

Geoderma 64 (1994) 93-110

GEODERMA

Analysing problems in describing field and laboratory measured soil hydraulic properties¹

G. Wessolek^a, R. Plagge^a, F.J. Leij^b, M.Th. van Genuchten^b

*Institut fur Okologie, FG Bodenkunde, Technische Universitat Berlin, D-10587 Berlin, Germany ^hUS Salinity Laboratory, USDA, ARS, Riverside, CA 92501, USA

(Received January 27, 1993, accepted after revision December 22, 1993)

Abstract

Accurate in situ determination of unsaturated soil hydraulic properties is often not feasible because of natural variability of most field soils, and because of instrumental limitations. Therefore the soil hydraulic properties are often measured in the laboratory, or derived by computer models using simple standard laboratory methods.

This paper analyses problems in describing field hydraulic properties of a Ap horizon of a silty loam, basing on data from different laboratory methods (1) A standard pressure plate apparatus and (11) a constant-head permeameter were used to measure the static retention characteristics and the saturated hydraulic conductivity independently (111) An instantaneous profile method was applied to measure water retention and conductivity simultanously Relatively new technics involving ''undisturbed'' soil samples instrumented with mini tensiometers and Time Domain Reflectometry (TDR) mini probes characterise the experiment. The models by Mualem and van Genuchten (MvG) were used to describe the soil hydraulic functions. The different laboratory results were then compared with the hydraulic field properties measured in instantaneous profile manner.

The laboratory method allows a high spatial and temporal resolution, this facilitates an investigation of some of the assumptions made, when fitting the MvG models to hydraulic data A reasonably good description of the hydraulic data was obtained when setting the residual water content, θ_r , to 0 and the pore connectivity factor, l, to 0 5 because θ_r and l were not sensitive. However, a poor fit resulted when the saturated water content, θ_c , was equated to the porosity, and the saturated hydraulic conductivity, k_s , to its independently measured value. Values for θ_s and k_s derived from field measurements were somewhat higher than those obtained from laboratory samples.

To demonstrate the influence of the different input data on a water balance, the cumulative drainage from an initially saturated soil column was simulated with different sets of hydraulic parameters estimated from field and laboratory data Parameters derived from the laboratory results consistently yielded lower predictions of cumulative drainage compared to hydraulic parameters derived from field measurements. The differences were relatively small when an initial water content corresponding to 60 cm suction (field capacity) was used

Dedicated to Prof Dr K Bohne on the occasion of his 60th birthday

1. Introduction

Our ability to mathematically model water and solute movement in the subsurface seems to be well ahead of our ability to accurately quantify the flow and transport properties of soils. This is particularly true for the unsaturated hydraulic properties involving the soil water retention. $\theta(h)$, and hydraulic conductivity, k(h), functions, where θ is the volumetric water content (cm³ cm⁻³), h is the soil water pressure head (hPa), and k is the hydraulic conductivity (cm day⁻¹). In situ field measurements of the soil hydraulic properties are time consuming and costly. Moreover, the results are often unreliable because of experimental shortcomings and high spatial and temporal variability. Because of these problems, the unsaturated hydraulic properties are frequently determined in the laboratory, or estimated indirectly from other soil properties which can be measured more easily and accurately. A drawback of such alternative methods is, that they may yield values which are not representative for field conditions. Still, for many purposes, laboratory-measured data are helpful as a complement or substitute for field data since in situ measurements are usually not available at relatively low water contents, and ordinarily do not allow for the same spatial and temporal resolution as laboratory measurements

The primary objective of this paper is to analyse problems in describing field and laboratory measured soil hydraulic properties using the RETC program. The laboratory data were obtained with an improved laboratory method for determining the unsaturated soil hydraulic properties. The $\theta(h)$ and k(h) curves were obtained on "undisturbed" samples from the Ap horizon of a silty loam instrumented with mini tensiometers and Time Domain Reflectometry (TDR) mini probes The laboratory set-up is well-suited for accurately determining a large number of hydraulic data. Additionally, the water retention characteristic and the saturated hydraulic conductivity were obtained with pressure plate extractors and a constant-head permeameter. The field hydraulic properties were determined in instantaneous profile manner, using neutron scattering and tensiometer with transducer

