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Abstract

This paper presents an overview of the theory of upscaling hydraulic conductivity and describes two case studies
in which some of this theory has been applied. The representative hydraulic conductivity of a numerical model
block (‘block conductivity’ for short) is defined in terms of smaller scale hydraulic conductivities. Also, using
elementary examples, some general properties of block conductivities are given. Analytical solutions for the block
conductivity are presented that were derived by various authors for uniform flow conditions both in a deterministic
and in a stochastic setting. Some results of the hydraulic upscaling theory are illustrated by two case studies from
the Netherlands. The first case study deals with deriving the representative hydraulic conductivity tensor of a clay
layer. Upscaling results are compared with traditional harmonic averaging. In the second case study the upscaling
is used to derive the three-dimensional distribution of block conductivities for a numerical groundwater model of
a confining layer of complex deposits. Here stochastic upscaling is used together with a geostatistical simulation
approach. The simulated block conductivities are used in a numerical groundwater model and results are compared
with pumping tests. When the upscaling is ignored groundwater flow through the deposits is predicted wrongly.

Introduction

In geohydrological studies that involve complex envi-
ronmental questions scale inconsistency is very com-
mon. The scale at which transport and flow phenomena
in the porous media are best described is usually very
different from (i.e. larger than) the scale at which mea-
surements are available, but also very different from
(i.e. smaller than) the scale required for management
decisions. When focusing at the modelling of ground-
water flow and transport the following spatial scales
are often distinguished [2,8]:

1) the pore scale (10�6–10�2 m); the scale at
which flow and transport through porous media is
described in terms of forces and mass fluxes within
the fluid phase and the solid phase and between
these phases. Groundwater flow for instance is
described by the Navier-Stokes equations.

2) the core scale (10�1–100 m); the scale at which
flow and transport are described in terms of conti-
nuity equations and simplified flux equations such
as Darcy’s law and Fick’s law. The minimum scale

at which these simplified flux equations are valid is
called the representative elementary volume (REV)
[1]. This is exactly the scale at which measurements
of hydraulic properties are performed on samples
from drilling cores;

3) the model block scale (101–102 m); the scale of
blocks or elements of numerical flow and transport
models;

4) the local scale (102–103 m); the scale at which
groundwater flow and -transport is considered as
three-dimensional. Examples of local scale ground-
water problems are pollution and remediation stud-
ies around waste sites and the assessment of travel
time distributions in protection areas around drink-
ing water wells;

5) the regional scale (horizontal dimension 103–105

m); the scale at which the subsoil is divided into
permeable layers (aquifers) and less permeable
layers (aquitards). The groundwater flow through
aquifers is considered to be mainly horizontal and
the flow through the aquitards mainly vertical.
The lowering of water tables due to groundwa-
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ter abstraction is often modelled at this scale. The
assumption that the flow in aquifers is predom-
inantly horizontal is valid when the horizontal
extent of the model domain is much larger than
the vertical extent. This is usually the case for
large model areas (horizontal 103-105 m) in alluvial
and marine deposits (vertical extent of the model
domain 102 m).
It is possible to derive the simplified flux equa-

tions that are valid at the core scale from the differ-
ential equations that are valid at the pore scale. This
amounts to spatial averaging [38] or statistical averag-
ing [8] of the pore scale differential equations. Then
a so called ‘closure problem’ is solved to arrive at
simplified flux equations with representative param-
eters such as hydraulic conductivity and dispersivity
that are valid at the core scale. The pore scale pro-
cesses are thus captured by the representative param-
eters; i.e. the hydraulic conductivity in Darcy’s law
and the groundwater flow equation and the dispersivity
in Fick’s law and the convection-dispersion equation.
Such representative parameters are also encountered in
soil physics: the soil water retention curve and unsatu-
rated conductivity curve in Richards’ equation.

The pore scale is usually not considered in practi-
cal groundwater modelling studies. Instead, one direct-
ly starts with the simplified core scale equations and
the representative parameters are measured directly
on sediment cores. These equations are then used
to describe local scale and regional scale groundwa-
ter problems. However, hydraulic properties such as
hydraulic conductivity and dispersivity that are mea-
sured on sediment cores cannot be used to describe
flow and transport at larger scales. The reason for this is
that hydraulic properties usually exhibit a large spatial
heterogeneity [34]. Often this is not a serious problem
for regional scale problems.Modified two-dimensional
equations can be readily derived for these scales [14].
Representative hydraulic properties for this scale, such
as transmissivities, can be derived from large scale
pumping tests. Of course one still has to deal with
regional scale spatial heterogeneities but this rarely
involves scale transformations.

The real scale conflicts are encountered in local
scale groundwater problems, which are the focus of
this paper. To model the three-dimensional ground-
water flow through heterogeneous media a numeri-
cal groundwater model is required. The discretization
into blocks or elements that is required for numerical
modelling cannot be done at the core scale, because
this would result in a numerical model that is far

beyond the capacity of the current computers. Thus,
the blocks or elements of numerical groundwater mod-
els are generally much larger than the size of the core
scale elements (horizontal extent 100–1000 m). Apart
from inverse modelling procedures [6,25] there are few
measurement techniques that yield directly represen-
tative hydraulic properties for these model blocks (the
spatial extent of pumping tests is too large). Instead,
they need to be derived from measurements at the
core scale, i.e. from column experiments by means
of scale transformations. This derivation of representa-
tive hydraulic properties for a larger scale from smaller
scale hydraulic properties is called ‘upscaling’.

