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Abstract 

This paper deals with trajectory stabilization of a computer simulated model car via fuzzy control. Stability conditions 
of fuzzy systems are given in accordance with the definition of stability in the sense of Lyapunov. First, we approximate 
a computer simulated model car, whose dynamics is nonlinear, by T S (Takagi and Sugeno) fuzzy model. Fuzzy control 
rules, which guarantee stability of the control system under a condition, are derived from the approximated fuzzy model. 
The simulation results show that the fuzzy control rules effectively realize trajectory stabilization of the model car along 
a given reference trajectory from all initial positions under a condition and the dynamics of the approximated fuzzy 
model agrees well with that of the model car. 
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1. Introduction 

Steering control for automobiles such as parallel parking is suitable for fuzzy control, because human 
control steering angle only by using his experiential knowledge without considering a mathematical model 
for automobile. Actually, Zadeh explained the idea of fuzzy algorithm 1-15] by showing an example of 
parking a car. Sugeno I-7-9] first demonstrated that a real model car can be effectively controlled by fuzzy 
control rules derived from human experiential knowledge. Some papers [1, 6, 4] on fuzzy control of 
automobiles have been reported since Sugeno's papers were published. 

Fuzzy control can be widely applied to more complicated, sensitive and dangerous objects such as nuclear 
reactor plants if we show that a designed fuzzy controller always works well in all situation. One of the 
possible ways for showing it is to guarantee stability of control system. In real industrial applications, in 
particular, in control of complicated, sensitive and dangerous objects, stability is required at least when 
designing control systems. Automobile robots have to be flexibly controlled because of restrictions such as 
real time obstacle avoidance and determination of moving path according to control situations. Trajectory 
stabilization of automobile robots is important, because out of trajectory control causes crashes. Stability 
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analysis of fuzzy control systems has been difficult because fuzzy systems are essentially nonlinear systems. 
Recently, some useful stability techniques I-5, 3, 14, 2, 13],which are based on nonlinear stability theory, have 
been reported. One of the authors derived stability conditions in accordance with the definition of stability in 
the sense of Lyapunov. 

This paper deals with design of a fuzzy controller which guarantees stability of control system for 
a computer simulated model car, i.e., which effectively realize trajectory stabilization. As pointed out above, 
automobile robots control is actually difficult because of restrictions such as real time obstacle avoidance and 
determination of moving path according to control situations. In order to succeed trajectory control of 
automobile robots to the desired position, they often have to attempt backing, going forward, backing again, 
going forward again, etc. Thus, the forward and backward movements help to position mobile robots for 
successful trajectory control to the desired position. A more difficult trajectory control would only allow 
forward movements, with no backward movements permitted. The specific problem in this simulation is to 
control a computer simulated model car along the desired trajectory from an arbitrary initial position by 
manipulating the steering angle. Of course, only forward movements are allowed. Some papers 
[1, 4, 6-9, 15] have reported fuzzy control of automobile robots. However, as far as we know, these studies 
have never given guarantee of stability of the control system, i.e., trajectory stabilization. Our goal in this 
simulation is to design a fuzzy controller such that the control system is asymptotically stable in the large, i.e., 
such that the trajectory control can be perfectly achieved from all initial positions. 

2. M o d e l  o f  a c a r  

Fig. 1 shows a model car and its coordinate system used in this simulation. The model can be described as 

xo(k + 1) = xo(k) + vt/ltan[u(k)], 

xl(k + 1) = Xl(k) + vtsin[xo(k)], 

XE(k + 1) = x2(k) + vtcos[xo(k)], 

(1) 

(2) 

(3) 

where xo(k) is the angle of the car, xl(k) is the vertical position of the rear end of the car, x2(k) is the 
horizontal position of the rear end of the car, u(k) is the steering angle, I is the length of truck, t is the sampling 
time, and v is the constant speed. In this paper, l = 2.8 (m), v = 1.0 (m/s), and t = 1.0 (s). 