Some of the advantages of closed-form analytical expressions for the hydraulic properties were summarized by Van Genuchten and Nielsen (1985) (1) the ability to predict k(h)from (h) measurements; (ii) more convenient numerical simulations of flow and transport in the vadose zone, and (iii) comparisons, substitutions, or scaling of the hydraulic properties for different soils The observed hydraulic properties in this paper are modeled with the expressions of Van Genuchten (1980) The program RETC (Van Genuchten et al., 1991) was used to obtain the hydraulic parameters by fitting the model parameters to observed field and laboratory data using different fitting conditions

A secondary objective of this paper is to investigate the performance of the fitted hydraulic parameters in a numerical model for variably-saturated flow. The approach is somewhat similar to that used by Wosten et al. (1986) who evaluated the relative accuracy of hydraulic functions in terms of numerical predictions of such functional criteria as travel time, depth of water table, and downward water flux. In this paper we shall study the sensitivity of the predicted cumulative drainage to different parameter sets.

2. Materials and methods

2.1 Measurement of hydraulic properties

A schematic of the experimental set-up for measuring the soil hydraulic properties in the laboratory is shown in Fig. 1. More detailed descriptions of the method are given by Malicki

and Skierucha (1989) and Plagge (1991). The laboratory procedure is based on a similar concept as the evaporation method by Wind (1966), modified by Boels et al (1978) and Tamari et al (1993) The improved technology provides a detailed description of θ and h in time and space The measuring cell consists of five pairs of sensors to measure h and θ in 5 positions and time during the evaporation experiment. Each measuring cell consist of a 250 cm³ core sampler, 10 cm high and 5.5 cm in diameter, to take undisturbed soil cores in the field Table 1 provides some specifications of the tensiometers and the TDR equipment used as sensors for h and θ , respectively. The mini tensiometers are composed of a 2.8 mm diameter ceramic cell with an inner boring permitting quick response times, a brass tube, and a pressure transducer with a resolution of 0.2 hPa Transducers are monitored by a realtime multitasking computer to control the measurement and collect data dependent to defined events The used TDR system (EASY TEST Ltd) is operating with a 2.0×10^{-10} s risetime needle pulse, supported by an Atari personal computer The TDR mini probes consist of two 54 mm long stainless steel needles with a diameter of 0.8 mm, separated 5 mm from one another. The probes are connected by a 50 W cable to the TDR meter. For the experiments the standard deviation of the observed water content was about +0.006 g cm⁻³ The TDR probe and the tensiometer, aligned horizontally at an angle of 90°, are installed through a pair of trapped holes in standard sampling steel cylinders. Five pairs of sensors, vertical

Fig 1 Schematic diagram of the experimental apparatus for simultaneously measuring the hydraulic conductivity and soil water retention curves

Table 1

Properties of the tensiometers and TDR equipment

	Tensiometry	TDR	
Parameter	h (hPa)	θ(%)	
Measuring range	0-850 hPa	0-100%	
Resolution	0 2 hPa	06%	
Spacial resolution	$2.8 \text{ mm} \times 15 \text{ mm}$	$7 \text{ mm} \times 54 \text{ mm}$	
Contact surface or measured volume	1 38 cm ²	2.1 cm^3	
Total volume for equipment'	0 13 cm ³	0 03 cm ³	

"Soil core volume 250 cm³

arranged, leads to five 2 cm thick soil layers More technical details of the tensiometer and TDR system are given by Plagge (1991), Malicki and Skierucha (1989) and Malicki et al (1992). The volume occupied by all sensors was <0.1% of the whole soil core volume. Fig 2 shows a cross section of the measuring cell. The used TDR technique is applicable for soils with a salt content <1 mS.

