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Abstract

Chaos synchronization is an important problem in the nonlinear science. However, several phenomena can be found in
the synchronization systems. Here, we discuss several phenomena involved with the chaos synchronization problem.
Between the involved phenomena, one can find: Complete, Practical and Partial Synchronization. A feedback controller is
used to illustrate such synchronization phenomena. The feedback was recently reported and involves robustness features.

Ž .Such control actions can induce one more phenomena: the Almost Synchronization AS . In addition, it is shown that the AS
can be found if the master and slave models are strictly different. q 1999 Published by Elsevier Science B.V. All rights
reserved.

PACS: 05.45.qb; 87.10.qe
Keywords: Chaos synchronization; Feedback chaos control

1. Introduction

Chaos control is a very interesting topic which
has been recently studied. Two basic problems of the
chaos control can be identified. Such basic problems

Ž . Ž .are the following: i chaos suppression and ii
chaos synchronization. Chaos suppression mainly
consists in the stabilization of the system around
regular orbits or equilibrium points. The chaos syn-
chronization problem has the following feature: T he
trajectories of a slave system must tracks the trajec-
tories of the master system in spite of both master
and slave systems being different. There are some
uncertainties sources in the chaos control problem.
Therefore, robust control schemes are required to

) Corresponding author. Tel: q52-48-175303; fax: q52-48-
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Žachieve suppression or synchronization for instance,
w x.see 1,2 .

The chaos synchronization phenomenon was
w xfound early 90s. In 3 , the authors presented the first

chaos synchronization results regarding the unidirec-
tional synchronization of two identical chaotic sys-

Žtems i.e., two dynamical systems whose parameters
.are equal . They reported that as the differences

between system increases, the synchronization is lost.
Nevertheless, as the synchronization phenomenon
has been understood, the researchers have found that
synchronization of not identical systems can be

Ž w x .achieved see for instance 2 and references therein .
w xFrom the paper by Pecora and Carroll 3 on-

wards, many papers have been published. Since the
synchronization phenomenon is very interesting and
important, a lot of effort has been devoted to under-
stand it. For example, Phase Synchronization in bidi-
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w xrectionally coupled systems was reported in 4 . This
is, two nonidentical systems have the same phase but
different amplitude. We have found that phase syn-
chronization can be attained is several synchroniza-
tion phenomena. For instance, the practical synchro-

Ž .nization see below is a class of synchronization
where the systems have same phase but different

w xamplitude. Also, in the partial synchronization 5 ,
the systems can have the same phase and different
amplitude. Nevertheless, the relation between the

Ždifferent kinds of the chaos synchronization and the
.scenarios to or between them have not been ad-

dressed yet.
This work is focused on the chaos synchroniza-

tion problem. The main goal is the classification of
the phenomena involved with the chaos synchroniza-
tion problem. The results are restricted to the case
where the systems to be synchronized are unidirec-
tionally coupled by feedback. However, general fea-
tures are discussed. The discussed phenomena are:

Ž .Complete Synchronization CS , Partial Synchroniza-
Ž . Ž .tion PS , Practical Synchronization PrS , Exact

Ž .Synchronization ES . In addition, the Almost Syn-
Ž .chronization AS was found.

In order to present the synchronization phenom-
ena a feedback control scheme was chosen. The

Ž .controller has a simple linear structure. Indeed, it is
represented by a Laplace domain equation, which
implies that the feedback is linear. The controller

Ž .contains three parts: i A term proportional to the
Ž .control error, ii an integral action which provides

Ž .stability around an equilibrium point and iii a
quadratic integral action which yields a dynamic

Žestimated value of the perturbing forces for exam-
ple, time-varying reference, internal perturbations or

. 2parametric variations . The scheme is so-called PII
Ž .controller Proportional-Integral-Quadractic-integral .

It has been shown that the chaos control problem can
2 w xbe addressed by means of the PII controller 6 .

Since the controller has a simple structure, hence,
it is very easy to analyze its effect onto the chaotic
system. The results allow to observe the different
synchronization phenomena. In addition, the results
show that it is possible to find a combination of
phenomena in synchronized systems.