This paper only deals with the upscaling of saturat-
ed hydraulic conductivity. For local scale groundwater
problems the upscaling problem is then defined as:
‘Given that measurements of hydraulic conductivity
are available at the core scale, derive representative
hydraulic conductivities (block conductivities) for the
numerical model blocks’. The paper serves two goals:
1) to present a brief review of the upscaling theory that
has been used in geohydrology to obtain block con-
ductivities; 2) to illustrate the application of upscaling
theory by means of two cases studies.

The remainder of this paper is set up as follows:
First the block conductivity is defined in mathemati-
cal terms and its properties are discussed. Next, some
theoretical results for uniform flow are presented in a
deterministic and stochastic context. Finally, two case
studies are described where some of the upscaling the-
ory has been applied.

The theory of upscaling hydraulic conductivity

Definition of block conductivity
The block conductivity can be defined in several man-
ners. For instance, it can be derived as a representative
conductivity that arrives from volume averaging of the
groundwater flow equations, much in the same manner
as the core scale hydraulic conductivity is derived from
the pore scale equations. Usually, the block conductiv-
ity Kb(x

0

) is defined as the conductivity that relates
the average flux through a block of size V (with centre
point x

0

) to the mean head gradient within the block
[30]:

(1=V )
Z
V

q(x)dx = �Kb(x
0)(1=V )

Z
V

rh(x)dx

(1)
with q(x) and rh(x) are the flux and hydraulic head
gradient at the measurement scale respectively. A bold
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Figure 1. Boundary conditions used to calculate the block conductivity with equations (2).

face notation is used for the vectors x, q(x) andrh(x).
If Kb(x

0

) is unique and it exists it is called the block
conductivity tensor.

Some properties of the block conductivity
The block conductivity as previously defined has a
number of general properties.
1) The block conductivity is not equal to the arith-

metic average of the core scale conductivities. This
is immediately clear when one considers vertical
flow in a horizontally layered medium. The rep-
resentative conductivity then equals the harmonic
average (Eq. 7) of the layers and not the arithmetic
average.

2) The block conductivity is dependent on the flow
geometry. To demonstrate this, a simple numerical
example is given: Consider the two-dimensional
flow through a block that is made up of 64 (8 �

8) scalar conductivities. To calculate the four ele-
ments of the block conductivity tensor of the larger
block we need two sets of (equivalent) boundary
conditions (see Fig. 1). Using a numerical ground-
water model we can calculate for each of the sets
of boundary conditions of Figure 1: 1) the block
averaged fluxes in the x- and y-directions, hqxi and
hqyi; 2) the block averaged hydraulic gradients in
the x- and y-directions, h�h/�xi and h�h/�yi. The
brackets hi represent the block average. For each
set of boundary conditions we can express Darcy’s
law at the block scale:

hqx i
1
= �KBxxh�h=�x i

1
�KBxyh�h=�yi

1

(2a)

hqy i
1
= �KByx h�h=�x i

1
�KByyh�h=�yi

1

(2b)

hqx i
2
= �KBxx h�h=�x i

2
�KBxyh�h=�yi

2

(2c)

hqy i
2
= �KByx h�h=�x i

2
�KByy h�h=�yi

2

(2d)
The superscripts 1,2 stand for the first and second
set of boundary conditions respectively.From these
equations the four unknown elements of the block
conductivity tensor KBij (i,j = xy) can be uniquely
solved. This procedure can be repeated for dif-
ferent values of h1 in Figure 1, thereby changing
the boundary conditions around the blocks. The
results are shown in Figure 2. Clearly, the elements
of the block conductivity tensor change with the
boundary conditions. This may have serious reper-
cussions for inverse modelling. Suppose that block
conductivities are obtained from calibration of a
groundwater model to head measurements under
natural flow conditions. These block conductivities
are not necessarily suitable to predict the effects of
for instance pumping wells where the flow geome-
try is very different. This may limit the predictive
power of calibrated groundwater models.
From the numerical experiment of Figure 1 two
additional properties of block conductivity can be
derived:

3) The block conductivity can be a tensor even if the
core scale conductivities are scalars.

4) The block conductivity tensor is not necessarily
symmetric, even if the conductivity tensor at the
measurement scale is symmetric or a scalar. This
was shown in a more rigorous manner by Zijl and
Stam [40].
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Figure 2. Relation between the components of the block conductivity
tensor and the value of h1.