Xl 
0 

s . - "  

I xl x 

~- x2 

Fig. 1. A model car and its coordinate system. 
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3. Fuzzy controller design 

3.1. Takagi and Sugeno's fuzzy  model and stability analysis 

The fuzzy system, proposed by Takagi and Sugeno [12], is described by fuzzy IF-THEN rules which 
locally represent linear input-output relations of a system. The ith rule of this fuzzy system is of the following 
form: 

Rule i: IF xl(k) is All and-. ,  and x,(k) is A,i 
THEN xi(k + 1) = Aix(k) + Biu(k), i = 1, 2 . . . . .  r, 

where 

xT(k) = [Xl(k), x2(k) . . . . .  x.(k)], 

uT(k) = [Ul (k), uz(k) . . . . .  u,(k)], 

r is the number of IF -THEN rules, xi(k + 1) is the output from the ith IF -THEN rule, and Aij is the fuzzy set. 
Given a pair of (x(k), u(k)), the final output of the fuzzy system is inferred as follows: 

x(k + l) = 2~: ,  wi(k){Aix(k) + Siu(k)}, (4) 
2 ; - ,  wi(k) 

where 

w~(k) = fiAii(xj(k)), 
j--1 

Aii(xs(k)) is the grade of membership of xj(k) in Aij. 
The free system of (4) is defined as 

x(k + 1) = Y.~=I wi(k)Aix(k) (5) 
Y~: , wi(k) 

Let us assume in this paper that 

~ wi(k) > 0, 
i- 1 (6) 
wi(k) >~ O, i =  1,2 ..... r 

for all k. Each linear consequent equation represented by Aix(k) is called "subsystem". 
A stability condition, proposed by Tanaka and Sugeno, for ensuring stability of (5) is given as follows. 

Theorem 1 [14]. The equilibrium of a fuzzy system described by (5) is asymptotically stable in the large if there 
exists a common positive-definite matrix P such that 

A~PA, - P < 0 (7) 

for i = 1, 2 . . . . .  r, i.e., for all the subsystems. 

We should notice that (7) depends only on Ai. In other words, it does not depend on wi(k). This theorem is 
reduced to the Lyapunov stability theorem for linear discrete systems when r - 1. Theorem 1 gives, of course, 
a sufficient condition for ensuring stability of (5). We may intuitively guess that a fuzzy system is asymp- 
totically stable in the large if all its subsystems are stable, i.e. if all its Ai's are stable matrices. However, this is 
not the case in general. We pointed it out in [14]. 
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Fig. 2. Fuzzy control system. 

Let us consider the fuzzy control system shown in Fig. 2. We use the following fuzzy controller in order to 
stabilize the fuzzy system (4). 

Control Rule i: IF x l ( k )  is Al l  and -.. and x , (k )  is A,i  
T H E N  ui(k) = Fix(k),  i = 1, 2 . . . . .  r. 

The final output of this fuzzy controller is calculated by 

u(k) = Y~=I wi(k)Fix(k)  
r Y~i= 1 wi(k) (8) 

where we use the same weight, wi(k), as the weight of ith rule of the fuzzy controller. Of course, the consequent 
matrices Fi are feedback gains in each control rule. By substituting (8) into (4), we obtain 

r 
x (k  + 1) = E7=1 E j=, wi(k)wj (k ) (Ai  + B, F j }x (k )  

r r ~i= 1 Z j= 1 wi(k)wj(k)  (9) 

From (9), 
r 

x ( k  + 1) = ~ = 1  Z j=l w~(k)wj(k){A~ + B~Fj)x(k) 
r r 

Y~i= 1 ~,s= 1 wi(k)wj(k)  

R 2 ' i = 1  i < j  

where 

Gij = A i + BiFj ,  

R = ~ ~ wi(k)wj(k).  
i = l j = l  

Without loss of generality, (10) can be rewritten as follows: 

v,(,+ 1)/2 v i (k )Hix(k)  
x ( k  + 1) = ~ i=l  (11) 

v ' ( '+  1)/2 vi(k) ' 
d..~i = 1 

where 

HE[=,(,-1)+i = ai j ,  i = j ,  

HE~ =,(t - 1 )  + i ~ - "  (Gij + GjO/2, i < j, 

vx~ =,(t - l) + i (k) = wi(k)wj(k),  i = j,  

VE~ =,(t - 1) + i (k) = 2wi(k)wj(k),  i < j. 