Undisturbed soil samples were taken at a mean depth of 15 cm from the Ap horizon of a silty loam from Ohlendorf, Germany. Some basic soil properties are listed in Table 2 The soil cores were water-saturated from the bottom during 3 weeks and then subsequently sealed at both ends before the sensors were carefully inserted from the sides After the tensiometer and TDR readings indicated that the cores were in hydraulic equilibrium, the measuring cells were placed on a balance $(\pm 0.01 \text{ g})$ to monitor the evaporation rate The

Fig. 2 Cross section of a measurement cell showing a TDR probe and a minitensiometer at a particular depth

Table 2 Chemical and physical properties of the Ap horizon of a silt loam

Parameter	Value				
 Depth	0–30 cm				
Particle size					
$< 2 \ \mu m$	9 2%				
2-63 μm	87 2%				
>63 µm	3 6%				
Bulk density	1.37 g cm^{-3}				
Porosity	$0.487 \text{ cm}^3 \text{ cm}^{-3}$				
k.	35 0 cm day ⁻¹				
Organic matter	10% C				
pH (CaCl ₂)	63				
CEC	11 2 meq/100 g				

upper seal was subsequently removed and the soil subjected to controlled evaporation from the top using small ventilators The experiment was terminated when the uppermost tensiometer in the soil core reached a suction of approximately 850 hPa. The measurements were conducted in a room with a controlled air temperature of 20°C. Unsaturated hydraulic conductivity values, k(h), were obtained from the transient head profiles and calculated water fluxes using Bezier fitting procedures for data smoothing (Sobczuk et al., 1992). The saturated hydraulic conductivity, k_s was obtained from the geometric average of 20 replications measured with a constant-head permeameter (Hartge and Horn, 1989). The hydraulic properties in the field were determined previously by Duynisveld and Strebel (1983) according to the instantaneous profile method, using neutron scattering and tensiometers connected to pressure transducers

2.2 Mathematical description of hydraulic properties

The water retention and hydraulic conductivity curves were described using the respective models (Van Genuchten, 1980)

$$\theta(h) = \theta_{\rm r} + \frac{\theta_{\rm s} - \theta_{\rm r}}{\left[1 + (\alpha h)^n\right]^m} \tag{1}$$

$$k(h) = k_{s} \times \frac{\{1 - (\alpha h)^{n-1} [1 + (\alpha h)^{n}]^{1-m}\}^{2}}{[1 + (\alpha h)^{n}]^{m}}$$
(2)

where θ_r and θ_s are the residual and saturated water contents (cm³ cm⁻³), respectively, α is an empirical parameter (cm⁻¹) whose inverse is sometimes referred to as the air entry value, *n* is a fitting constant reflecting the steepness of the retention curves, m=1-1/n, and *l* is an empirical pore connectivity factor frequently set to 0.5 following Mualem (1976) For notational convenience, *h* and α are assumed to be positive in this study (i.e., *h* denotes suction).

Eqs (1) and (2) contain up to six independent coefficients, represented by the parameter vector $\mathbf{b} = \{\theta_r, \theta_s, \alpha, n, l, k_s\}^T$ We adopt the view by Van Genuchten and Nielsen (1985) and Luckner et al (1989) that the different parameters are essentially empirical coefficients without much physical significance. Their values were estimated by fitting the retention and conductivity models to the observed data using the parameter optimisation program RETC of Van Genuchten et al. (1991) This program uses Marquardt's maximum neighborhood method (Marquardt, 1963, Daniel and Wood, 1971) to minimize the objective function, $O(\mathbf{b})$

$${}^{\text{mun}}_{b} O(b) = \sum_{i=1}^{N} \left[\left(\theta_{i} - \hat{\theta}_{i}(b) \right) \right]^{2} + \sum_{i=N+1}^{M} \left[W_{1} W_{2} \left(k_{i} - \hat{k}_{i}(b) \right) \right]^{2}$$
(3)

where θ_i and $\hat{\theta}_i$ are the observed and fitted water contents, respectively, k and \hat{k}_i are the observed and fitted conductivity data, N is the number of retention data, and M is the total number of observed data points. The parameter W_2 is set by the optimization program to account for differences in the number of measurements and the adopted units of θ and K. The input parameter W_1 may be used to change the weight of the conductivity data in their entirety with respect to the retention data

The parameters can be fixed at their initial estimates, or adjusted for a "best" fit during program execution Better results are generally obtained when the number of unknown parameters can be limited by using independently determined parameters, or by carrying out a sequential fit by fixing those parameters which are found to be highly correlated with other parameters. The maximum number of iterations was set to 30, the input parameter W_1 to 1.0. With these considerations in mind, Eqs. (1) and (2) were fitted to the observed θ and calculated k, assuming the following fitting scenarios:

