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Abstract

We review a generalized approach to modeling soil structures, which exhibit scale invariant, or
self-similar local structure over a range of scales. Within this approach almost all existing fractal
models of soil structure feature as special albeit degenerate cases. A general model is considered
which is shown to exhibit either a fractal or nonfracta pore surface depending on the model
parameters. With the exception of two special cases corresponding to a solid mass fractal and a
pore mass fractal the model displays symmetric power law or fractal pore size and solid size
distributions. In this context the model provides an example of a porous structure in which pore
sizes can be inferred from associated solid particle sizes through this symmetry. Again with two
exceptions the model is shown to exhibit scaling of solid and pore volumes as a function of the
resolution of measurement contrary to that of a mass fractal structure and to possess porosity other
than zero or unity when loca structure is included at arbitrarily small scales contrary to the
situation arising in the case of a solid mass fractal and a pore mass fractal model respectively.
Consequently the model not only generalizes the fractal approach to modeling soil structure but
introduces properties central to the characterization of a soil which are quite distinct from those
exhibited by existing fractal models. The model thus offers a wider scope for modeling
self-similar multiscale soil structures than that currently operating. © 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Fractals are becoming increasingly popular in soil physics research as a
means for characterizing various properties of porous media. They have been
used both in theoretical and practical studies to model: (i) fractal number—size
distributions (pore size distributions: Friesen and Mikula, 1987; Ahl and
Niemeyer, 1989; Tyler and Wheatcraft, 1990; Rieu and Sposito, 1991c; Perrier
et al., 1996; particle size distributions: Tyler and Wheatcraft, 1989, 1992; Wu et
al., 1993); (ii) fractal surfaces (pore—solid interface: Pfeifer and Avnir, 1983, de
Gennes, 1985, Friesen and Mikula, 1987; Davis, 1989, van Damme and Ben
Ohoud, 1990; Toledo et a., 1990; Bartoli et a., 1991; Crawford et al., 1995)
and (iii) mass fractal properties (solid mass fractal: Friesen and Mikula, 1987;
Bartoli et al., 1991; Rieu and Sposito, 1991c; Young and Crawford, 1991;
Crawford, 1994; Bird et al., 1996; Crawford et a., 1995; Perrier et a., 1995; or
associated aggregate distributions: Perfect and Kay, 1991; Crawford et al., 1993;
or pore mass fractal: Katz and Thompson, 1985; Ghilardi et a., 1993). The main
purpose of these studies is to analyze or characterize complex multiscale porous
structures. As far as soil structure is concerned, attention to date has focused
mainly on modeling soil structures and, in particular, soil aggregate structures in
terms of solid mass fractals and on modeling the pore—solid interface within the
soil in terms of fractal surfaces. The essential feature common to each fractal
model is scale invariance, that is the structure in question is composed of parts
which appear similar to the whole. Examples include the now familiar Menger
sponge (or Sierpinski carpet) in the context of a mass fractal model and the Von
Koch curve, or the interna surface of a Menger sponge in the context of a
fractal surface model. Our purpose is to review a new approach to modeling
multiscale porous media and soil structures in particular. This involves an
alternative class of models which can be viewed as a generalization of the
previously quoted fractal models. Like any fractal model, the new class exhibits
self-similar properties. In other important respects, central to the characterization
of a porous medium, it is quite distinct. We will cal it a ‘ pore—solid fractal’
model (PSF).

The PSF model originates from two studies. Neimark (1989) developed the
‘self-similar multiscale percolation system’, a representation of a disordered,
disperse medium that exhibits a fractal interface between solid and pore phases.
Perrier (1994) independently proposed a multiscale model of soil structure
which combines a fractal pore number—size distribution and a fractal solid
number—size distribution. Although these two models have been developed in
different contexts, using dlightly different definitions, and presenting different
local geometrical shapes, they are nevertheless equivalent in terms of the
features considered in this paper. After a quick review of the principles of
modelling a fractal porous medium we will define the PSF model within this
conceptual framework using Neimark’s definition. Equivalence with Perrier's
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definition is given in Appendix A. First we will show how the PSF model
actually gathers in a single structure the previous properties of fractal pore and
solid number—size distributions and a pore—solid fractal interface. Then we will
examine further properties of the PSF model: we will show that it combinesin a
geometrical pattern pores and solids at any stage of its development, and we will
derive its scaling properties as regards the solid or pore mass, showing that a
PSF in its general form is not a mass fractal. Finally, in Section 4, we will see
that the PSF model reduces to a classic solid or pore mass fractal in two
symmetric limiting cases, and, more generally, that the PSF model constitutes a
general framework for analysing and comparing most of the previous fractal
models of porous structures in soil science.