By applying Theorem 1 to (11), we can derive a stability condition for the fuzzy control system (11). 
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Theorem 2. The equilibrium of a fuzzy control system described by (11) is asymptotically stable in the large if 
there exists a common positive-definite matrix P such that 

HY, PHi - P < 0 (12) 

for i = 1, 2 . . . . .  r(r + 1)/2. 

Proof. It follows directly from Theorem 1. [] 

The design problem for Theorem 2 is to select Fj (j = 1,2, . . . ,  r) which satisfies the condition of (12) for 
a common positive-definite matrix P when A t and Bj are given. 

3.2. Fuzzy model o f  the car 

Let us simplify the model car (original model) described by (1)-(3) before approximating it by a fuzzy 
model. If u(k) is always a small value, the model of the car can be simplified as follows: 

xo(k + 1) = xo(k) + vt/lu(k), (13) 

xl(k + 1) = xl(k) + vtsin[xo(k)], (14) 

x2(k + 1) -- x2(k) + vtcos[xo(k)]. (15) 

Of course, the dynamics of this simplified model may not perfectly agree with that of the original model when 
the value of u(k) is a large value. We will consider influence of the model error in the simulation. 

In the case of trajectory control, the controlled variable x2(k) is not necessary, because the purpose of this 
simulation is to control the car along a desired trajectory (the straight line of xl (k) = 0, i.e. to regulate xo(k) 
and x~(k) by manipulating the steering angle u(k). 

Next, let us approximate the simplified model by a fuzzy model. We proposed a method [10] for 
approximating a nonlinear system by a fuzzy model. Notice that sine function has the property, 

0 ~< sin(xo(k)) ~< xo(k), - 180 ° ~< xo(k) <. 180 °, (16) 

where 

sin (xo(k)) = xo(k), 

when xo(k) = 0 °, and 

sin (xo(k)) -~ 0, 

when x o ( k ) ~  - 180 ° or x o ( k ) ~  180 °. Therefore, when 

xo(k)~-O (deg.), 

the state equation of the simplified mode, (13) and (14), is approximated by 

[ x o ( k + l ) l =  [1.0 .00] [ x o ( k ) l +  u(k). (17, 
Lx,(k + 1) vt 1 Lxx(k)j 

On the other hand, when 

xo(k) = 180 ° or - 180 ° (n(rad.) or - n(rad.)), 
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the state equation of the simplified model is approximated by 

xa(k + 1) = 1.0 Lx,(k)J + u(k). (18) 

However, (18) is uncontrollable. Therefore, a control law for (18) cannot be uniquely determined. To avoid it, 
we approximate the simplified model for 

xo(k) = 179.997 (deg.) or - 179.997 (deg.) (19) 

instead of 

xo(k) = 180 (deg.) or - 180 (deg.). 

Then, it can be described by 

x,(k + 1) = 9vt 1.0 kx,(k)J + u(k), (20) 

where g = 10- 2/7t. Of course, this system is theoretically controllable. 
From (17) and (20), a fuzzy model, which approximately represents the dynamics of the model car, can be 

derived as follows. 
Rule 1: If xo(k) is "about 0 (rad.)", then x(k + 1) = Alx(k) + blu(k), 
Rule 2: If xo(k) is "about n (tad.) or - n (rad.)", then x(k + 1) = A2x(k) + bzu(k), 
where 

x(k)  T = [xo(k), xl(k)] ,  

The consequent equations of Rules 1 and 2 correspond to (17) and (20), respectively. After all, the dynamics of 
the approximated fuzzy model is represented by 

E L ,  wi(k){A,x(k) + b,u(k)} 
x(k + 1) = , (2l) 

22=1 wi(k) 

where wi(k) is membership value of the fuzzy set in Rule i. Fig. 3 shows the fuzzy sets of "about 0 (rad.)" and 
"about rc(rad.) or - rt(rad.)'. We define the fuzzy sets as simple triangles. The influence of model error 
between the original model and the fuzzy model, (21), will be considered in the simulation. 