In this sense, the aim of the Letter is to discuss
the main differences involved in the chaos synchro-
nization. The main contribution consists in the geo-

metrical characterization of the synchronization in
such way that important features can be identified.
Such phenomena can be found if the PII2 controller
is used. This is, the different synchronization types
can be induced by the same class of feedback. The
text has been organized as follows. The next section
contains a brief presentation of the synchronization
scheme. The synchronization phenomena are defined
in Section 3. Also, the synchronization phenomena
are presented via numerical simulations. The Section
4 contains some concluding remarks.

2. The synchronization scheme

It has been recently established that the synchro-
nization problem can be seem as a chaos stabiliza-

w xtion one 2 . This is, from the dynamics of the
Ž .synchronization error defined by x sx yx , ai i,M i,S

feedback control can be constructed in such way that
controller is able to lead the trajectories of the
synchronization error around the origin in spite of
the differences between master and slave model.

w xUsing the design algorithm reported in 6 , a
Laplace domain controller can be obtained. Such
feedback controller is given by

1 Ke
u s sK 1q q e s 1Ž . Ž . Ž .C

t s s t sq1Ž .I II

Ž .1r2where ssv j, js y1 , K , K , t and t areC e I II

control parameters, which are chosen in such way
Ž . Ž .that the closed-loop system is stable. e s sy s y

Ž . Ž .r s is the control error, y s is the system output
Ž .whereas r s is the prescribed signal. In particular,

the control goal is to lead the trajectories of the
synchronization error to the origin.

Ž . Ž .The controller 1 contains three parts: i A
proportional action, which is represented by the con-

Ž .stant term K . ii An integral action, which is givenC
Ž .by the term K rt S, and iii A dynamic compen-C I

Ž .sator term, which becomes K rS t Sq1 . Thee II
Ž .feedback 1 does not require prior knowledge about

the system to be controlled. In this sense, it can be
used to control any chaotic system. In fact, it only

Ž .requires: a Knowledge about the reference signal
Ž .and b On-line measurements of one available state

Ž .measurable . It must be pointed out that the closed-
(loop scheme dynamical system under control ac-
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)tions can be interpreted as a dynamical system with
an algebraic constraint.

Ž .In particular, since the control law 1 was de-
signed to stabilize a dynamical system in spite of
modeling errors and perturbing forces, the dynamic
equation given by the synchronization error system
can be controlled at the origin. In what follows the
several phenomena are discussed.

3. The synchronization phenomena

The synchronization phenomena are discussed in
this section. It is shown that each synchronization
phenomenon can be separately found into the same
dynamical system, i.e., since each synchronization
phenomenon has different nature; however, it can be
displayed by the same dynamical system. In the next
section, we show that a combination of the synchro-
nization types can be presented by the same system.

3.1. Exact synchronization

Definition 1. It is said that two chaotic systems
are exactly synchronized if the synchronization er-
ror, x sx yx , exponentially conÕerges to thei i ,M i ,S

origin. This implies that at a finite time x sx .i ,S i ,M

Remark 2. SeÕeral controllers haÕe been re-
ported in the literature under perfect assumption.
This is, the synchronization model is exactly known
( [ ] [ ])see for example 7 and references in 8 . The
aboÕe definition is general. It inÕolÕes open-loop as
well as closed-loop control schemes. NeÕertheless, it

[ ]has been remarked by Aguirre and Billings 8 that,
under control actions, the exact controller has the

( )following practical difficulties: i The model de-
scribing the system dynamics should be aÕailable in

( )order to compute the LyapunoÕ table and ii EÕen if
a model of the system were aÕailable, relatiÕely
small uncertainties andror disturbances could pro-
Õoke chaos in spite of the LyapunoÕ table indicates
that chaos has been suppressed. The latter difficulty
can be aÕoided by means of feedback control
schemes. HoweÕer, the designer of a feedback con-
troller can stumble with the difficulty related with

[ ]modeling errors 9 . For example, the problem of
the synchronization of two strictly different chaotic

oscillators requires control in spite of the differences
[ ]between master and slaÕe system 2 .