2. Fractal objects
2.1. Basic construction

Construction of a deterministic self-similar fractal object of fractal dimension
D, embedded in an Euclidean space of dimension d, is based on the following:
Firgt, an initiator (Fig. 1a) which defines a region of linear size L in a space of
Euclidean dimension d. This region can be divided into N equal parts or
subregions of linear size L /n paving the whole object. Second, a generator (Fig.
1b) which (i) divides the N parts into two sets of Nz (shown in light gray in

(2) (b) (©
initiator generator fractal object
< L > i=1 i=2

d=2,n=3,2z=2/9, D =10g2/log3 =0.631, Nz=2

Fig. 1. Basic construction of afractal object. In a space of Euclidean dimension d, the initiator (a)
defines a region of linear size L divided into N equa parts. At the first iteration step, the
generator (b) divides the N parts into two sets of Nz (light gray) and N(1— z) (dark gray)
subregions, determines the location of the Nz subregions and defines a pattern inside the N(1— z)
subregions. At the next step, each of the Nz subregions is replaced by a reduced replicate of the
generator.
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Fig. 1b) and N(1 — z) (shown in dark gray in Fig. 1b) subregions (z < 1); (ii)
defines a pattern inside the N(1 — z) subregions; (iii) defines the location of the
Nz subregions where the whole shape will be replicated.

Then arecursive process replaces each of the Nz subregions by the generator
reduced by the same ratio 1/n (Fig. 1c for step 2) and so forth at subsequent
steps .

2.2. General properties
The smaller subregions pave the whole initiator so that N(L /n)9 = LY, that is

N =n¢ (1)

The fractal dimension D follows from the number of replicates and the
similarity ratio by

log( Nz

D= I(?gg(n)) : (2)
Eqg. (2) may be rearranged as:

Nz = nP. (3)
Combining Egs. (1) and (3) we obtain

z=nP"¢, (4)

and
nz=nP- @1, (5)

Let .#,(r;) be the number of replicates of size r; created at each step i of the
development of the structure. r; is defined by

rr=L(n)"" or n=L/r,. (6)

The number of replicates created at step 1 is: .#(r;) = Nz.
At the next iteration step, Nz replicates of size r, are created in each
replicate of size r,. Then at step i,

A1) = (Nz).#(r;_1) =Nz(Nz)' .
or
A1) =(Nz)". (7)
Using Egs. (3) and (6) we obtain
(N2)'=(n®)' =(n"") " =(Lr) " =L°r®, (8)
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and
A1) =L°rP. (9)

Eq. (9) expresses the relationship between the number of replicates and their
size as a power law function with an exponent equal to —D, where D is the
fractal dimension.

In a similar way, severa parameters of the fractal object can also be
expressed as power law functions of the resolution scale r,. Formulas (10) to
(12) will be useful in further derivations:From Egs. (1) and (6)

N =L d. (10)
From Egs. (4) and (6)

7' = P-drd-D, (12)
From Egs. (5) and (6)

(nz)' = LP~(d-br(d-b-D, (12)

2.3. Classical ways to model a porous medium

Depending on the modeling context, the N(1 — z) subregions may represent
different patterns. When fractal objects are used to model porous media made of
a solid phase and a pore phase, the set of these N(1 — z) subregions represents
generally an homogeneous materia (shown in dark gray in Fig. 2) rather than a
heterogeneous one (Fig. 1).

generator (i = 1) fractal object (i =2)

d=2,n=3,z=2/9,D=0.631

Fig. 2. The first two steps of the development of a fractal porous medium. The N(1— z) (dark
gray) subregions are associated with an homogeneous material.
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This homogeneous material can be identified either with the solid phase of
the porous medium (shown in black in Fig. 3a.1) (‘ pore mass fracta’) or the
pore phase (shown in white in Fig. 3b.1) (‘solid mass fractal’).

At each step i, reduced copies of the generator in the Nz subregions (shown
in light gray in Fig. 3a.1) reveal new details at finer resolution scales (Fig. 3a.2
and b.2). These subregions congtitute the * fractal set’.

Two main options have been considered in previous studies: (i) Iterations are
carried out ad infinitum, and the fractal set of (Nz)' subregions vanishes. The
model represents only solid in the so-called pore mass fractal (Fig. 3a.3) or only
pores in the solid mass fractal (Fig. 3b.3). (ii) A lower cutoff of scale is
assumed, considering a finite number of recursive iterations m. The (Nz)™
subregions created at the last iteration step i =m will undergo no further
division and the fractal set is assumed to model the complementary phase: in a
pore mass fractal it is associated with the pore phase (shown in very light gray
in Fig. 3a.4), and in a solid mass fracta it is associated with the solid phase
(shown in black in Fig. 3b.4).

3. The PSF mode
3.1. Definition

Following the approach of Neimark, which combines pores and solids in the
model in an interesting symmetrical setting, we define the (1 — z) proportion of
the generator as a mixture of pore and solid defined as follows:

(1-2)=(x+y) (13)
where x denotes the proportion of pore phase, y the proportion of solid phase
and z represents the proportion of the generator where the whole shape is
replicated at each step. Solids and pores generated at each step are kept whereas
the fractal set is transformed (Fig. 4).

Combining Egs. (13), (1) and (2) we can express the fractal dimension as:
L log(1—x—y)
logn

= (14)

Eq. (14) shows that for a given Euclidean dimension d, the value of the
fractal dimension D of a PSF model depends only on the value of parameters n,
x and .