- (1) l is fitted (Case 1) or set equal to 0.5 (Case 2),
- (11) θ_{s} is maximal and set equal to the mean porosity, ε_{s} of 0.487 cm³ cm⁻³ (Case 3),
- (111) k_{ζ} is fixed at 35.0 cm day⁻¹ measured independently by the constant-head permeameter in the laboratory (Case 4),
- (1v) θ_s is fixed at 0.487 cm³ cm⁻³ and k_s at 350 cm day⁻¹ (Case 5),
- (v) $\theta(h)$ is fitted and K(h) is predicted assuming k = 350 cm day⁻¹ and l = 0.5 (Case 6)

2.3 Modeling cumulative drainage

A simple flow problem was simulated numerically to assess the implications of the different fitting scenarios. We selected the example of cumulative drainage from an initially

Fig. 3. Water content, measured with TDR at five positions in the soil column, versus time of evaporation

Fig 4 Soil water pressure head, measured with tensiometers at five positions in the soil column, as a function of time

saturated soil column (silt loam). Drainage was simulated numerically using the linear finite element code HYDRUS described by Kool and Van Genuchten (1991). Two different initial soil water contents were used: (1) the water content at saturation, $\theta = \theta_s$, and (ii) the water content at a suction of 60 hPa, which we designate as field capacity ($\theta = 0.33$ cm⁻³) The simulation involved cumulative drainage from a 30 cm long column over a 100 day period assuming a zero flux condition (no evaporation or infiltration) at the soil surface, and a zero pressure head condition (gravity drainage) at the bottom of the finite column Cumulative drainage was predicted with parameter sets { θ_r , θ_s , *a*, *n*, *l*, *k*_s} obtained by fitting the field or laboratory data using RETC assuming the aforementioned five fitting scenarios

3. Results and discussion

3.1 Measurement of hydraulic properties

As an example of the type of results obtained with the TDR mini probes, Fig. 3 shows a plot of the measured water content versus time for all five TDR positions in the 10 cm long

Fig 5 Laboratory-measured hydraulic conductivity data as a function of pressure head for five samples

soil core. As expected, the largest decrease in water content occurred closest to the evaporating surface. Differences in pressure head at the various locations in the core become noticeable 2.5 days after the experiment started (Fig. 4)

The hydraulic conductivity was computed according to the instantaneous profile or unsteady drainage-flux method as outlined by Green et al (1986). The evaporative flux was estimated from the overall column weight Fig. 5 shows the measured K(h) determined on five different soil samples. The symbols in Fig. 5 represent results for five different cores over time and depth using averaging. The K(h) values appear to follow an approximately linear K-log h relationship for all samples. The considerable variability among the samples, especially in the wet range correspond to bulk density differences between the single samples

32 Hyraulic data analysis

Figs. 6 and 7 show the observed and fitted water retention and hydraulic conductivity curves, respectively, for both the field and laboratory data. Because of the large number of data points measured in the laboratory, only average values of the variables h and K for any particular value of θ and h, respectively, were plotted Figs. 6 and 7 indicate a fairly close match between the observed and fitted data. The fitted curves were obtained by allowing

all coefficients, except *l*, to vary in the parameter optimization process Their values can be found under Case 1 in Table 3, which lists the fitted parameter values along with the correlation coefficient, r^2 , and the objective function O(b) for all fitting scenarios. The field retention data exhibited more scatter than the laboratory data. The increased scatter may be attributed to the increased variability at the field scale, and to differences in accuracy and resolution in the observed θ and *h* data. Because two different techniques were used to determine the laboratory retention data, the (*h*) curve in Fig. 6 exhibits a slight discontinuity between 800 and 1000 hPa the hydraulic conductivity data, as well as the fitted curves, were fairly similar for the field and laboratory experiments (Fig 7). Higher values for the saturated water content, θ_s , and saturated hydraulic conductivity, k_s , were found for the field data compared to the laboratory data. Initial optimizations of the data with RETC indicated that no "residual" water was present in both the field and laboratory determined retention curves. In accordance with the studies by Greminger et al (1985), Wosten and Van Genuchten (1988), and Nimmo (1991), we therefore decided to fix θ_r , to zero in all subsequent runs

