectively, a granulometry and an antigranulometry 
by reconstruction. Then 

= iho @iYi, i0 E S. 

Proof. From Theorem 2 and Lemma 1, 
@i,r’i,(/\y= 1 @iTi) = @i,(Al= 1 @iPi), io E S. From 
Proposition 6, +i,(Ay= i @iyi) = Al= 1 @i,@ifi = 
Alzi, ~iv”i. (Notice that ~i,~i 3 ~i,y”i,, i < iO.) !J 
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Table 2 5.4. A ww family of strong jilters: {Y,, = Al= 1 gijji} 
Filters by reconstruction: commutation properties. Expressions 
in the second half of the table are dual of those in the first half In this section it will be shown that the operation 

Al= 1 @iTi is idempotent. (AS before, {pi} and {$i} 
denote a granulometry and antigranulometry by 
reconstruction, respectively.) Furthermore, the 
filter &‘=I iji?i is strong. The symbol Y’, will 
be used in the following to denote the filter 
A:=1 &iFi, whereas !Z’z symbolizes the dual 
filter VI= 1 pi@ie Clearly, all results obtained for 
Y, apply dually to Yu,*. 

As a particular case, 

i0 E S. 

The commutation between @ and the sup oper- 
ator when the latter is applied to members of {@iyi} 
is established by Proposition 8. 

Proposition 8. Let E be a space equipped with yx. 
Let {jji} and {$i}, where i E S = { 1, . . . , n}, be, re- 
spectively, a granulometry and an antigranulometry 
by reconstruction from p(E) to B(E). Then 

~ ( ) \j ~ir”i = ~ @@iFi. 
i=l i=l 

Proof. Let P be a pore of VI= 1 @i?;(A), A E B(E), 
and let x E P. Expression (15) implies that the 
corresponding pores of P in the family {@Ji(A)) 
are nested. Then, @ fills the pore P if it fills 
y,Z”f$iTi(A) for all i E S. 0 

We have as well that 

Table 2 summarizes the properties that have 
been presented. Dual expressions are also shown. 

The following theorem establishes this new fam- 
ily of filters. It was presented in [7] using the 
outline of another (more complicated) proof. In the 
proof of this theorem as well as in most of the 
expressions used in this section, the commutation 
properties presented in the previous section (and 
summarized in Table 2) are employed. 

Theorem 4. Let {yi> and {@i}, where i E S = 
{ 1, . . . , n}, be, respectively, a granulometry and an 
antigranulometry by reconstruction. Let Y,, and 
Y,* be, respectively, &‘= 1 @ifi and VI= 1 Fi&i. Then 
Y,, and the dual Y,* are strong Jilters. 

Proof. It is known, from Theorem 1, that nisi is an 
v-filter (besides being an A -filter and, therefore, 
a strong filter). Then, ‘u, is an v -underfilter because it 
is the inf of v -filters [27]. Let us prove that Y” is 
also an A -overfilter, i.e., that Ya = Y,, (I A YJ. 
(The fact that ul, is strong implies its idempotence.) 
(i) lu, = Y”(Zr\ YJ 6 ul,. 
(ii) Using Proposition 7, Yn = ‘y,(Z A YJ = 

(Al= 1 4iFi)tz//I=, @iPi) = &= 1 (QjPj (ZAl= 1 @ifi)) 

= A;=l(A’=l @j$iYi) 2 A:=1 $iFi = Yn. q 

Corollary 3. The family of Jilters (Y” = Al= 1 QiFi} 
forms a multilevel structure whose composition laws 
are: 
(a) ‘u, ul, = Ypu,, p 2 n. 
(b) Yp(Z A Y”) = Yp p Z n. 

Part(b) of Corollary 3 is obvious from the fact that 
Y” is a strong filter. 

The class { Y”} is clearly ordered (‘yp < Yj, j < p) 
and is therefore closed under the inf- and sup- 
operations. 
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(b) Gl%(ro) 

(d) 92 = A;=, Biii(~o) (e) ASFz = ~2%4;Y1(~0) 

Fig. 14. The filter ‘Pa = Al= 1 (jiii: gray-level example. In this figure, images (b) and (c) show two levels of alternating filters used to 

compute Yl (image(d)) and ASFZ (image(e)). The criterion used for i1 and f2 is sB, where B is a 3 x 3 square for T1 and a 17 x 17 square 

for y2. q1 and & are the dual closings of T1 and j2, respectively. Notice that Y1 = ASFl = ijlyl (image (b)). 