The dependence of the block conductivity to
boundary conditions can be shown in a more rigorous
manner. For this we express the variables q(x), rh(x)
and k(x) in Darcy’s law as a perturbation around their
block averages: q(x) = hqi + q’(x), rh(x) = hrhi +
rh’(x) and k(x) = hki + k’(x), where hqi, hrhi and
hki are the block averages and q’(x), rh’(x) and k’(x)
the deviations around this block average within the
block. Substitution in Darcy’s law and averaging both
sides for the block gives

hhqi+q0(x)i = h� (hki+k0(x))(hrhi+rh0(x))i
(3)

Expanding equation (3) and using hq’(x)i =
hrh’(x)i = hk’(x)i = 0 gives

hqi = �hkihrhi � hk0(x)rh0(x)i (4)

We can see that the block averaged Darcy’s law is
made up of a term consisting of block averages and
a closure term. This closure term essentially accounts
for the block-averaged covariation of rh(x) and k(x).
If we want to write (4)in the same form as the original
Darcy’s law it is necessary to assume that the clo-
sure term has the following form: hk0(x)rh0(x)i �
K0hrhi; where K0 is some kind of block-effective
conductivity accounting for the deviations from the
average. It follows that

hqi = �(hki+K0)hrhi = �Kbhrhi (5)

Equation (5) is Darcy’s Law defined at the block
scale with Kb the block conductivity. However from
equations (4) and (5) we can see that for Kb the fol-
lowing relation holds:

Kbhrhi = hkihrhi+ hk0(x)rh0(x)i (6)

It is obvious from equation (6) that Kb is still depen-
dent on the closure term hk’(x)rh’(x)iwhich is depen-
dent on the solution at the core scale. As the solution
at the core scale is dependent on the boundary condi-
tions around the block (i.e. the flow geometry) so is
the block conductivity.

Direct and indirect upscaling methods
Upscaling methods that derive block conductivities
from Darcy’s law can be divided into indirect or deter-
ministic upscaling methods and direct or stochastic
upscaling methods. When indirect upscaling is used
the conductivity field within the block must first be
defined at a smaller scale, either by deterministic map-
ping or by stochastic simulation. Next, the upscaling
is performed to obtain the conductivity tensors for the
model blocks. The scale transformation is a determin-
istic averaging procedure of the mapped or simulated
conductivities within the block, for instance taking the
geometric average (Eq. 8) in two dimensions. There-
fore, indirect upscaling methods are also referred to as
deterministic. With direct upscaling methods first the
spatial probability distribution statistics of the block
conductivity tensors are derived from the statistical
properties of the smaller scale conductivities, which
are assumed to constitute a random field. Next, the
block conductivities are generated directly by stochas-
tic simulation from the derived probability distribution.
Because the scale transformation involves scaling up
of probability distributions, direct upscaling methods
are termed stochastic.

Some theoretical results from deterministic upscaling
If we assume that 1) the flow through the block is more
or less uniform (i.e. slowly varying non-diverging flow
lines) and 2) the core scale conductivities are isotropic
(at one point in space the core scale conductivity has the
same value in all directions, i.e. it is a scalar) then the
block conductivity is a scalar and is given by (Kb(x0) is
the block conductivity for a block V with centre point
x0 and k(x) the core scale conductivity):
1) for one-dimensional flow: the harmonic block aver-

age [9]:

Kb(x
0) = f(1=V )

Z
V

[k(x)]�1
dxg�1 (7)

2) for two-dimensional flow and square blocks: the
geometric block average [10]:

Kb(x
0) = expf(1=V )

Z
V

ln[k(x)]dxg (8)
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3) for three-dimensional flow and cubic blocks: up
to recently no analytical results were available for
this case. Desbarats [11] found by means of a sim-
ulation study the following result that is consistent
with results from stochastic theory [17]:

Kb(x
0) = f(1=V )

Z
V

[k(x)]1=3
dxg3 (9)

Recently Sánchez-Vila et al. [32] have derived this
result analytically.
Deterministic upscaling methods that are valid for

anisotropic media and non-cubic blocks are, among
others, given by Kasap and Lake [23] and Desbarats
[11] for uniform flow and by King [24], Desbarats
[12], Zijl and Stam [40] and Bierkens and Weerts [4]
for various other flow geometries. Kasap and Lake [23]
present analytical results, Desbarats [11,12] heuristic
power averaging methods and King [24] and Bierkens
and Weerts [4] a numerical upscaling procedure. The
only analytical solutions for non-uniform flow that are
not non-local (i.e. involve no integration outside the
model block) are given by Zijl and Stam [40]. How-
ever, these solutions are only valid for thin blocks and
(imperfectly) layered anisotropic media where the lay-
ering is parallel to the block sides. Moreover, to apply
these solutions the boundary fluxes and heads of the
model blocks must be known, which means the core
scale problem must be solved. This makes the practi-
cal application of their method problematic, because
the reason that upscaling is necessary in the first place
is that numerical models at the core scale cannot be
solved even with the largest computers.

Some theoretical results from stochastic upscaling
When stochastic upscaling methods are used to derive
block conductivities the heterogeneous spatial varia-
tion of core scale conductivities is usually modelled
as a random field. Because the natural logarithm of
the core scale conductivity ln[k] is often found to
be Gaussian distributed [15], one usually models the
logconductivity y(x) = ln[k(x)] as a stationary multi-
variate Gaussian random field Y(x), which can then
be described with the mean E[Y(x)] (E[] stands for
mathematical expectation) and the covariance function
CY(h), where x is a space vector and h is a separa-
tion vector between two locations in space. Natural-
ly, because the core scale hydraulic conductivities are
stochastic, so are the block conductivities.