To assess the importance of l as a fitting parameter, the parameter sets $\{\theta_s, \alpha, n, l, k_s\}$ (Case 1) and $\{\theta_s, \alpha, n, k_s\}$ (Case 2) were fitted to the data Table 3 indicates that the fitting was relatively insensitive to the value for l. A wide range of values has been reported for l For example, Schuh and Chine (1990) found values ranging from -8.73 to

Fig. 6 Measured and fitted curves for the field and laboratory retention (Case 1, $\theta_i = 0$)

Fig 7 Measured and fitted curves for the field and laboratory conductivity (Case 1, $\theta_r = 0$)

Table 3
Estimated hydraulic parameters for the Ohlendorf silt loam used in this study

Case	:	$\theta_{\rm c}$ (cm ³ cm ⁻³)	α (cm ⁻¹)	n	k, (cm day ⁻¹)	I	r^2	O(b) × 10 ³
1	1 Field	0 386	0 010	1 42		1 87	0 980	4794
	Lab	0 353	0 007	1 31	12.2	1 07	0 981	5810
2	Field	0 422	0 014	1 40	22 9	0.504	0 978	4955
	Lab	0 362	0 008	131	13 7	0 50ª	0.981	5867
3	Field	0 487*	0 017	1 45	33 8	0.504	0 976	5825
	Lab	0 4874	0.014	1 36	36 2	0 504	0 972	15620
4	Field	0 446	0.018	1 38	35 Oª	0.504	0 858	1778
	Lab	0 364	0.012	1 25	35 0ª	0 50ª	0 978	6746
5	Field	0 487 י	0.017	1 45	35 0ª	0.504	0 976	5827
	Lab	0 487ª	0.014	1 36	35.01	0 50°	0 972	15621
6	Field	0 446	0 018	1 38	35 0ª	0.504	0 954	4615
b	Lab	0 382	0 013	1 29	35.0 ^a	0 50 ^a	0 993	353

*Fixed parameters

^bBest fit for conductivity data only

14.80, while Wosten and Van Genuchten (1988) reported values between -16 and 2.2 for medium- and fine-textured soils From these and other studies (e.g., Yates et al., 1992), it appears that the value of *l* has only a relatively small effect on the objective function, O(b) Therefore, as suggested by Mualem (1976), *l* was fixed at 0.5 for the remaining cases

For Case 3, the parameter θ_s was either fitted or fixed at a value equal to the porosity, ε , as measured on the same soil core for which the hydraulic properties were reported When θ_s was set equal to ε , the fit resulted in a poor description of the retention curve Fig. 8 shows that the retention curve is severely overpredicted in the wet range when θ_s was fixed to the measured porosity of 0 487 cm³ cm⁻³. Fig 9 demonstrates that the fitted K(h) curve, assuming θ_s to be equal to ε , also overpredicts the conductivity in the wet range, albeit less in comparison with the retention curve in Fig. 8 These results are consistent with the presumed presence of a "satiated" water content (e.g., Hillel, 1980) somewhat less than full saturation (or porosity, ε) because of entrapped or dissolved air. The relationship between ε and θ_s depends on both soil type and the experimental procedure used for measuring θ_s . For example, Ghosh (1976) used a value of 0.9 ε . It is our experience, however, that the hydraulic data are best described with a variable θ_s when a complete data set is available, rather than fixing θ_s at some arbitrary "field-satiated" value less than ε or using a reduction factor

Fig. 8 Measured and fitted curves with θ_s htted or fixed to the porosity for the laboratory retention (Case 3)

Statistical pore-size distribution or other theoretical models for predicting the hydraulic conductivity generally contain the saturated hydraulic conductivity, k_x , as a "matching" point (e.g., Mualem, 1986). Such an approach has become relatively standard, in part because k_s is more easily measured than unsaturated K(h) values. Hence, the value for k_s in the conductivity model is usually fixed during the optimization procedure. Case 4 involves the optimization of retention and conductivity data, where k_x is either fitted or fixed to the value determined independently using the constant-head permeameter method. The results in Figs 10 and 11 indicate a reasonably good fit for the laboratory data. However, the field data are relatively poorly described, as indicated by the low r^2 values in Table 3 (Case 4). This is in agreement with previous studies showing that k_s should not be used as a matching point for the unsaturated conductivity curve (Van Genuchten and Nielsen, 1985, Vogel and Cislerova, 1988). Instead, and if available, a measured conductivity value at a water content somewhat less than saturation should be used as a matching point for the predicted curve Such "matrix–K sat values" work much better than k_s at, which is more an expression of structural porosity (Bouma, 1992).