Lemma 3. Let x sx yx be the synchro-i i ,M i ,S
( )nization error. Assume that the system xs f x q˙

( ) ( n ( ) ( )g x u where xgR , ugR while f x and g x are
)known Õector fields represents the chaotic dynamic

of the synchronization error. In addition, suppose
( )that the system output measured state is ysCx,

where C is a Õector which can be chosen such that
ygR . Then, the trajectories exponentially con-
Õerges to zero only if the feedback control force has
perfect information of the dynamical system.

Proof. In seek of clarity and without lost of
generality, consider the following feedback control

w Ž . Ž .x Ž . Ž .u s yf x q V x;K rg x , where V x;K s
K T x means the desired dynamics to be induced by

Žthe controller. Then, the closed-loop system i.e., the
.synchronization error system under control actions

Ž . Ž . Tbecomes xsV x;K . Since V x;K sK x the˙
control coefficients K are chosen such that the poly-
nomial s r q K s ry1 q PPP qK s q K s 0 be1 ry1 r

Hurwitz. In this sense, such control constant repre-
sents the convergence rate. The above controller
would asymptotically steer the trajectories of the
synchronization error system to zero at finite time
t. I

It should be pointed out that the perfect controller
w Ž . Ž .x Ž .given by us yf x qV x;K rg x can be taken
Ž .into the form 1 . To this end, Taylor linearization

can be applied to the feedback. After that, Laplace
operator is used to get the resulting controller.

Fig. 1 shows dynamics of the synchronization
Žerror all states of the synchronization error system

.are Complete Exact Synchronized, CES . The master
and slave oscillators are represented by the Lorenz
equation. Note that the trajectories of the synchro-
nization error system is leaded to zero. The synchro-
nization was carry out by the following feedback:

w Ž . Ž .x Ž .us yf x qV x;K rg x . The controller was
Ž .activated at ts50 i.e., us0 for all t-50 . Note

that the such feedback have prior knowledge about
Ž . Ž .the nonlinear functions f x and g x . In conse-

quence, such controller is so-called ideal feedback
w x1 . The initial conditions of the slave system were

Ž . Ž .chosen as follows: x 0 s y1.0,0.0,0.5 . On theS
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Fig. 1. Complete Exact Synchronization. The dynamics of the synchronization error converges to zero.

other hand, the initial condition of the Master system
Ž . Ž .were chosen as: x 0 s 10.0,y10.0,10.0 . In thisM

case the desired dynamics was chosen linear and is
Ž .given by V x;K sK x qK x , The control con-1 1 2 2

stant values K sK s250.0. Note that the trajecto-1 2

ries of the synchronization error system converges
exponentially to zero. Nevertheless, Note that under

Ž .the perfect controller exact synchronization the
Žfeedback requires large parameters values high-gain

.feedback control .

3.2. Practical synchronization

Definition 4. It is said that two chaotic systems
are practically synchronized if the trajectories of the
synchronization error x sx yx , conÕerges toi i ,M i ,S

a neighborhood around the origin. This implies that
for all time tF t ) the trajectories of the slaÕe system
are close to the master trajectories, i.e., x fx .i ,S i ,M

Lemma 5. Let x sx yx be the synchro-i i ,M i ,S
( )nization error. Assume that the system xs f x q˙
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( ) ( n ( ) ( )g x u where xgR , ugR while f x and g x are
)uncertain Õector fields represents the chaotic dy-

namic of the synchronization error. In addition, sup-
( )pose that the system output measured state is ys

Cx, where C is a Õector which can be chosen such
( )that ygR . Then, the controller 1 yields the trajec-

tories of the synchronization error system to an
arbitrarily small neighborhood, which contains the
origin.