Analytical solutions of the stochastic block conduc-
tivity are available given the following conditions: 1)
the core scale logconductivities are scalar fields y(x) =

ln[k(x)] (i.e. isotropic core scale conductivities); 2) the
core scale logconductivity is modelled as a stationary
multiGausian random field Y(x) with geometric mean
Kg = exp(E[ln(K)]) and variance �

2
Y ; 3) the random

field Y(x) is statistically isotropic (i.e. the covariance
function of core scale logconductivity is the same in
all directions); 4) the flow field is statistically uniform
(i.e. E[rh(x)] = E[rh] = constant) or is at least slowly
varying compared to the size of the flow domain; 5)
the block size is very large compared to the correlation
length of the core scale logconductivity; the correlation
length is the distance over which the random field vari-
ables at two different locations remain correlated. Due
to the last condition one can argue that the variances of
the block conductivities are almost zero. So the block
conductivities become deterministic constants that are
equal to the medium effective conductivity (the repre-
sentative conductivity of the entire porous medium).
Conditions 1) and 3) entail that these constants are
scalars and conditions 2) and 4) that they are the same
for every block in the flow domain:
1) one-dimensional flow [27]:

Kb(x
0) = Kg exp(��2

Y =2) (10)

2) two-dimensional flow [7,27]:

Kb(x
0) = Kg (11)

3) three-dimensional flow and assuming that �2
y is not

too large (�2
y h 1) [17]:

Kb(x
0) = Kg exp(1 + �

2
Y =6) (12)

Equation (11) can be useful in regional scale model
studies. If for an aquifer a number of transmissivities
are known from pumping tests and the model blocks are
very large compared to the correlation length, but small
enough to have approximately uniform flow through
them equation (11) can be readily used. The block
conductivity can be estimated by taking the geometric
average of the transmissivities obtained from pump-
ing tests. Equation (12) is not much use for three-
dimensional modelling because most sediments show
sedimentary layering so that statistical isotropy is not
likely to occur.

If the block sizes are not large compared to the cor-
relation length, the block conductivities are stochas-
tic and constitute a random field. Several researchers
derived analytical solutions for the expected value
E[Yb(x)], the variance �

2
Y b and/or the covariance

CY b(h) for the random field Yb(x) = ln[Kb(x)] sub-
ject to above conditions 1) to 4). Indelman [18] shows

frespf19.tex; 13/02/1998; 17:15; v.6; p.5



198

that Yb(x) is approximately Gaussian distributed. If we
also assume multiGaussianity for Yb(x) these upscaled
statistics are thus sufficient to generate block conduc-
tivity fields by means of stochastic simulation. For
statistically isotropic media and square blocks the ana-
lytical results of Rubin and Gómez-Hernández [30] and
Desbarats [10] can be used.For statistically anisotropic
media and blocks of arbitrary form the results of Indel-
man and Dagan [19,20] are available. Their method
was used in the case studies shown later. A rigorous
comparison of the aforementioned stochastic upscaling
methods is given by Sánchez-Vila et al. [32].

For non-uniform flow conditions no analytical solu-
tions for the statistics of the block conductivities are
available. Bierkens [2] showed that the uniform flow
solution (11) gave satisfactory results for highly non-
uniform flow in two dimensions, even for blocks that
were only slightly larger than the integral scale of
core scale conductivities. Results were even better
when taking exponentials of block estimates that were
obtained from block-kriging logconductivities from a
limited number of measurement points. It must be
stressed that these are only heuristic approaches and
should be used with care. Also, block-kriging of log-
conductivities can only be used when the observations
are on a regular grid such that no differences in smooth-
ness of the block conductivity field occur.

Case studies

To illustrate the use of upscaling techniques in practice,
two case studies are presented. The first case study [36]
involves a straight forward application of the upscaling
theory of Indelman and Dagan [19,20]. In the second
case study [2] the upscaling theory of Indelman and
Dagan [19,20] is applied to characterize the conduc-
tivity spatial structure of highly complex deposits.

Case 1: Geohydrological research Purmerbos
The goal of the research that is described in this case
study was to characterize the geohydrological structure
of the confining layer of the Purmerbos forrest area. A
confining layer is a set of (often horizontally layered)
Holocene deposits that cover most of the aquifers in
the marine and fluvial district of the Netherlands. They
protect the groundwater in the aquifers from pollution
from the surface. The geohydrology of the confining
layer of the Purmerbos forrest area had to be deter-

mined as part of a water balance study of this area
[36].

The confining layer of the Purmerbos area has a
rather simple architecture. It consists of three dis-
tinct sublayers. A clay and peat layer at the bottom,
a sandy layer in the middle and a clay layer at the
top. One expects the flow through the top and bot-
tom sublayers to be mainly vertical, while the flow
through the sandy layer in between may be horizontal,
for instance near water courses. The vertical resistance
to flow is usually expressed in terms of a C-value [T]
which is the thickness of the layer divided by its ver-
tical hydraulic conductivity. The horizontal flow con-
ductance is expressed in terms of the transmissivity
[L2T�1], which is the product of the horizontal con-
ductivity and the layer thickness. Using pumping tests
[26], the transmissivity of the sandy sublayer and the
aquifer were determined as well as the C-value of the
lower sublayer.