In Case 5 we attempted to describe the hydraulic data with Eqs. (1) and (2) while fixing both θ_s and k_s in the optimization process, i.e., fitting only α and n. The values of θ_s and k_s were now both fixed to their independently measured values. Table 3 indicates that this Case resulted in a much poorer description of the data than if both were kept as unknowns

Fig. 9 Measured and fitted curves with θ_s fitted or fixed to the porosity for the laboratory conductivity (Case 3)

Fig 10 Measured and fitted curves with k_s fitted or fixed to the value measured with the constant-head permeameter for the laboratory retention (Case 4)

in the optimization (Case 2) This holds especially true for the laboratory data where the sum of squares given by Eq. (3) increases from 0.05867 to 0.15621 Relatively poor results should be expected when k_s and especially θ_s are used as known parameters in the fitting process

Finally, Case 6 in Table 3 involves the prediction of the K(h) function from measured h and k, data, again assuming l=0.5 This is a common approach since conductivity data are not widely available because they are more cumbersome to measure than retention data. The results in Table 3 indicate that the predicted K(h) describes the observed curve remarkably well, especially the laboratory data. In view of the previous results, the slight overprediction of the hydraulic conductivity using the independently measured k, value was to be expected

3.3 Drainage calculations

The second objective of this study was to investigate the sensitivity of flow simulations to variations in the hydraulic parameter sets as obtained with the different optimization scenarios Fig 12 shows the simulated cumulative drainage from an initially saturated 30 cm long soil column using parameters from Cases 1, 3, and 4. The numerical results for

hydraulic parameters estimated from the field data (denoted by closed symbols in Fig 12), yielded higher drainage rates than predictions made with parameters derived from the laboratory data. This difference is caused by the higher k_s and θ_s values estimated from the field data. For the laboratory data the predicted cumulative outflow increased by 63 % when θ_s was set equal to the porosity (Case 3), and by 13% when k_s was fixed at the measured value (Case 4), compared to the total drainage predicted using Case 1 parameters.

The drainage simulations assumed an initially completely saturated soil profile Such conditions rarely occur in the field For example, measurements by Duynisveld and Strebel (1983) for a similar soil as used in this study indicate that complete saturated conditions did not occur during a three-year period. Hence, the cumulative drainage simulations were repeated assuming an initial water content equivalent to an initial pressure head of -60 hPa, or pF \approx 1.8, which roughly corresponds to field capacity. Using the hydraulic parameters for Case 1, the simulated cumulative drainage amounts decreased significantly from those obtained when an initially saturated soil was assumed (Fig. 12). The differences between he laboratory- and field-based predictions are also much smaller. This is to be expected since the water contents at -60 cm for the field and laboratory cases are now very similar (Fig. 6). The results in Fig. 12, as well as those in Figs. 7–10, raise doubts about the usefulness of the parameters k_{y} , and especially ε , to serve as matching or endpoints in

Fig. 11 Measured and fitted curves with k_c fitted or fixed to the value measured with the constant-head permeameter for the laboratory conductivity (Case 4)

Fig 12 Numerically predicted cumulative drainage assuming an initial water content at saturation or at field capacity, using parameter sets $\{\theta_{n}, \alpha, n, k_{n}\}$ obtained by fitting Eqs (1) and (2) to laboratory data for various optimization scenarios

the unsaturated hydraulic functions Moreover, the great disparity of the simulated drainage curves in Fig 12 shows that proper selection of the "saturated" conductivity and soil water retention values is not just a theoretical exercise, but can have important practical implications for simulating variably-saturated flow in the field

4. Summary and conclusions

Soil water retention and hydraulic conductivity curves were determined by monitoring water contents and pressure heads with TDR and mini tensiometers, respectively, during forced evaporation from an "undisturbed" soil column. The method is relatively quick and provides hydraulic data with a high spatial and temporal resolution. Previously determined

In situ field measurements of the hydraulic properties were included for comparison. The field data showed greater variability in the $\theta(h)$ and K(h) curves compared to the laboratory data Still, the field- and laboratory-measured curves were reasonably similar over the range of measurements.