3.3. Controller design and stability analysis 

We design a fuzzy controller for the car modeled by (21). The main idea of the controller design is to derive 
each control rule so as to compensate each rule of the fuzzy model (21). From Rules 1 and 2 of the 
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Fig. 3. Fuzzy sets. 

U(k) /tad. ] 0'  

-04 

2 \ 

0 xl (k) 

~ -20 

Fig. 4. Control surface. 

app rox ima ted  fuzzy model ,  we derive Cont ro l  Rule 1 and Cont ro l  Rule 2 of fuzzy controller,  respectively: 
Cont ro l  Rule 1: If  Xo(k) is " abou t  0 (rad.)", then u(k) = f i x ( k ) ,  
Cont ro l  Rule 2: If xo(k) is " abou t  n(rad.) or  - ~(rad.)", then u(k) =f2x(k ) ,  

where f ,  and  f2 are feedback gains. We use the exact same fuzzy sets in the premise par t  of the fuzzy 
controller.  The  purpose  of control ler  design is to determine feedback gains o f f ,  and f2.  The following 
feedback gains are used in the simulation: 

f l l  = - 0.4212, f12 = - 0.02933, 

f21 = - 0.0991, f22 = - 0.00967. 

Ricati equat ion  for linear discrete systems was used to determine these feedback gains because 
each consequent  par t  is represented by a linear state equat ion.  Fig. 4 shows the control  surface of the 
controller.  I t  is found from Fig. 4 that  the i n p u t - o u t p u t  relation of the fuzzy control ler  has a high 
nonlinearity.  
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Next, we consider stability of the control system. From A~, A2, bl ,  and 62 of the approximated fuzzy 
model and f l ,  and f2 of the fuzzy controller, we obtain 

I0.850 - 0 . 0 1 0 5 ]  
Ha = A I + bl  "fl  = 1.0 1.0 ] '  

/'/2 = {A1 + ba "f2} + {A2 + bz'fl} = F0.907 - 0.00696] 
2 1_0.502 1.0 J '  

[o.96  - o.oo 4   
H3 = "42 +/12 "f2 = L0.00318 1.0 j 

If we select, 

F989.0 75.251 
P =  L 75.25 26.29] 

as a common positive-definite matrix P, then the stability condition (12) of Theorem 2 is satisfied, i.e. 

I - -  120.4 6.008] 
H~PHt - P = 6.008 - 1 . 4 6 8 /<  O, 

[ - 6 8 . 3 1 - 5 . 8 7 3  1 
H~PH2- P =  5.873 - 0.5079 < 0, 

[ - 100.0 - 0.000114 
H~PH3 - P = 0.000114 1.000 ] < 0. 

Therefore, the fuzzy controller guarantees stability of the control system. In other words, it perfectly realizes 
trajectory control without no steady error under the condition of (19) if we can show that the dynamics of the 
original model agrees very well with that of the fuzzy model. We will show in the simulation that there is no 
influence of model error between dynamics of the original model and that of the fuzzy model. The matrix 
P was found by the construction procedure of the literature [11]. 

4. Simulation results 

In this simulation, we use three kinds of the controlled objects: the original model, the simplified model and 
the approximated fuzzy model. Table 1 shows 24 cases of initial positions of the model car used in this 
simulation. Cases 13-18 require to turn the model car in order to realize a perfect trajectory control. Figs. 
5-8 show simulation results for the fuzzy model. Figs. 9-12 show simulation results for the simplified model. 
Figs. 13-16 show simulation results for the original model. 