The C-value of the upper sublayer could not be
derived from pumping tests. It should have been
derived from the pumping test that was performed to
obtain the transmissivity of the middle sublayer. How-
ever, the duration of this test was too short to properly
estimate this C-value. Therefore, to obtain an esti-
mate of this C-value sets of three undisturbed samples
were taken at randomly selected depths of 21 drillings
whose coordinates were also selected at random. This
resulted in a total of 63 samples (sample length 30
cm, sample diameter 5.7 cm). Hydraulic conductivi-
ties of the samples were measured using a permeameter
specifically designed to measure saturated conductiv-
ity on sediment cores [39]. To arrive at a C-value for
the entire upper sublayer we need the average thick-
ness of this layer as well as the representative vertical
hydraulic conductivity of this layer. This means that
we are faced with an upscaling problem: Given that
measurements are taken at the core scale, what is a
representative vertical hydraulic conductivity for the
entire upper sublayer. Two methods were used. A tra-
ditional method and the upscaling method of Indelman
and Dagan [19,20].

Traditional averaging
The traditional way of deriving the C-value from sam-
ples is to first derive a C-value for each drilling by
means of harmonic averaging of the conductivities of
this drilling and then to calculate the C-value of the
entire layer by harmonic averaging of the C-values of
all drillings. These averaging rules, which assume the
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flow through the layer to be strictly vertical, are directly
derived from the analogy of resistor networks in elec-
tricity. The C-value at a drilling site is thus obtained
as:

Ci =
di

mi

miX
j=1

1
kij

(13)

where kij is the measured vertical conductivity of the
jth sample in ith drilling, di is the thickness of the layer
at drilling i, Ci the resulting c-value and mi the number
of samples in drilling i (here mi = 3). Next the C-value
of the entire layer follows from:

C =

"
1
n

nX
i=1

1
Ci

#
�1

(14)

with n the number of drillings (n=21). The result of
this averaging procedure is a representative C-value of
the upper clay layer of 973 days.

Stochastic upscaling
The upscaling method of Indelman and Dagan [19,20]
assumes that the flow through the layer is statistically
uniform; i.e. the average flow is uniform. The average
uniform flow does not have to vertical but can cross
the layer at any angle. Furthermore, the method not
only yields a vertical representative conductivity of the
layer but also a horizontal representative conductivity.
Also, because it is a stochastic upscaling method it not
only estimates the block conductivities but also their
confidence limits. The core scale logconductivy y =
ln[k] is assumed scalar and modelled as a stationary
multivariate Gaussian random field Y(x). The spatial
covariance can be anisotropic. It is assumed that the
principal directions of anisotropy are aligned with the
coordinate system. This random field is characterized
by the following parameters:

– geometric mean: Kg = exp(E[ln(k)]),
– variance �2

Y of the logconductivity,
– integral scales. Like the correlation length, the inte-

gral scales are correlation measures in the princi-
pal directions of anisotropy. The larger the integral
scale the larger the distance over which logconduc-
tivities remain spatially correlated in that direction.
We assumed that the integral scales in all horizontal
directions are the same and larger than the integral
scale in the vertical direction. We therefore need
only two integral scales:
IY h: the horizontal integral scale,
IY v: the vertical integral scale.

From the histogram of logconductivities it was
derived that Kg = 0.00329 m/d and �

2
Y = 0.869. To

determine the integral scales the semivariograms of
logconductivity in the horizontal and vertical direction
were estimated from the data [21]. Next, the exponen-
tial variogram model (h) = a(1-exp[h/I]) was fitted to
the experimental semivariograms. The fitted parame-
ters I were then taken as estimates of the integral scales
[2]. This resulted in a horizontal integral scale of 27.5
m and a vertical integral scale of 4.3 m. Plots of the
experimental semivariograms as well as the fitted func-
tion in the two directions are given in Figure 3. The
experimental semivariogram in the vertical direction
suggest non-stationarity, as no sill is reached. Unfor-
tunately, there are no tractable stochastic upscaling
methods that can handle trends in core scale logcon-
ductivity, so we decided to go ahead based on the model
decision that the core scale logconductivities constitute
a stationary random field.

Above statistics are sufficient to calculate the hor-
izontal and vertical block conductivity of rectangular
blocks with the upscaling method of Indelman and
Dagan [19,20]. For a step by step description of the
upscaling procedure one is referred to Bierkens [2]. As
representative conductivities were sought for the entire
upper sublayer the block conductivities were calculat-
ed for a block of size 750 � 750 � 2.8m, where 750
� 750m are the horizontal dimensions of the research
area and 2.8 m the average depth of the upper sublayer.
The upscaling procedure resulted in a mean horizontal
block conductivity of 0.00438 m/d (with 95% confi-
dence interval of 0.00369, 0.00519 m/d) and a mean
vertical block conductivity of 0.00254 m/d (with 95%
confidence interval of 0.00214, 0.00298 m/d. The C-
value follows from the ratio of the average thickness
(2.8 m) and the mean vertical block conductivity. This
yielded a mean C-value of 1111 days with a 95% con-
fidence interval of 914, 1313 days. This shows that the
C-value that followed from the upscaling of Indelman
and Dagan [19,20] did not significantly differ from the
C-value obtained from the traditional method. This is
not surprising, because in horizontally layered sedi-
ments and (on average) vertical head gradients we can
expect almost strictly vertical flow.