Proof. Defining the coordinates exchange zs
Ž . Ž . Ž .F x , the system xs f x qg x u can be rewrit-˙

w xten as follows 10 :

z sz ; is1,2, . . . ,ry1˙i iq1

z sa z ,Õ qg z ,Õ uŽ . Ž .ṙ

Õsz z ,Õ 2Ž . Ž .˙
where ngR nyr represents the unobservable states,
Ž . Ž .a z,n and g z,n are unknown nonlinear functions

Žand r is the relative degree i.e., the lowest order
time-derivative such that the control command is

.directly related with the output .
w x ŽFollowing the idea reported in 2 also see for

.high-order systems , one can construct a feedback
which yields chaos control against the unknown

Ž . Ž .functions a z,n and g z,n . In particular, if rs1
the feedback controller is given by the following
equations

ẑshquqLk zyzŽ .˙ ˆ ˆ1

ˆ 2hsL k zyzŽ .˙ ˆ2

)us hqK zyz 3Ž . Ž .ˆ ˆ
Žwhere zsygR represents the measured state sys-

.tem output of the synchronization error system, is a
estimated value of the system output, hgR providesˆ
an estimated value of the uncertainties. The unique

Žcontrol parameter is denoted by L which is positive
.defined and K , k and k are constant.1 2

Ž .Note that the controller 3 is linear, hence the
Laplace operator can be used for its transformation

Ž .to the equivalent form 1 . Thus, one has the follow-
ing equations

sz s sh s qu s qLk z s yz sŽ . Ž . Ž . Ž . Ž .ˆ ˆ ˆ1

2sh s sL k z s yz sŽ . Ž . Ž .ˆ ˆ2

u s sh s qK z s yz sŽ . Ž . Ž . Ž .ˆ ˆ

Then, by combining the above equations, the con-
Ž .troller 1 can be obtained. Finally, since the con-
Ž .troller 3 leads the trajectories of a chaotic system

w x Ž w x.around the origin 2 see also Appendix A in 3 ,
Ž .consequently the equivalent controller 1 leads the

chaotic trajectories of synchronization error system
around the origin. I

( )Remark 6. The controller 1 leads the trajecto-
ries of the synchronization error system around zero,
this implies that the master and salÕe are practically
synchronized, i.e., x fx . Perhaps seÕeral con-i ,S i ,M

trollers reported in literature can yield practical
synchronization. NeÕertheless, it has been preÕiously
reported that chaos can be controlled by means of

2 [ ] 2the PII feedback control 3 . In fact, the PII
feedback stabilizes the unstable periodic orbits
( ) 2UPO’s . In this sense, the PII controller conserÕes
the spirit of the most proposed control schemes. In
addition, under the PII 2 controller, an arbitrary
reference can be tracked. Notice that the Definition 4
implies the phase synchronization is locking, i.e., if
the trajectories of the slaÕe system are close of the

( )master, then their phases are similar see Fig. 2 .

Definition 7. It is said that two chaotic system
are completely synchronized if and only if all states
of both master and slaÕe systems are practically or
exactly synchronized.

Fig. 2 shows the dynamics of the synchronization
error for the case of the Complete Practical Synchro-

Ž .nization CPS of the Lorenz equation. The parame-
ters values of the master system were chosen as
follows: s s11.0, r s27 and b s2.57. TheM M M

slave parameters values were chosen as follows:
s s10.0, r s28.0 and b s8r3. The initial con-S S S

Ž . Žditions were chosen as follows: x 0 s 1.0,1.0,M
. Ž . Ž .10.0 and x 0 s y1.0,10.0y1.0 . The controllerS

Ž .was activated at t s 50 this is, for tF50, u s 0 .
The control parameter values were chosen as K sC

Ž .K s5.0. The controller 1 steers the trajectories ofe

the synchronization error around zero. This means
that the synchronization is not exact. The phase of
the synchronization error is locking. However, the
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Fig. 2. Complete Practical Synchronization. The dynamics of the synchronization error converges around the origin.

amplitude of the slave system is not the same than
the master. In fact, the difference between master
and slave does not display a regular behavior. In this
sense, the Definition 4 agrees with the previous

w xresults reported in 7 . Moreover, such definition
provides a geometrical notion of this kind of syn-

Ž .chronization see below .

3.3. Partial synchronization

Definition 8. It is said that two chaotic systems
are partially synchronized if, at least, one of the

states of the synchronization error system is either
practically or exactly synchronized and only if, at
least, one of the states of the synchronization error
system is neither practically nor exactly synchro-
nized.