Fig. 3. Classical example of a pore mass fracta (a) and a solid mass fractal () modeling a porous
medium. The pore phase is shown in white or very light gray and the solid phase is shown in
black. If infinite iterations are carried out, the pore mass fractal represents only solid (a.3) and the
solid mass fractal only void (b.3). If a lower cutoff of scale is assumed, the fractal set (shown in
light gray) is associated with the pore phase (a.4) or the solid phase (b.4).
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generator (i = 1) fractal object (i = 2)

d=2,n=3,2=2/9,x=4/9,y=13/9, D =2+ log(1-7/9)/log3 = 0.631

Fig. 4. Definition of a PSF model. The N(1— z) subregions are divided into Nx=4 pore
subregions (white) and Ny = 3 solid subregions (black). The fractal set (light gray) corresponds to
Nz = 2 subregions where the whole shape is replicated at next iteration step.

Parameters x, y and z can be considered as probabilities(x +y + z= 1) and
mathematical calculations can be done in a probabilistic way (Neimark, 1989).
However, for sake of simplicity, we will consider here that x, y and z are
proportions and Nx, Ny, Nz refer to the number of subregions of each type, to
get simple proofs based only on counting.

3.2. Counting elements

At step 1, there are only elements of size L /n: Nx pores, Ny solids and Nz
subregions where the whole shape will be replicated at the next step.

At step 2, some elements of size L /n are kept: Nx pores, Ny solids, whereas
new elements of size L(n)~? are added: Nx(Nz) pores, Ny(Nz) solids, and
Nz(Nz) subregions where the whole shape will be replicated at the next step.

At step i, let 7 (r;) and .#,(r;) be the respective numbers of pores and
solids of size r;. Then

J/X(ri) = (NX)//’z(ri—l) and ‘/I/y(ri) = (Ny)‘ﬂ/'z(ri—l)'
Using Eq. (7) we obtain

(1) =Nx(Nz)' ™, (15a)
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and using Eq. (8),

J/X(ri)zy(Nz)iszDri‘D. (15b)
Nz z
In a symmetric way, we can write
A1) =Ny(Nz)' ™ (162)
or
1) = %(Nz)i = %LDr;D. (16b)

More generaly, the number of elements of size r; added at each step scales
as a power —D of the size:

ALy or P () ar P, () o P. (17)
3.3. Porosity
Since x represents the proportion of pores kept at step 1 by the generator, zx

is the proportion of pores added in the replicates generated at step 2, and so on.
Thus the porosity ¢; at step i is the following sum:

. -1 Z—-1
¢=x+zx+22x+...+z'1x=sz‘=x( ) (18)
=0 z—1
From Eg. (13) we obtain
X .
= 1-7). 19
b=y 1) (19)

As the number of iterations i increases to infinity, z' — 0 and Eq. (19)
becomes (cf. Neimark, 1989 and Perrier, 1994):

X
d):

X+Yy (20)

Eq. (20) shows that a PSF model exhibits a finite value of the total porosity
which depends only on the value of parameters x and .
3.4. Cumulative number—size distributions of pores and solids
It is commonly assumed that, when a collection of self-similar objects
exhibits a cumulative number—size distribution of objects in the form:
N(r)or=P. (21)
the collection may be called fractal of dimension D (Mandelbrot, 1983).
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Let N(r;) and N(r;) be the respective numbers of pores and solids of size
greater than or equal to r;.

At iteration step i = 1, the number of poresis N,(r,) =.7,(r,) = Nx.

For i =2, N(r,)=NJ(r)+.7,(r,) =Nx+ Nx(Nz) = Nx(1+ Nz), and at
any step i:

NAF) = N(rio0) +#3(r) = N(1+ Nz + (N2)° + ... +(N2) 7).

Summation of this geometric series of ratio Nz yields:

(NZ)_‘l) | 22)

i—1 _
N(r;) =NxY_ (Nz)’ = Nx
o [ Nz—1

If Nz>1, asi— %, (Nz))>1and ((Nz)' — 1) = (Nz)". Using Eq. (8) one
gets

Ny(r,) = Ly P, (23a)

Nzi=
Nz—l( ) Nz—1

In a symmetric way, the cumulative number of solids greater than or equal to
r; is obtained by substituting x by y in Eq. (233

~ i D, -D
N,(r;) = Ng— 1(Nz) o1 1L . (23b)
Egs. (23a) and (23b) are discrete analogs of Eq. (21). They can be rewritten
as:
N(r;) acri®, (249)
and
Ny(r;) ccrP. (24b)

Egs. (24a) and (24b) show the symmetry exhibited by the PSF model: both the
pore number—size distribution and the solids number—size distribution assume a
power law form with identical exponent — D, where D is the fractal dimension.

3.5. Pore—solid interface

Another fractal property commonly observed in some porous mediais related
to the measurement of the pore—solid interface.