In order for the family {Y” = Al= 1 ~i~ii> to form !I’: and a pyramid to be established. Each of the 
a pyramid (see Definition lo), the necessary com- families {Y”} and (Y,*} does not form a pyramid 
position expression should have been ul,Y,, = ‘y-,, when taken separately, but both of them do when 
p 3 n, which is not true. The next theorem will they are composed in a sequentially alternated way 
enable the relationship between the filters Y” and as will be shown in Corollary 4. 
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(b) Extrema of Ql;Vl(Zo) 

(d) Extrema of \k2 = r\z=, +ljl(Zo) 

(c) Extrema of &;Y2(Zo) 

(e) Extrema of ASF2 = &72@1-71 (lo) 

Fig. 15. Comparison of extrema. This figure displays, in white, the extrema (i.e., both the regions that are maxima and the regions that 

are minimal of the primitives that were shown in the previous figure. Notice that the filter ti2 contains extrema regions of the levels 

@S1 II and &1j2(Zo) employed for its computation. This can be beneficial when extrema regions are to be preserved. 

Theorem 5. Let {r”i> and {$i>, where in S = 

{I,..., n} be, respectively, a granulometry and an 
antigranulometry by reconstruction. Let !P” and 
Yu,* be, respectively, A:= 1 @iyi and Vy= 1 y”i@i. Then 
Yy,* Yn is equal to the (strong) filter @,,f,,. 

Proof. 0) Y,* YII = (VT= 1 Fi $i) ( A’f. = 1 $jfj) > 7” Gn 
(/jJ= 1 @jTj) Z Fnn%+?n = 411718. 
(ii) Using Proposition 7, YU: ‘u, = (VI= 1 fi&) 
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Under a different form, Theorem 5 was stated but 
not proved in [6]. 

As a particular case of Theorem 5, we have that 
(I v Yx)(Z A YJ = &y,,. Notice that Z A ul, is an 
opening (unlike YJ and that Z v Y,* is a closing 
(unlike Y,*). It can also be deduced that 
(Z A Y,*)(Z A Y,,) = (IA Y,)(l A !?;) = 1 A Y,,, 

from the fact that (I A Y”, Z A Y,*} is 
a granulometry. Similarly, (I v Y,*)(Z v ul,) = 
(I v Y”)(Z v Y,*) = z v Y,*. 

Corollary 4. Let A,, be the alternating sequential 
composition Y,* ul, .‘. Yu* Yi ... YT Y1, n>i21. 
Then, the family of jilters {A,} forms a pyramid. 

Corollary 4 follows directly from Theorem 5 since 
A, = Y,TY “... Yy*Yi... Y;Y1 = @,,v”,,... Qjiyi... 

ijl F1, which is a member of an alternating sequen- 
tial filter (ASF) pyramid by reconstruction. The 
interest of Corollary 4 is only theoretical. The 
pyramid {A,} is identical to the ASF pyramid 
by reconstruction, which is simpler to compute. 

5.5. Simplijcation effects of the filter 
y” = Al= 14iFi 

The issue of determining which filter is best 
suited for image analysis is not simple because, in 
general, simplification effects vary greatly depend- 
ing on the types of input images. Besides, effects 
that are often regarded as desirable in some ap- 
plications can be unacceptable in others. In this 
section we discuss the effects achieved by the new 
filter Y,, = &‘= 1 @iTi and to compare them with 
respect to those obtained by using the ‘traditional’ 
alternating sequential filter by reconstruction 
ASF, = &,jjn ... +1j71. 

An example of the application of the filter Y,, for 
image simplification can be seen in Fig. 14. In 
general, ul, preserves the extrema (maxima and 
minima) regions in an image better than ASF, (and 
than &j?,J. The reason is that whereas in the ASF, 
case the effect that predominates is the simplifica- 
tion performed by level n, i.e., by the alternating 
filter qnyn (the most severe - active - one) that is 
applied last in the sequential composition. On the 

other hand, in the Y,, case, all levels are treated in 
an equal manner by the inf operator; this allows 
finer (smaller index) levels to add some extrema 
regions. This can be beneficial or not depending on 
whether one desires a severe simplification or 
rather that extrema regions from several levels be 
preserved for later purposes. Fig. 15 depicts the 
extrema regions of the images in Fig. 14. The filter 
Y,, has been used, for example, in the flat zone 
approach to image segmentation presented in 
[4-6,8], in which the extrema regions of the output 
of the filtering stage play an important role. The 
reason is that extrema regions are usually precep- 
tually significant and therefore important to be 
taken into account in, for example, region-based 
coding applications (as was our goal). In Fig. 14 the 
eyes (minima - darker than their neighbors - re- 
gions) have been preserved by Y2 but not by ASFz. 
In the particular case of our region-based coding 
application, it was desirable that regions such as 
the eyes be preserved by the filtering (pre- 
processing) stage. Concerning implementation 
details, the results in Fig. 14 were computed using 
standard morphological erosions as increasing 
criteria for the openings by reconstruction y1 and 

(a) Input set A 

- I __ _ _ . . I . 

(b) 91ir(A) 

. I.. _ 

(4 v:=, d.%(A) 

(e) (v;=, si;li,cV;=, w%)(A) 

Fig. 16. The operator V:=, eifi: one-dimensional example. 