The program RETC was used to fit the model given by Eqs. (1) and (2) to the observed laboratory and field retention and conductivity data Several fitting options were used to examine whether or not the number of fitting parameters could be reduced Results were found to be relatively insensitive to the value for l, whereas good results were obtained when θ_r was set equal to zero. The best optimization resulted when θ_s and k_s were fitted rather than fixed at independently measured laboratory values. A relatively good match with the conductivity data was also established when K(h) was predicted from the measured $\theta(h)$, in conjunction with the measured k_s value However, for good results with RETC, the use of θ and k near saturation (perhaps at $h \approx 10$ hPa) is the best way to avoid structural effects. However, for characterizing the flow regime, the flow through macropores should be separated from the one through the soil matrix (Bouma, 1982) Thus, additional measurements with other methods are needed.

The crust test by Boolting et al. (1991) may be one way to get these informations. Other methods to measure the matrix conductivity near saturation might be the use of a tension infiltrometer in the field. Nevertheless, our field experiences with the tension permeameter show that surface sealing and the use of a geometry parameter causes errors and in case of layered soils with stagnic horizons the interpretation of field data becomes difficult. In the laboratory, the use of the steady state evaporation method according to Plagge (1993) may be a better alternative to yield a k(h) close saturation

The fitted hydraulic properties were subsequently used as input in a numerical model simulating drainage from an initially saturated soil column. The simulated cumulative drainage from the column was higher for the field- than for the laboratory-derived hydraulic properties, primarily because of a higher estimated θ_{s} value for the field data. Using the porosity for θ_{s} significantly increased the predicted outflow. Similar drainage simulations with an initial water content roughly equivalent to field capacity resulted in much smaller differences in the predicted drainage for the laboratory and field hydraulic properties. The simulated drainage amounts in this case were also much less than those for the other cases with an initially saturated column.

The parameter estimation and drainage simulation results demonstrate again the necessity of new technics and methods to measure the soil hydraulic parameters near saturation in the field and laboratory

Acknowledgements

Financial support by the German Research Foundation (DFG) is gratefully acknowledged. We would like to thank Dr. O Strebel, Bundesanstalt fur Geowissenschaften und Rohstoffe/Hannover, for providing the in situ data

References

- Boels, D, Van Gils, J B H M, Veerman, G J and Wit, K E, 1978 Theory and system of automatic determination of soil moisture characteristics and unsaturated hydraulic conductivities. Soil Sci., 126–191–199
- Boolting, HWG, J Bouma and D Gimenez, 1991 Suction crust infiltrometer for measuring hydraulic conductivity of unsaturated soil near saturation. Soil Sci. Soc. Am. J., 55-566–568
- Bourna, J. 1982 Measuring hydraulic conductivity of soil horizons with continous macropores. Soil Sci. Soc. Am. J., 46(2): 438-441

Daniel, C and Wood, FS, 1971 Fitting Equations to Data Wiley-Interscience, New York