A surface is called fractal of dimension D when its area S(1) measured with
units 1971 scalesas 1971"P where d— 1< D < d, that is:

S oo

Id—l

(25)
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Neimark (1989) has studied the properties of ‘‘the surface of a self similar
multiscale percolation system’’. For completeness, we include here our own
derivation of the interface behavior in a PSF model. The area (i) of the
pore—solid interface (perimeter when d = 2, surface when d = 3) can be first
approximated by summing the surfaces of all the boundaries of the solid
elements which have been created after i iteration steps. These solid elements
are squares (d = 2) or cubes (d = 3) of size greater than or equal to r,. Each
solid subregion of linear size r, has a surface 2dr® ! and the cumulative
boundary of the solid elements, denoted S,(i) is equal to:

i
j=1

S(i) = X (1)) (2dr2-1). (26)
J

Introducing Egs. (16a) and (6), we obtain

§(i) = 24X Ny(Nz)! ~*(Ln )", (27)
j=1
o dfli -1 —d-1\ _ Edli Nz |/
S.0) =20 T (N ) <2am| 1)
(28)

Using Eq. (1), we get

L\4 i [ ndz )" Ly _
i) =2dn’y| — —— | =2dy[ | L (29
si-2a( ] T(55] -2ef) nmT @
The value of the geometric series in Eq. (29) depends on the value of nz. If
nz=1,

L -1
S,(i) = 2dy(;) L. (30)
From Eg. (6) we obtain i =(log L/r;)/(log n) and Eq. (30) becomes
L 2o|nyLd—1I L
If nz# 1,

Ly ? -1
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From Eq. (12) we have (nz)' = L°P~9*1r 31D and Eq. (32) becomes

2dnLd-? 2dnLP

i) — d-1-D
S() =y 1z Ymz-1" ' (333)

In a symmetric way, the cumulative area of the boundaries of pores created at
i iteration steps is given by

2dnLd-? 2dnLP

1) = + _d—l—D.
S(1) Xl—nz an—lr' (33b)

The actual interface (i) between solids and pores cannot be calculated so
simply, because the location of the solid and pores subregions in the model must
be taken into account. At each step i, we consider a constant number Ny (or Nx)
of solid (or pore) subregions but randomly distributed in space. If two solid
subregions have a common side, this side belongs to the total boundary
measured by S(i), but not to the solid—pore interface. Thus S(i) < S(i) and
i) < S0

In a random redlization, assuming x # 0, y # 0, the calculation of (i) can
be done in a probabilistic manner. As the number of iterations increases to
infinity, the fractal set of (Nz)' subregions vanishes and the probability p,(i)
that an arbitrary chosen point on the solid boundary belongs to the interface is
equal to the probability that the neighboring point outside the solid is located in
a pore subregion. Thus as infinite iterations are carried out, p(i) = ;_ ¢,
where ¢ is the porosity.

Then, using Eq. (19)

i) =pu(1)S(1) = #S,(i) =

X

Sy(1) (343)

X+y

or in a symmetrical way we could get
(i) =py(I)S(i) = (1= ¢)S(i) = Si(i)- (34b)

and from Egs. (33a) and (33b), Egs. (34a) and (34b) are strictly identical.
Three cases must be distinguished.
(i) If D=d— 1 (that is nz=1). From Egs. (31) and (34a) we obtain

2dnL?-t L
il log—. 35
r

y
X+y

i) = x+y logn
The surface of the solid—pore interface approaches infinity approximately as the
logarithm of the inverse of r;.

If nz#1

(i) if D<d— 1 (thatis nz<1).
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Using Egs. (33a) and (34a) we get

d-1 D
X [ 2dynL 2dynL r'd_l_D)

(36a)

S(I): X+y

or from Egs. (33b) and (34b)

+
1-—nz nz—1

2dxnL9~t  2dxnLP
+
1-nz nz—1

y
X+y

Xi) =

rid—1—D)_ (36b)

Asi—wo 1, >0, r 17 -0 thus

xy 2dnLd"?
X+y 1l—nz

The surface of the solid—pore interface approaches a finite value.
(iii) If D> d — 1 (that is nz> 1).
Egs. (36a) and (36b) may be rewritten as

xy 2dnLd"? xy 2dnLP
X+y 1-nz X+ynz—-1

rd-1-b (38)

i) =

Asi—> o, 1, -0, and r? 7P — o, Asthe second term of the right side of
Eq. (38) grows without limit, the first constant term becomes negligible. Thus

_ xy 2dnLP
) == X+y nz—lrid_l_D’ (39)
or (cf. Eq. (25)):
ﬂ Cyri P (40)

rid_ 1l 5
where C, is a constant. The area of the pore—solid interface approaches infinity
as a power law function of the resolution scale. It is fractal of dimension D.

3.6. Mass of pores and solids

Fractal models often refer to so-called mass fractal properties, where the term
mass actually means the solid or pore volume (the mass is proportional to the
volume if a uniform density is assumed).

An object is called a mass fractal if the number B(r) of boxes of size r
needed to cover it scalesas r P

B(r)or P (41a)
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or if its mass M(r) measured with units r¢ scalesas r P

M(dr) arP. (41b)

r

In the PSF model, measuring mass with a box-counting method, let By(i) be
the number of boxes of size r; needed to cover the volume of solids.

At the start, By(O) =1 box of size r,= L covers the whole structure.

At first step, B,(1) = Ny + Nz boxes of size r; are needed to cover the solids.