Case 2: Modelling groundwater flow through a
complex confining layer
Confining layers with a simple architecture such as the
Purmerbos case are rare. More often they have a very
complex architecture, especially in the Western Fluvial
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Figure 3. Semivariograms of logconductivity at the core scale; A) horizontal direction; B) vertical direction (number are number of sample
pairs per lag).

District of the Netherlands. To analyze the protective
properties of these complex confining layers it is not
sufficient to partition them into sublayers of predom-
inantly horizontal and vertical flow. Instead the local
scale problem has to be solved in three dimensions in
very fine detail. This implies that numerical ground-
water models must be used with very small blocks
or elements: vertical dimension of a few metres and
horizontal dimensions of not more than 100 m. Pump-
ing tests are usually too large to obtain representative
parameters for these model blocks or elements. They
must therefore be obtained from upscaling of conduc-
tivity measurements on sediment cores. This means
that the upscaling problem plays a central role when
modelling the local scale groundwater flow through
complex confining layers.

The goal of the case study performed in the Schel-
luinen study area (Figure 6) was to test the practical
feasibility and necessity of upscaling methods in local
scale groundwater problems [2]. In other words, to
investigate whether it is indeed possible to obtain the
representative conductivities for all the blocks of a
numerical model of a heterogeneous porous medium
and to verify if it is indeed necessary to upscale the
hydraulic conductivity from core scale measurements
to model blocks.

Figure 4 shows a surficial geological map of the
Schelluinen area. It also shows the location of two
geological cross-sections of the confining layer that
were taken by drilling 110 boreholes at 20 m inter-
vals and sampling the texture of the sediments every
10 cm. Figure 5 shows the interpreted cross-sections.

These cross-sections show that the architecture of the
confining layer is indeed very complex. The subsoil,
which forms the upper aquifer, consists of eolian and
fluvial deposits from the last ice-age. The confining
layer itself is built up of deposits of three river systems
alternated by layers of peat. To model the local scale
groundwater flow through these deposits one needs a
three-dimensional numerical groundwater model with
small model blocks. In this case we used model blocks
of 20 � 20 � 0.5 m.

To infer a three-dimensional model of block
hydraulic conductivities of the confining layer the fol-
lowing steps were taken:
1) classify the borehole data to appropriate texture

classes that can be easily identified in the field;
2) take, for each texture class, undisturbed core sam-

ples and use laboratory measurements to determine
the multivariate Gaussian distributions of logcon-
ductivity at the core scale;

3) use geological maps and the classified texture
class data at the borehole sites to simulate three-
dimensional stochastic images of texture classes at
the model block scale. Model blocks of 20� 20 �
0.5 m are used. A model block is thought to consist
of a single texture class. The stochastic images are
obtained by means of conditional multiple indica-
tor simulation;

4) use the statistical upscaling method of Indelman
and Dagan [19,20] to derive the statistics of the
multivariate distribution of the hydraulic conduc-
tivity tensors at the model block scale from the
multivariate distribution at the core scale. This is
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Figure 4. A map of superficial geology of the Schelluinen study
area; the lines marked (a) and (b) are cross-sections referred to in
the text (adapted from Weerts and Bierkens, 1993).

done separately for each texture class. The logcon-
ductivity tensor at the model block scale is approx-
imately Gaussian distributed [18];

5) use a multivariate Gaussian approach to direct-
ly simulate block conductivity tensors with the
parameters resulting from the Indelman and Dagan
upscaling approach. Again this is done separately
for each texture class;

6) assemble the block model of the confining layer by
assigning to each block a block conductivity tensor
from the particular simulated field corresponding
to its simulated texture class.
Once the block model of the confining layer was

inferred we used the results of step 6 together with a
numerical groundwater model to derive the groundwa-
ter heads and fluxes at the local scale and representative
hydraulic properties at the regional scale.

We will not describe these steps in detail as they
are described extensively in Bierkens [2,3]. Instead, the
most important results of the various steps are summa-
rized.

Steps 1 and 2
A total of 313 undisturbed samples were taken from
different types of sediments in the study area and in two
additional areas in the fluvial district. Samples from
sandy sediments were 30 cm long and had a diameter
of 7 cm. Samples from clayey and peaty sediments
were 5 cm long with a diameter of 5 cm. The 313 sam-
ples were assigned to eight so called ‘texture classes’
which were distinguished on the basis of differences
in geogenesis, lithology and organic matter content.
Hydraulic conductivity of the samples was measured
using a permeameter [2,39]. For each texture class
the natural logarithm of the core scale hydraulic con-
ductivity was assumed to be a scalar and modelled as
a stationary multivariate Gaussian random field with
equal integral scales in the horizontal direction and a
different (smaller) integral scale in the vertical direc-
tion. In the same way as described for the first case
study, the statistics of the random fields of each of the
texture classes were estimated from histograms and
estimated variograms. Table 1 gives a summary of all
of the statistics that were inferred (or assumed) for the
core scale conductivities of each texture class.