- Duynisveld, W H M and Strebel, O, 1983 Ermittlung der Nitrat-N-Verlagerung aus wassergesattigten Boden ins Grundwasser bei Ackernutzung unter verschiedenen Bedingungen mit Hilfe von Simulationsmodellen Ber Nr 95838, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover
- Ghosh, R K, 1976 Model of the soil-moisture characteristic. J Ind Soc Soil Sci , 24 353-355
- Green, R E, Ahuja, L R and Chong, S K, 1986 Hydraulic conductivity, diffusivity, and sorptivity of unsaturated soils Field methods In A Klute (Editor), Methods of Soil Analysis, Part 1 2nd ed Agronomy, 9 771–798
- Greminger, P.J., Sud, Y.K. and Nielsen, D.R., 1985. Spatial variability of field-measured soil water characteristics. Soil Sci. Soc. Am. J., 49, 1075–1082.
- Hartge, K H, and Horn, R, 1989 Die physikalische Untersuchung von Boden Ferdinand Enke Verlag Stuttgart Hillel, D, 1980 Applications of Soil Physics Academic Press, New York
- Kool, J B and Van Genuchten, M Th., 1991 HYDRUS, one-dimensional variably saturated flow and transport model, including hysteresis and root water uptake Version 3.31 Res Rep. No. 124, U.S. Salinity Laboratory USDA, ARS, Riverside, CA
- Luckner, L, Van Genuchten, M Th and Nielsen, D R, 1989. A consistent set of parametric models for the twophase flow of immiscible fluids in the subsurface Water Resour Res, 25 2187-2193
- Malicki, M A and Skierucha, W, 1989 A manually controlled TDR soil moisture meter operating with 300 ps rise-time needle pulse Irrig Sci. 10 153-163
- Malicki, M.A., Plagge, R., Renger, M. and Walczak, R.T., 1992. Application of time-domain reflectometry (TDR) soil moisture miniprobe for determination of unsaturated soil water characteristics from undisturbed soil cores. Irrig. Sci., 13. 65–72.
- Marquardt, DW, 1963 An algorithm for least-squares estimation of nonlinear parameters J Soc Ind Appl Math, 11 431-441
- Mualem, Y, 1976 A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res, 12(3) 513-522
- Mualem, Y, 1986 Hydraulic conductivity of unsaturated soils Prediction and formulas In A Klute (Editor). Methods of Soil Analysis Part 1 Physical Mineralogical Methods Agron Monogr, 9 (2nd ed), ASA, Madison, Wl
- Nimmo, J R, 1991 Comment on the treatment of residual water content in a consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface by L Luckner et al. Water Resour. Res., 27 661–662
- Plagge, R. 1991 Bestimmung der ungesättigten hydraulischen Leitfahigkeit im Boden Diss Tech Univ Berlin, Fachgebiet Bodenkunde
- Plagge, R., 1993 Bestimmung der ungesattigten hydraulischen Leitfähigkeit im nahe Sattigung mit der stationaren Profil-Verdunstungsmethode (SSPM) Mitt Dtsch Bodenkundl Gesellsch DBG Kongreß 1993
- Schuh, W M and Cline, R L , 1990 Effect of soil properties on unsaturated hydraulic conductivity pore-interaction factors. Soil Sci. Soc. Arn. J., 54, 1509–1519
- Sobczuk, H., Plagge, R., Walczak, R. and Roth, C.H., 1992. Laboratory equipment and calculation procedures to rapidly determine the effect of hysteresis on soil hydrophysical properties under nonstationary conditions. Z. Pflanzenernahr. Bodenkd, 155–157–163.
- Taman, S., Bruckler, L., Halbertsma, J. and Chadoeuf, J., 1993. A simple method for determining soil hydraulic properties in the laboratory. Soil Sci. Soc. Am. J., 57–642–651.
- Van Genuchten, M Th., 1980 A closed-form equation for predicting the hydraulic conductivity of unsaturated soils Soil Sci Soc Am J., 44 892–898
- Van Genuchten, M Th and Nielsen, D R. 1985 On describing and predicting the hydraulic properties of unsaturated soils Ann Geophys. 3 615–628

- Van Genuchten, M Th., Leij, F J. and Yates, S R., 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. EPA/600/2-91/065. Robert S. Kerr Environmental Research Laboratory, U.S. Environmental Protection Agency, Ada, OK.
- Vogel, T and Cislerova, M. 1988 On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve. Transp. Porous Media, 32, 1–15.
- Wind, G P, 1966 Capillary conductivity data estimated by a simple method UNESCO/IASH, Proc Wageningen Symp June 1966, Water in the Unsaturated Zone, pp 181–191
- Wosten, J H M and Van Genuchten, M Th., 1988. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Sci. Soc. Am. J., 52, 1762–1770.
- Wosten, J H M, Bannink, M H, De Gruijter, J J and Bouma, J, 1986. A procedure to identify different groups of hydraulic-conductivity and moisture-retention curves for soil horizons. J. Hydrol., 86: 133-145.
- Yates, S.R., Van Genuchten, M.Th., Warrick, A.W. and Leij, F.J., 1992. Analysis of measured, predicted and estimated hydraulic conductivity using the RETC computer program. Soil Sci. Soc. Am. J., 56. 347–354.