At step 2, there are By(2) = N(Ny) + Nsz(l) boxes of size r,, and at step i,
there will be: B(i) = N'y + NzB,(i — 1) boxes of size r; covering the volume
of solids. We can show by recurrence that

. i z' - i
B,(i)=N y( — + (Nz) (42)
B,(i) = N'y+NB(i-1)=N'y+Nz N‘ly( ZI;__l +(Nz)i1)
_ . AR : _ Z-1-1 :
= N'y+ Nz N'ly( )+(Nz) =N'y[1+ z( — ))+(Nz)
i z-1+7 -z : i i i
= N'y T +(NZ) =N y(z)‘f‘(NZ) .
Thus
7 . Nyz —N'y+2(N2)' = (N2)’
B,(i)=N y(z—l +(Nz) = —
(Nz)'(y+z—1)—Niy
B z—1
or
 x(N2)'+N'y
BAQZ——TT;—ﬂ
and introducing Eg. (13)
. X [ i
By(l)—m(Nz) +x+yN' (43)

Using Egs. (8) and (10), Eq. (43) can be rewritten as
y X
B,(i)= ——L% 44+ ——LPr 0O, 44a
(D)= oy oy (442)

In the same way, covering the pores needs a number B, (i) of boxes varying
as

X
B,(i)=——L% %+ LLDr;D. (44b)
X+Yy X+Yy
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The symmetric expressions for B,(i) and B,(i) assume the form of the sum
of two power law functions of the box size r; with exponents —d and —D,
where d is the Euclidean dimension and D the fractal dimension. We conclude
that, in a PSF model, neither the solid phase nor the pore phase exhibit fractal
scaling. The PSF in its general form is not a true mass fractal.

The volumes of pores and solids measured with resolution r;, which we
denote by M,(i) and M,(i) respectively follow immediately from Egs. (44a)
and (44b) as

X y
M, (i) = B,(i)r¢ = L9+ LPrd-P 45
(D) =B = L Lyt (453)
H ipd y d X D,d-D
My(1) = By()rf! = S Lo L Lon P (45b)

If infinite iterations are carried out, M, (i) and M (i) approach finite values

(I)_)—yLd LY, (464)
y
M, (i) — F'—d (1- o)L, (46b)
as required.
4. Discussion

4.1. A new, consistent geometric representation of a two-phase porous structure

Many attempts to model fractal properties of complex rea porous media
involve rather simple geometric figures. the Sierpinki carpet, the Menger
sponge, the fractal cube considered by Rieu and Sposito and many types of
fractal, lacunar models (see Rieu and Perrier, 1997, for a review). Several
models of fractal surface have been first proposed based on the Von Koch curve
(Pfeifer and Avnir, 1983) or similar shapes. These theoretical models generally
represent only the pore—solid interface and their use to model soil structure is
limited. Mass fractals congtitute a great improvement in the sense that they
closely associate both solid and pore phases in a geometrical frame. Two main
types of mass fractal model are commonly used (Rieu and Perrier, 1997). Pore
mass fractals exhibit a fractal pore ‘mass by introducing a fractal cumulative
number—size distribution of elements identified with solids in a fractal set
identified with the pore phase (Fig. 3a). Solid mass fractals exhibit a fractal
solid mass by introducing a fractal cumulative number—size distribution of
elements identified with pores in a fractal set identified with a solid phase (Fig.
3b). However it should be noted that if, as in a true mathematical fractal, infinite
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d=2,n=5,z=02,x=y=04,D=1,i=3
Fig. 5. Randomized PSF based on a square pattern. In this example, D = 1.

iterations are carried out in the recursive construction of the mass fractal, the
pore space vanishes in pore mass fractals while the solid space vanishes in solid
mass fractals. Paradoxically in this limit a pore mass fractal can represent a
particle size distribution but no pores (Tyler and Wheatcraft, 1992, cf. Fig. 3a.3)
and a solid mass fractal can represent a pore size distribution but no solids
(Tyler and Wheatcraft, 1990, cf. Fig. 3b.3). Both may represent a purely
theoretical fractal pore—solid interface, but neither in the limit is able to
represent a two-phase porous medium.

Since it always associates in a single geometric shape two fractal cumulative
number—size distributions of elements with a fractal set, the PSF model pre-
sented in this paper, is a more advanced fractal model of porous medium.
Irrespective of the range of scale over which the structure is developed, both a
solid phase and a pore phase are modelled by two power law distributions
whereas the fractal set can be identified with either the solid or the pore phase if
a lower cut-off of scaleis considered or vanishes if infinite iterations are carried
out (Figs. 5 and 6). This matter is not addressed by Neimark (1989) who was
not interested in the properties of the solid whereas it is a central point of view
in the approach of Perrier (1994).

A PSF and a mass fractal exhibit structure over a range of scales specified by
the modeller. A well-known property of a solid mass fractal is that when this
structure extends to arbitrarily small scales the porosity of the model approaches
unity, assuming that the fractal set is identified with the solid phase and its
complement is identified with the pore phase. When these identifications are
reversed (pore mass fractal), the porosity approaches zero. These limiting values
of porosity clearly have no physical relevance. This is in marked contrast to the
porosity of the new model which is designed to attain limiting value of total
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d=2,n=5,z=0.72,x=y=0.14,D=1.796,i=3
Fig. 6. Randomized PSF based on a square pattern. General caseof d—1< D < d.

porosity ¢ lying between these two extremes and depending only on the values
of the parameters x and vy, that is the proportion of pore space and solid kept at
each step. This peculiarity of PSF model is thus an important extension to the
range of models available for modelling multiscale porous media and specifi-
cally soil structures.