Step 3
In the Schelluinen study area a total of 229 drillings
were made (110 of these in the cross-sections of Figure
5). Texture classes were determined for every 10 cm
but generalized to depth intervals of 50 cm. A 50 cm
interval of a drilling was assumed to be representative
for a 20 � 20 � 0.5 m block around it. Using a tech-
nique called ‘indicator simulation’ [16,22] stochas-
tic images (realizations) were generated of the three-
dimensional texture class distribution of the confining
layer at the scale of the model blocks (see Bierkens
and Weerts [4] for an elaborate description of the sim-
ulation method). The simulation procedure is such that
the stochastic images reflect the texture classes found
at the drilling sites as well as the probability of texture
class occurrence and the spatial connectivity proper-
ties of the texture classes. Figure 6 shows the results
for one realization. Figures 6A and 6B show the same
cross-sections as Figure 5, while Figure 6C shows a
horizontal cut of the realization at a depth of 2.5 m
below the surface.
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Table 1. Statistics of multivariate probability distribution functions of core
scale ln(k); values between brackets are assumed; N number of samples, E[]
statistical expectation, � variance, Iyh and Iyv horizontal and vertical integral
scale; (k in md�1).

Class N E[ln(k)] �
2
y Iyh (m) Iyv (m)

1) Fluvial medium

to coarse sand 118 2.741 0.660 6.25 3.75

2) Eolian medium

to coarse sand 35 2.751 0.0638 1.00 0.35

3) Fine and

loamy sand 8 0.603 1.756 (0.70)a) (0.10)a)

4) Sandy to

silty clay 23 -4.973 3.490 0.70 0.10

5) Clay and

humic clay 40 -6.625 2.496 0.30 0.10

6) Peat 19 -1.991 1.701 0.10 (0.10)b)

7) Compacted

peat 27 -4.100 2.177 0.15 0.10c)

8) Unsaturated

samplesd) 43 -4.793 7.735 � �

a) Assumed the same values as for sandy to silty clay (class 4)
b) Assumed the same as for the class compacted peat
c) Sill reached within 0.10 meter (sample length) and set to 0.10 m
d) Assumed to be a pure nugget process Keff = e�4:793 (1 + 7.735/6) =
0.0190 md�1

Step 4
With the statistical parameters of the random fields
of core scale hydraulic conductivities (Table 1) the
statistical parameters of the random fields of block
scale hydraulic conductivities can be derived with the
upscaling method of Indelman and Dagan [19,20].This
was done separately for each texture class for blocks of
20 � 20 � 0.5 m. The statistics of the block scale ran-
dom fields are given in Table 2. We see that, although
the core scale hydraulic conductivities were assumed
scalar their anisotropic spatial covariance structure
resulted in different mean block conductivities in the
horizontal and in the vertical directions.

Steps 5 and 6
A single realization of block conductivities for the con-
fining layer is now built by first simulating a realization
of block conductivity tensors for each texture class
separately (assuming multivariate logGaussian block
conductivities and using the statistics of Table 2) and
then combine these with a realization of texture class-
es (from step 3). This is achieved by assigning to each
block a block conductivity tensor from the particular
simulated field corresponding to its simulated texture
class.

One of the realizations of block conductivities was
used as input for a steady state numerical groundwater
model (modelcode by McDonald and Harbaugh [20]).
The groundwater model was calibrated to the natural
flow situation by adjustment of the areal groundwater
recharge and the drainage resistance of the water cours-
es. For the calibration the yearly averaged heads of
12 piezometers (monitoring screens at various depths)
were used. With the calibrated groundwater model the
head distribution of confining layer and fluxes through
the confining layer were calculated for the situation
with a pumping well just north of the study area. By
dividing the average difference between the ground-
water table and the hydraulic head in the aquifer by the
total flux through the confining layer we obtained an
estimate of the C-value of the entire confining layer in
the study area (this a regional scale hydraulic property).
This resulted in a C-value of 1350 days. A second real-
ization of block scale hydraulic conductivities yielded
a C-value of 1310 days. These results were compared
to the C-values obtained from three pumping tests that
were performed at three different locations in a similar
area twenty kilometres north of the study area [35].
These C-values were: test 1: 1400–1700 days; test
2: 800–1200 days; test 3: 1600–1900 days. It shows
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Figure 5. Cross-sections showing the deposits of the confining layer in the Schelluinen study area; A) (a) in Figure 4; B) (b) in Figure 4 (adapted
from Weerts and Bierkens, 1993).

that these pumping test results were nicely compatible
with the modelling results. Although it was impossible
to validate the upscaling itself, at least the resulting
regional scale hydraulic resistance was in accordance
with that obtained from pumping tests.

Another regional scale property that is important
for groundwater protection is the travel time distribu-
tion. For a net infiltration case, we can derive from
this distribution the probability that a dissolved pollu-
tant, released anywhere in a ditch or near the phreatic
surface, takes a certain time to reach the underlying

aquifer, of course only taking account of advection and
disregarding dispersion and diffusion. The travel time
distribution of flow through the confining layer is there-
fore ‘a time to disaster’ distribution. After assigning
effective porosities to the model blocks, we can cal-
culate the travel time distribution with a particle track
program [29]. The effective porosity, defined as the
volume fraction water that contributes to the ground-
water flow, was also measured on the 313 samples for
each texture class [2]. Figure 7A shows on a loga-
rithmic scale the travel time distributions as calculated
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Figure 6. Realization of texture classes for the Schelluinen study area; A) cross-section (a) of Figure 4; B) cross-section (b) of Figure 4; C)
horizontal cut at 5 m below the surface.
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Table 2. Multivariate distribution statistics of hydraulic properties at the block
scale (KB in md�1).