Notice the non-idempotence of VT= 1 cjiFi: e2 can fill the pore in 

(d), which is smaller than the corresponding pore in (c), and 

therefore (d) and (e) can be different. 
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Table 3 

Compendium of filter properties 

Idem- 

potent 

A -over- 

filter 

v -under- Strong 

filter filter 

Y Yes Yes 

cp Yes Yes 
cp)’ Yes Yes 

Yes No 

x!‘=, ‘pi’ii No No 
v;= , ‘PiYi No Yes 

GY Yes Yes 
i@ Yes Yes 
A:= 1 GiY, Yes Yes 
vf= * 4q, No Yes 

Yes 

Yes 

No 

Yes 
No 

No 

Yes 
Yes 
Yes 
No 

Yes 
Yes 
No 
No 
No 
No 

Yes 
Yes 
Yes 
No 

y2. The structuring elements employed were 
squares of sizes 3 x 3 and 17 x 17, respectively. The 
closings @r and I& were dual of, respectively, yI 
and F2. 

Let us notice that when only one level is used (i.e., 
IZ = l), then both families { ul, = AT= 1 nisi} and 
{ASF, = @,,yn ... @rFr} are clearly identical 
because Y1 = ASFr = (pryI. 

Regarding computational issues, the filter Y,, is 
better suited to parallel implementation than ASF,. 
Whereas in Y,, each simplification level (each alter- 
nating filter @iFi) is processed independently (so 
that their processing can be performed in a parallel 
manner), only one level can be processed at any 
given time in the ASF, case since simplification 
levels are applied sequentially. 

5.6. The operator Vy=, cjiyi 

It was observed before that the sup and the inf of 
filters by reconstruction are not in general filters 
by reconstruction because the idempotence of the 
resulting operator is not ensured. The families 
{Y” = AlEI @iFi} and its dual { Yy,* = VyEI nisi} 
are filters (i.e., they are idempotent), as treated in 
the previous section. This section will show that the 
other two possibilities of combining alternating fil- 
ters by reconstruction, VI= 1 nisi and &‘= 1 &Fit 
are not filters. 

Let US apply VI= 1 @iFi twice: 

(Vy= 1 @iTii,CV:= 1 +jfji) B Vi Vj+iFiijFj = (Vi +i 

yi) v (Vi (i>j) Vj $ifi$jFj) B Vi @iFi. The equality 

does not hold because $ifi@jyj > $ijri and, in gen- 
eral, @ifi@jyj # $iTi, for i > j. 

An example of the non-idempotenace of 
Vy= 1 ~iv”i is given in Fig. 16. 

6. Conclusion 

In this paper theoretical aspects of the filter by 
reconstruction class have been studied. Filters by 
reconstruction constitute a type of morphological 
filter that possesses interesting properties, which 
can be studied within the framework offered by the 
theory of morphological filtering. 

First of all, filters by reconstruction are connec- 
ted filters and, therefore, consider the connectivity 
that exists in the input image in the sense that no 
discontinuities are introduced. Second, certain 
combinations of filters by reconstruction have the 
strong-property (a robustness property) while be- 
ing able to treat both bright and dark features. 
Finally, filters by reconstruction are well suited for 
multi-scale schemes because of the existance of rela- 
tionships between the simplifications computed at 
several levels. 

The study of filters by reconstruction has been 
performed through their grain and pore properties, 
i.e., through the effect of these filters on the connec- 
ted components of the input set and its comple- 
ment. Our focus has been the investigation of the 
families formed by the sup and inf of alternating 
filters by reconstruction when the component 
openings and closings belong, respectively, to 
a granulometry and antigranulometry. Commuta- 
tion properties have been shown to exist in some 
cases when filters by reconstruction are applied to 
members of these families. An additional important 
result has been the introduction of a new family of 
strong filters, which constitutes an alternative to 
the well-known alternating filter by reconstruction 
family as multi-scale image analysis tool. Although 
our study has restricted to the set (binary image) 
case, all results are extendable for functions (by 
means of the so-called flat operators). 
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List of symbols 

a space of points 
power set of E 
sets 
complement of A 
points 
set union, set intersection and set differ- 
ence, respectively 
lattice 
order relation (less than or equal to), 
inf- and sup-operation, respectively 
operator 
identity operator and complementation 
operator, respectively 
opening, opening by reconstruction, 
closing and closing by reconstruction, 
respectively 
point opening and its dual closing, re- 
spectively 
trivial opening and trivial closing, re- 
spectively 
granulometry and antigranulometry, 
respectively 

CpiYi “’ (PjYj “’ (Ply12 where i>j>l, 

Yi E {ri} and Vi E {Vi> 

Al= 1 GiYi 

VI= 17iGi 

Y,* Y” . . . Y7Yi... YTY1, where i aj > 1 
input gray-level image 
the set of integers and the set of real 
numbers, respectively 
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