4.2. The PSF model compared to classic mass fractal models

The scaling of the mass of solid or pores is a crucial point in modelling soil
structures. This matter is not developed by Neimark (1989) neither by Perrier
(1994), but the interesting scaling properties of a PSF deserve attention. A mass
fractal possesses characteristic scaling properties which identify it as a fractal
structure (see Rieu and Perrier, 1997 for areview). A PSF in its genera form is
not a mass fractal and its scaling properties are different. For a mass fractal a
power law scaling relation is obtained from which the mass fractal dimension
may be inferred. For a PSF, as shown by Egs. (44a) and (44b), the correspond-
ing relation assumes the form of the sum of an Euclidean power law function
and a fractal power law function. Thus neither the solid mass nor the pore mass
properly exhibit a fractal scaling. Whilst the scaling relations identify the PSF as
a structure other than a mass fractal, it is important to note that it can
nevertheless easily be confused with that of a mass fracta if it is examined over
a narrow range of scales. Some degree of caution is thus required in the use of
any algorithm to analyse soil data, and the theory suggests that some soils might
have been called mass fractals on approximate grounds and might be better
modelled by a PSF.

In the case x =0, the PSF model reduces to a fractal number—size distribu-
tion of solids and a fractal set. If the latter is associated with the pore phase, the
result is a pore mass fractal. From Egs. (44a) and (44b) we then have that B,(i)
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exhibits Euclidean scaling while B,(i) exhibits fractal scaling as required.
Similarly, if y=0 and the fractal set is associated with the solid phase we
obtain a solid mass fractal. Then Egs. (44a) and (44b) show that B,(i) exhibits
fractal scaling whilst B,(i) exhibits Euclidean scaling. Thus mass fractal models
appear as degenerate cases of a PSF.

Both a PSF in its general form and a mass fractal exhibit self-similar
properties in the sense that where local structure occurs, it is similar to the
whole. The essentia difference between the two which leads to the different
scaling properties as shown above is that a PSF model is in places devoid of
such local structure, whereas a mass fractal is not.

4.3. Pore and solid number—size distributions

In this paper, we use the expression ‘solid’ or ‘solid element’ instead of
‘particle’ or ‘grain’ used in other works (e.g., Haverkamp and Parlange, 1986).
But we do not mean ‘solid, porous aggregate’ in the sense of Rieu and Sposito
(1991ab) or Crawford et a. (1995). We clarify this statement by noting that we
identify ‘ particles’ with the primary elements of a soil structure. The number—
size distribution of solids and pores differ significantly between a mass fractal
and a PSF. If alower cut-off of scale is considered, in a solid mass fractd, i.e., a
fractal set identified with the solid phase, the solids are of equal size (cf. Bird et
al., 1996), whilst the complementary pore space exhibits a power law number—
size distribution of pores, with a power law exponent equal to —D. Similarly for
apore mass fractal, i.e., afractal set identified with the pore phase, the pores are
of equal size while the solids size distribution is power law. In contrast, in a PSF
symmetry exists between the pore-size and solid-size distributions. Specifically
both distributions assume a power law form with identical power law exponent
—D (cf. Perrier, 1994), where D is the fracta dimension of the pore—solid
interface. The existence of such a symmetry is interesting in relation to the
established view that solid-size distributions convey information relating to
porosity and pore—size distributions and consequently soil hydraulic properties,
through relations which map known solid sizes onto inferred pore sizes (e.g.,
Arya and Paris, 1981, Haverkamp and Parlange, 1986). A PSF provides an
example of a porous material where this view appears to some extent valid. Also
of interest are previous suggestions that power law fractal pore-size and
particle-size distributions can coexist within a soil (e.g., Tyler and Wheatcraft,
1992, who acknowledged that ‘‘a theoretical development is not yet available’’).
Again a PSF, in contrast to a mass fractal, provides an explicit example of one
such model where this situation occurs.

4.4, Pore—solid interface

In a mass fractal the pore—solid interface is the boundary between the solid
(or the pores) distributed in the fractal pore (or solid) mass. This surface grows
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as a power law of the resolution scale. It is fractal of dimension D. When the
fractal structure is developed ad infinitum, the fractal pore (or solid) mass
vanishes and the interface has no physical relevance. However, if alower cut-off
of scaleis used, the area of the interface has a finite value and the fractal surface
can model a rea solid—pore interface. Neimark (1989) has shown that in his
‘self-similar multiscale percolation system’ both fractal and nonfractal surfaces
can arise depending on the value of nz and consequently D. When a fractal
surface occurs, this D is aso the dimension of the surface. In our own
derivation of the scaling behavior of the interface, based on the number—size
distribution, we obtain the same result. Because it always associates both solid
and pore phases, the PSF model exhibits a pore—solid interface even if the
structure is developed towards infinity. Depending on the value of the fractal
dimension, the area of the interface assume the form of alogarithmic function of
the length scale r, (in the case of D =d — 1, cf. Eq. (35)), or of afractal power
law (D >d— 1; cf. Eq. (39)), or it tends towards a constant finite value (for
D <d -1, cf. Eq. (37).