Class E[ln(Kbh)]E[ln(Kbv ) �
2
Y b

IY bh IY bv

(m) (m)

1) Fluvial medium

to coarse sand 2.840 2.770 0.166 15.26 6.24

2) Eolian medium

to coarse sand 2.770 2.743 0.000791 10.69 0.76

3) Fine and

loamy sand 1.136 -0.175 0.00685 10.51 0.35

4) Sandy to

silty clay -4.099 -6.440 0.0136 10.51 0.35

5) Clay and

humic clay -6.042 -7.037 0.00200 10.10 0.35

6) Peat -1.741 -1.741 0.000340 7.22 0.40

7) Compacted peat -3.704 -3.990 0.000435 9.00 0.35

with the groundwater model and the particle track pro-
gram for the two realizations of block hydraulic prop-
erties. As can be seen travels times varied enormously;
between 310 days and 50000 years. It should be noted
that the effective porosities of the clayey samples were
only approximate, so that the maximum travel times
may well be smaller or larger by a factor 2.

An important question is whether all the effort
involved in upscaling the core scale hydraulic conduc-
tivities to hydraulic conductivities at the block scale is
necessary to obtain an accurate representation of the
local groundwater flow and the regional scale hydraulic
properties. We tested this by assigning to the model
blocks of the first realization for each texture class the
scalar hydraulic conductivity Kg(1 + �

2
y /6) as calculat-

ed from the multivariate distributions at the core scale
(Table 1). This expression gives the small perturba-
tion form of the effective conductivity for Gaussian
and isotropic y=ln(k) and uniform flow [17]. When
the model was run with these conductivities, while
all other parameters remained the same, a C-value of
320 days was obtained! This is clearly much small-
er than the C-value of the original model (1350 days)
and not at all comparable to the pumping test results
performed north of the study area [35]. In Figure 7B
the travel time distribution is given for this run. On
average, the travel times were underestimated. Clear-
ly, upscaling of core scale hydraulic conductivities to
model block scale hydraulic conductivities, or obtain-
ing block conductivities in some other manner, was
necessary to obtain meaningful results. This is a gen-
eral result for these types of deposits. The combination

of a large variance and a large statistical anisotropy
of core scale hydraulic conductivities of the texture
classes fine sand and loamy sand and sandy to silty
clay, which is caused by an alternation of thin hor-
izontal layers of very different conductivity in these
sediments, results in small vertical hydraulic conduc-
tivities at the model block scale. These in turn result in
a larger C-value and larger travel times.

Conclusions

This paper has shown that particularly for the mod-
elling of local scale groundwater flow in heterogeneous
formations the upscaling of hydraulic conductivities is
a crucial step. One could make a similar case for the
modelling of advective and dispersive transport [33]
or unsaturated flow [13,31].

Upscaling of hydraulic conductivity should be such
that the calculated mass transfer (e.g fluxes) and change
of momentum (e.g. head gradient) are the same at the
smaller and the larger scale. The result of this require-
ment is that block conductivities are dependent on the
geometry of the groundwater flow problem, as was
shown by a simple numerical example. This implies
that the predictive value of calibrated models may be
limited to certain flow geometries that resemble the
geometry of the flow field that occurred during the
calibration. This problem is probably not limited to
hydraulic conductivity and groundwater flow but may
occur in general when upscaling parameters of (dis-
tributed) mass-conserving models.
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Figure 7. Travel time distributions (travel times in log(days)); A) using block conductivities; B) when core scale conductivities are used.

Analytical solutions for the upscaled hydraulic con-
ductivity are available in both a deterministic and a
stochastic setting, but only in a practical form for uni-
form flow. However, in practice these uniform flow
solutions can give satisfactory results for non-uniform
geometries, provided that the flow is slowly varying
compared to the extent of the modelling domain and
the model blocks.

The upscaling method of Indelman and Dagan
[19,20] was applied in two case studies. The first case
study showed that for horizontally layered deposits
and vertical flow the upscaling method of Indelman
and Dagan [19,20] yields similar results as the tradi-
tional method based on harmonic averaging. The sec-
ond case study indicated that the statistical upscaling
procedure of Indelman and Dagan [19,20] can be suc-
cessfully applied in highly complex deposits. When
the local scale groundwater flow was modelled with
the upscaled blockconductivities, realistic values of
regional scale hydraulic properties such as C-values
(hydraulic resistance) could be derived which were
consistent with those obtained from pumping tests.
This case study also showed that it is absolutely neces-
sary to obtain correct estimates of block scale hydraulic
conductivities when numerically modelling ground-
water flow through complex deposits. If upscaling is
neglected the C-value and the travel time distribution
of the confining layer will be underestimated.
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