Remark 9. Partial synchronization has been
found in seÕeral systems. In particular, partial syn-
chronization can be found in networks of identical

( )oscillators eÕen in the absence of noise . Indeed,
some results has been published where the open-loop
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[ ]partial synchronized has been studied 5 , which
contains the first eÕidence that the partial synchro-
nization is related with the bifurcation parameter of
the synchronization error system. NeÕertheless, the
definition of the partial synchronization is assumed.

Lemma 10. Let x sx yx be the synchro-i i ,M i ,S
( )nization error. Assume that the system xs f x q˙

( )g x u represents the chaotic dynamic of the synchro-
nization error. Suppose that the master model is

strictly different to the slaÕe model. Besides, con-
( )sider the feedback control 1 . Then, there exists a

control parameter Õalue such that both master and
slaÕe chaotic systems are partially synchronized.

Proof. The proof follows from the following fact:
As the control parameters increase, the controller
( )1 leads the trajectories to a neighborhood, which

( )contains the origin. This is, since the controller 1
( )was obtained from the feedback 3 and such con-

Fig. 3. Partial Practical Synchronization. The dynamics of, at least, one state of the synchronization error system is synchronous while, at
least, another one is not synchronous. The thin-line is the dynamics of the slave system.
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troller yields asymptotic conÕergence to a ball with
( y 1) ( [ ])radius rsO L for more details, see 1 . Hence,

as the control constants decrease as the complete
synchronization is lost. I

Remark 11. PII2 controller has been chosen due
to its simple structure. In fact it is a robust approach
to the perfect controller used in Lemma 3. Finally,
note that the partial synchronization cannot be
yielded by the ideal feedback due to it cancels the

( ) ( )nonlinearities f x and g x . In this sense, the PS
phenomena is induced by the robust features of the
feedback.

Fig. 3 shows the Partial Practical Synchronization
Ž .PPS . In this case, the Lorenz system was chosen as
the master system whereas the slave system is given

Žby the Chua oscillator i.e., the synchronization of
.two strictly different systems . The parameters val-

ues of the master system were chosen as follows:
ss10.0, r s 28.0 and b s 8r3. The slave
parameters values were chosen as follows: g s10.01

and g sy14.87, asy1.27 and bsy0.68. The2

initial conditions were arbitrarily chosen as follows:
x sx s0.074, x sx sy0.023 and x1,M 1,S 2,M 2 S 1,M

sx sy0.063. The controller was chosen as the1,S
Ž .feedback 1 and the control parameters values were

chosen as follows: t st s1.0, K sK s15.0.I II C e
ŽThe controller was activated at t s 50 i.e., us0

.for tF50 . In such case, the first state, x sx y1 1,M

x , has been synchronized. Note that the dynamics1,S
Ž .of the second state x sx yx and the third2 2,M 2,S

Ž .one x sx yx are not synchronous.3 3,M 3,S

Ž . Ž .Fig. 4. Geometrical interpretation of the synchronization phenomena. a The Complete Exact Synchronization. b The Complete Practical
Ž . Ž .Synchronization. c Only one state of the synchronization error system does not converge to zero. d The synchronization has been lost by

two states of the synchronization error system.
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A schematic representation of the geometrical
interpretation of the Exact Complete Synchronization
is illustrated in the Fig. 4.a. In such case the trajecto-
ries of the synchronization error converges to the
origin. The Fig. 4.b shows the geometrical interpreta-
tion of the Practical Complete synchronization, Here,
the synchronization error dynamics converges to a

Ž .ball represented by a sphere , which contains the
origin. On the other hand, Fig. 4c shows the

schematic interpretation of the Partial Practical Syn-
chronization. In this case, the trajectories are leaded
to a ball. The ball has been represented by a cylinder
Žif only one state of the error system is not synchro-

. Žnized or by a sheet if two states of the error system
.are not synchronized, see Fig. 4d . The idea behind

the interpretation is as follows: If the complete syn-
chronization is lost, then the ball is deformed in any
direction. Of course, it could be interesting to study

Fig. 5. Almost Practical Synchronization. One state of the synchronization error system is practically synchronized while the second slave
state has the same phase than the corresponding master state. Finally, the last one is not synchronous. The thin-line is the dynamics of the
slave system.