It follows from the above that whilst a porous material can exhibit self-similar
properties and fractal number—size distributions of its elements (pores, solids or
both) this does not imply a fractal surface. This only occurs when D >d—1
(see e.g., Pfeifer and Avnir, 1983; Friesen and Mikula, 1987; Toledo et a.,
1990). Here mathematical calculation of the area of the interface brings evidence
of this critical value d — 1. Fig. 5 presents the particular case of a PSF model
with a fractal dimension D =d — 1. It is interesting to note that although not
visually obvious, the solid—pore interface is not fractal in this instance as it

Table 1
Scaling properties of the PSF model and of pore and solid mass fractal models

Pore-Solid Fractal (PSF)
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Pore Mass Fractal

General Pore-Solid Fractal

Solid Mass Fractal
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dimension D
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y=0
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dimension D
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grows in a logarithmic fashion when the structure is developed. Apart from the
relatively small extension of the fractal set, nothing points out why the area of
the solid—pore interface is on the critical point between a nonfractal surface
whose area tends towards a finite constant value and a fractal surface whose area
tends towards infinity when the structure is developed ad infinitum (Fig. 6).

Calculations of the area of the interface have been derived for x+# 0, y # 0.
Fig. 3 gives an illustration of the limiting cases x =0, y= 0. When x =0, the
PSF becomes a pore mass fractal combining a fractal distribution of solids and a
fractal set. Now if the supplementary assumption is made that the fractal set of
(Nz)' subregions represent pores we can still define and measure a pore—solid
interface. Symmetrically a pore—solid interface can be defined when y = 0. The
general results concerning the fractal character of the pore—solid interface hold
in these limiting cases.

4.5. Summary

The scaling properties of the PSF model are summarized in Table 1. It can be
observed how the PSF is a generalization of mass fractal which may be viewed
as specia albeit degenerate case. Thus the PSF model can be used in many cases
for the following purposes.

1. Either to represent soils which have been shown to be surface fractals, in
the same way as simple surface models have already been used (e.g., Pfeifer and
Avnir, 1983; de Gennes, 1985).

2. Or to represent soils which exhibit a fractal pore size distribution, in the
same way as simple lacunar fractal models have already been used (e.g., Tyler
and Wheatcraft, 1990; Rieu and Sposito, 1991a).

3. Or to represent soils which exhibit a fractal solid size distribution, in the
same way as simple models of fractal number—size distributions have already
been used (e.g., Tyler and Wheatcraft, 1992; Wu et al., 1993)

4. Or to represent soils which exhibit a fractal solid mass, in the same way as
simple models of a fractal solid phase have already been used (e.g., Rieu and
Sposito, 1991a; Young and Crawford, 1991).

5. Or to represent soils which exhibit a fractal pore mass, in the same way as
simple models of a fractal pore phase have already been used (e.g., Katz and
Thompson, 1985; Ghilardi et al., 1993).

In addition, because the PSF model is a self-consistent geometric model of
the whole porous structure, whatever the particular fractal property it has be
designed to model, it gives also information about the possible scaling behaviour
of the other properties of the porous structure (cf. Table 2). For example, if we
consider a soil exhibiting a fractal pore size distribution (Perrier et al., 1996), the
PSF model suggests which properties of the solid phase and which hydraulic
properties could be associated to this particular pore size distribution.
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d=2,n=20,z=0.75,x=y=0.125,D=1904,i=2

Fig. 7. Randomized PSF based on a polyedral pattern, with a division process obtained by a
Voronoi tessellation. General case of d—1< D < d.

4.6. Extension: effect of different local geometric patterns

The ability of a fractal model of porous medium to represent a soil structure
depends on its structural features. number—size distribution of its components,
porosity, fractal scaling of the pore and solid phases, fractal scaling of the
pore—solid interface, and on the behaviour ad infinitum of these properties. But
this ability also depends strongly on the geometric patterns of the model. As an
example, two redlizations of the PSF model are presented Figs. 6 and 7. The
first one is based on a square pattern. In the second, the division of the initiator
is obtained by a Voronoi tessellation process (Perrier, 1994) and the basic
pattern is polyhedral. In both cases, the proportions x, y and z have a constant
value and the location of the pore and solid subregions is randomly determined
at each iteration step. At any stage of its development, both structures exhibit
the same properties. total porosity value lying between O and 1, fracta
number—size distribution of pores and solids, nonfractal scaling of the pore and
solid phases and fractal scaling of the pore—solid interface.

Improved geometric patterns may help in the construction of more realistic
models of soil structure. As an example Figs. 8 and 9 present structures
equivalent respectively to those presented in Figs. 6 and 7 in terms of their basic
properties, but here the pores are located around the solids. Instead of keeping
Ny solids and Nx pores among the N(1—z) subregions, an homothetic
reduction of ratio k replaces each subregion of size r® among the N(1 — z) ones
by one solid of size k% ¢ surrounded by one pore of size (1—k%)r This
pattern proposed by Perrier (1994) is defined by a set of three parameters (N, z
and k) whereas Neimark’s percolation system and PSF model use (N, x and y).
Equivalence between these two approaches is given in Appendix A.
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d=2,n=5,z=0.72,x=y=0.14,D=1.796,k=0.707,i=3

Fig. 8. PSF numerically equivalent to the example presented in Fig. 6. Here, the void phase is
located around the solid, resulting in a very different shape.