The following points can be pointed out from the simulation results. 
1. The designed fuzzy controller can effectively achieve trajectory control of the model car even from difficult 

initial positions such as cases 3, 9, 15 and 21. 
2. The dynamics of the approximated fuzzy model agrees well with those of the original model and the 

simplified model. 
Nobody can deny the first point, because it is shown that the control system is asymptotically stable in the 
large under the condition of (19). The second point shows that a fairly good approximation is realized. 
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T a b l e  1 

Ini t ia l  p o r t i o n s  of  m o d e l  c a r  (24 cases)  

xo(0) (deg) x i (0) (m) 

Case  1 0 30 

Case  2 0 20 

C a s e  3 0 10 

Case  4 0 - 10 

C a s e  5 0 - 20 

C a s e  6 0 - 30 

Case  7 90 30 

Case  8 90 20 

C a s e  9 90 10 

Case  10 90 - 10 

C a s e  11 90 - 20 

C a s e  12 90 - 30 

Case  13 180 30 

Case  14 180 20 

C a s e  15 180 10 

Case  16 180 - 10 

C a s e  17 180 - 20 

C a s e  18 180 - 30 

Case  19 - 90 30 

Case  20 - 90 20 

Case  2 l  - 90 10 

Case  22 - 90 - 10 

C a s e  23 - 90 - 20 

Case  24 - 90 - 30 

3° l 

IQ 

1 0  

d 
Fig,  5. C o n t r o l  resul t  for  cases  I - 6  (fuzzy model) .  
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3O 

~ 0  

l 0  

- 1 0  

- ~ 0  

- 3 0  

m 

Fig. 6. Control result for cases 7-12  (fuzzy model). 

2O 

I0 

- 1 0  

- 2 0  

- 3 0  

Fig. 7. Control result for cases 13-18 (fuzzy model). 
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-tO) 

-20 i 

Fig. 8. Control result for cases 19-24 (fuzzy model). 
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~C 

1@ 

tO 

20 

30 
Fig. 9. Control result for cases 1-6 (simplified model). 
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;< 

20- 

I0- 

- 1 0  

- 2 0 !  

I 
-soJ 

! 
Fig. 10. Control result for cases 7 12 (simplified model). 

x I 

20 

10 

- 1 0  

- 2 0  

-3@ 

Fig. 11. Control result for cases 13-18 (simplified model). 
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3O 

20 

I0 

I0 

- 2 0 -  

-sol 

Fig. 12. Control result for cases 19-24 (simplified model). 
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3O 

20 

i0 

IO 

20- 

3 0  J 
Fig. 13. Control result for cases 1-6 (original model). 
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2 0 -  

10- 

m 

- 1 0 -  

- 2 0 -  

- 3 0  

Fig. 14. Control result for cases 7-12 (original model). 

3 0 -  

1 0 -  

- 1 0  

- 2 0  

- 3 0  

Fig. 15. Control result for cases 13-18 (original model). 
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30 -  

20-  

10-  

- i 0 -  

I 
- 3 0 ~  

Fig. 16. Control result for cases 19-24 (original model). 

5. Conclusion 

This paper presented trajectory stabilization of a computer simulated model car via fuzzy control. Stability 
conditions of fuzzy systems have been given in accordance with the definition of stability in the sense of 
Lyapunov. First, we approximated a computer simulated model car, whose dynamics is nonlinear, by T-S 
(Takagi and Sugeno) fuzzy model. Fuzzy control rules, which guarantee stability of the control system under 
a condition, have been derived from the approximated fuzzy model. The simulation results show that the 
fuzzy control rules effectively realize trajectory stabilization of the model car along a given reference 
trajectory from all initial positions under a condition and that the dynamics of the approximated fuzzy model 
agrees well with that of the model car. 
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