( )R. Femat, G. Solıs-PeralesrPhysics Letters A 262 1999 50–60´ 59

such deformation; however, such goal is beyond this
paper. Results in this direction are under study and
will be reported elsewhere.

3.4. Almost synchronization

Ž .The controller 1 is able to suppress the chaotic
behavior of the synchronization error system. In this
way the synchronization of both master and slave
system can be achieved. However, the control con-
stants, K , K , t and t , can be interpreted asC e I II

Žbifurcation parameters due to for different values of
such parameters one can found different dynamical

.behavior of the synchronization error system . This
is, if the control parameters change the synchroniza-
tion can be lost into some states of the slave system.
Even if the master and slave system are strictly

Ž .different, the controller 1 is able to carry out the
chaos synchronization. This is due to the controller
was designed in such way that, in spite of the model
errors, the controller can stabilize the synchroniza-
tion error trajectories around the origin.

Synchronization of nonlinear systems is a very
important and interesting problem, which is being
widely studied. On the contrary, asynchronous states

Žhave received less attention a few papers can be
w xfound in the literature, for instance see 11 and

.references therein . Nevertheless, such phenomenon
is very important and interesting. For example, in a
healthy piece of brain tissue, asynchronous states of

Žthe neurons which can be modeled as coupled non-
.linear oscillators can be characteristic of epileptic

w xactivity 11,12 . Here, it is shown, via numerical
simulations, that nonlinear systems can display syn-
chronous as well as asynchronous states.

Definition 12. It is said that two chaotic systems
are almost synchronized if and only if the both
master and slaÕe systems display oscillations with
the same phase and different amplitude.

Remark 13. Notice that the aboÕe definition does
not exclude neither almost partial synchronization
nor the almost complete synchronization. This is, in
principle, it is possible to find the Almost Partial

( )Synchronization APS . Indeed, the APS can be in-

( )duced by the controller 1 . Fig. 5 shows the syn-
chronization of the Lorenz system and the Chua
oscillator. The Lorenz system was chosen as master
whereas the Chua oscillator becomes the slaÕe sys-
tem. The parameter Õalues of the Lorenz system were
chosen as follows: ss10.0, r s 28.0 and b s
8r3. The parameter Õalues of the Chua oscillator
were selected as: g s10.0, g sy14.87, as1 2

y1.27 and bsy0.68. The initial conditions were
arbitrarily chosen as follows: x sx s0.074,1,M 1,S

x s x s y0.023 and x s x s y0.063.2 ,M 2 ,S 3,M 3.S

Note that the state x sx yx is practically1 1,M 1,S

synchronized while the state x sx yx is al-2 2 ,M 2 ,S

most synchronized and the state x sx yx is3 3,M 3,S

not synchronized.

4. Concluding remarks

In this Letter, we have analyzed the synchroniza-
tion phenomena. The synchronization phenomena

Ž . Ž .were characterized in five types: i Exact, ii Practi-
Ž . Ž . Ž .cal, iii Complete, iv Partial and v Almost syn-

chronization. To this end a feedback control structure
was used. The feedback structure holds the main
features of several chaos control schemes. In addi-
tion, in order to illustrate each synchronization type
numerical simulations were performed. Each kind of
synchronization has been previously reported. For
example, the practical synchronization has been re-

w x w xported in 2 and 13 . Or, for instance, it has been
proved that partial synchronization can be found
even in networks of identical nonlinear oscillators
w x5 .

However, this paper contains evidence of the
almost synchronization phenomenon. Moreover, the
characteristics of the synchronization phenomena
were established. In addition, the main differences
between the synchronization types were presented.
The Exact, the Practical, the Partial and the Com-
plete synchronization can be found if the master and
slave model have the same structure, we propose the

Žfollowing property which is under study and results
.in this direction will be reported as soon as possible .

Conjecture 14. The almost synchronization can
( )be found if and only if: i Both master and slaÕe
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systems are strictly different, i.e., both the master
( )and the slaÕe model are different, and ii The

control structure is based on feedback.

Finally, the results reported in this letter show that
it is possible to find that the combination of the
synchronization phenomena can be displayed by the
same system. Thus, the main factors are the control
parameters.
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