Obviously, some of these examples resemble soil structures more than others.
In particular, each of them exhibits a specific kind of pore connectivity. As an
illustration of this latter, Fig. 10 presents a mass fractal variation of the
Sierpinski Carpet carried out by Perrier (1994). This degenerate form of PSF
model is a 2D representation of a random realization of the fractal cube
considered by Rieu and Sposito (1991a), fragmented by a Voronoi tessellation
(Perrier et al., 1995). This fractal object is a solid mass fractal where a fractal
cumulative number—size distribution of fractures is associated with a solid phase
that exhibits a fractal scaling. As in the model presented in Fig. 3b, when this
structure extends to arbitrarily small scales its porosity approaches unity.

d=2,n=20,2z=0.75,x=y=0.125,D=1.904, k= 0.707,i =2

Fig. 9. PSF numerically equivalent to the example presented in Fig. 7, with a void phase
surrounding the solid.
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d=2,n=2.65,z=092,x=0.08,y=0,D=1.919,i=5

Fig. 10. 2D representation of a random realization of the fractal cube considered by Rieu and
Sposito (1991a,b,c), fragmented by a VVoronai tessellation. In this solid mass fractal, the fractal set
is associated to the solid phase.

Unfortunately the network of fractures appears excessively connected for mod-
elling a soil pore space.

5. Conclusion

In conclusion, the PSF model originating with Neimark (1989) and Perrier
(1994) can be viewed as a fully self-consistent fractal model of genera
application in the sense that it is not tied to a specific local geometry. Whilst this
is equaly true of a mass fractal, the generality of a PSF obviously exceeds that
of a mass fractal. Mass fractals have already featured prominently in modelling
complex porous materials and it remains to be seen to what extent the wider
class of PSF models follows this trend.

Neither the pore phase nor the solid phase of a general PSF exhibit mass
fracta scaling. On the other hand the pore—solid interface is fractal for
D >d— 1 At any stage of its development, the PSF can model a two-phase
porous structure. When the structure extends ad infinitum, its porosity ap-
proaches a finite value that can be chosen by the modeller between the extreme
value 0 or 1 independently of the fractal dimension. Finally the main peculiarity
of the PSF is the association in the same geometric shape of a distribution of
pores and a distribution of solids which both assume a power law form with the
same fractal exponent. As a result of this symmetry, the PSF model appears
promising in terms of modelling hydraulic properties based on structural proper-
ties of the solid phase. If in addition an appropriate geometric shape is used, the
connectivity of the pore network can be taken into account in pore network
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simulations. Intrinsic to a mass fractal and a PSF model as presented in this
paper are the notions of multiscale structure and self-similarity of structure.
Further generalization is possible when the latter notion is relaxed. Construction
of a model in which similarity of structure at different scales is not required
further widens its scope of application. These points will be developed in
forthcoming papers.

6. List of symbols

fractal dimension

Euclidean space dimension

linear size of the initiator

number of subregions paving the initiator

inverse of the similarity ratio

proportion of subregions where the whole shape is replicated
proportion of subregions kept as pores

proportion of subregions kept as solids

total number of replicates of size r; created at iteration step i

§*<><N:>Z|—Q_U
P

=

N

N

W Lr) total number of pores of size r, created at iteration step i

A1) total number of solids of size r; created at iteration step i

N,(r,) total number of replicates of size greater than or equal to r,

N(r)) total number of pores of size greater than or equal to r,

N,(r;) total number of solids of size greater than or equal to r,

m last step of division if any

x means ‘ proportional to’

¢ porosity

& partial porosity at step i

B, (i) number of boxes of size r; needed to cover the pores

B,(i) number of boxes of size r, needed to cover the solids

B,(i) number of boxes of size r, needed to cover the fractal set

M, (i) volume (or mass) of pores at iteration step i

M, (i) volume (or mass) of solids at iteration step i

9i) area of the pore—solid interface

S (i) cumulative boundary of pores at iteration step i

S,(i) cumulative boundary of solids at iteration step i

p (i) probability that an arbitrary chosen point on the solids boundary
belongs to the solid—pore interface

p,(i) probability that an arbitrary chosen point on the pores boundary
belongs to the solid—pore interface

k ratio of the similarity transformation used by Perrier (1994) to

define the size of the solids and pores associated to any subregion
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Appendix A
A.1. Equivalence between the model of Perrier (1994) and the PSF model

Perrier's model is defined on the basis of three parameters (N, z, k) which
are equivaent to the set (N, X, y) defining the PSF model.

Perrier's model involves Nz and N(1 — z) subregions as does the PSF. The
parameter k defines the ratio of the contracting similarity used to replace each of
the N(1 — z) subregions of linear size r by one solid of volume k9 ¢ sur-
rounded by one pore of volume (1 — k) r (see Figs. 8 and 9). An equivalent
PSF model can be created by choosing the same N and the following x and y
proportions: x = (1—z)(1 —k9), y=(1—2z)k¢

Conversely, if a PSF model is defined by the parameters (N, x, y), an
equivalent model is obtained using Perrier’s definitions by choosing the same N
and the following z and k values:

y 1/d
=1-x—vy, k=
‘ Y (X+Y)

All the results obtained in this paper could have been also derived using
Perrier’ s definition. For instance, the equivalent of the total porosity given in Eq.
(20), p=x/(x+Yy), is. 1—k% Limiting cases x=0 and y=0 correspond
respectively to k=1 and k= 0.
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