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Abstract

We review a generalized approach to modeling soil structures, which exhibit scale invariant, or
self-similar local structure over a range of scales. Within this approach almost all existing fractal
models of soil structure feature as special albeit degenerate cases. A general model is considered
which is shown to exhibit either a fractal or nonfractal pore surface depending on the model
parameters. With the exception of two special cases corresponding to a solid mass fractal and a
pore mass fractal the model displays symmetric power law or fractal pore size and solid size
distributions. In this context the model provides an example of a porous structure in which pore
sizes can be inferred from associated solid particle sizes through this symmetry. Again with two
exceptions the model is shown to exhibit scaling of solid and pore volumes as a function of the
resolution of measurement contrary to that of a mass fractal structure and to possess porosity other
than zero or unity when local structure is included at arbitrarily small scales contrary to the
situation arising in the case of a solid mass fractal and a pore mass fractal model respectively.
Consequently the model not only generalizes the fractal approach to modeling soil structure but
introduces properties central to the characterization of a soil which are quite distinct from those
exhibited by existing fractal models. The model thus offers a wider scope for modeling
self-similar multiscale soil structures than that currently operating. q 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Fractals are becoming increasingly popular in soil physics research as a
means for characterizing various properties of porous media. They have been

Ž .used both in theoretical and practical studies to model: i fractal number–size
Ždistributions pore size distributions: Friesen and Mikula, 1987; Ahl and

Niemeyer, 1989; Tyler and Wheatcraft, 1990; Rieu and Sposito, 1991c; Perrier
et al., 1996; particle size distributions: Tyler and Wheatcraft, 1989, 1992; Wu et

. Ž . Žal., 1993 ; ii fractal surfaces pore–solid interface: Pfeifer and Avnir, 1983, de
Gennes, 1985, Friesen and Mikula, 1987; Davis, 1989, van Damme and Ben

.Ohoud, 1990; Toledo et al., 1990; Bartoli et al., 1991; Crawford et al., 1995
Ž . Žand iii mass fractal properties solid mass fractal: Friesen and Mikula, 1987;

Bartoli et al., 1991; Rieu and Sposito, 1991c; Young and Crawford, 1991;
Crawford, 1994; Bird et al., 1996; Crawford et al., 1995; Perrier et al., 1995; or
associated aggregate distributions: Perfect and Kay, 1991; Crawford et al., 1993;

.or pore mass fractal: Katz and Thompson, 1985; Ghilardi et al., 1993 . The main
purpose of these studies is to analyze or characterize complex multiscale porous
structures. As far as soil structure is concerned, attention to date has focused
mainly on modeling soil structures and, in particular, soil aggregate structures in
terms of solid mass fractals and on modeling the pore–solid interface within the
soil in terms of fractal surfaces. The essential feature common to each fractal
model is scale invariance, that is the structure in question is composed of parts
which appear similar to the whole. Examples include the now familiar Menger

Ž .sponge or Sierpinski carpet in the context of a mass fractal model and the Von
Koch curve, or the internal surface of a Menger sponge in the context of a
fractal surface model. Our purpose is to review a new approach to modeling
multiscale porous media and soil structures in particular. This involves an
alternative class of models which can be viewed as a generalization of the
previously quoted fractal models. Like any fractal model, the new class exhibits
self-similar properties. In other important respects, central to the characterization
of a porous medium, it is quite distinct. We will call it a ‘pore–solid fractal’

Ž .model PSF .
Ž .The PSF model originates from two studies. Neimark 1989 developed the

‘self-similar multiscale percolation system’, a representation of a disordered,
disperse medium that exhibits a fractal interface between solid and pore phases.

Ž .Perrier 1994 independently proposed a multiscale model of soil structure
which combines a fractal pore number–size distribution and a fractal solid
number–size distribution. Although these two models have been developed in
different contexts, using slightly different definitions, and presenting different
local geometrical shapes, they are nevertheless equivalent in terms of the
features considered in this paper. After a quick review of the principles of
modelling a fractal porous medium we will define the PSF model within this
conceptual framework using Neimark’s definition. Equivalence with Perrier’s
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definition is given in Appendix A. First we will show how the PSF model
actually gathers in a single structure the previous properties of fractal pore and
solid number–size distributions and a pore–solid fractal interface. Then we will
examine further properties of the PSF model: we will show that it combines in a
geometrical pattern pores and solids at any stage of its development, and we will
derive its scaling properties as regards the solid or pore mass, showing that a
PSF in its general form is not a mass fractal. Finally, in Section 4, we will see
that the PSF model reduces to a classic solid or pore mass fractal in two
symmetric limiting cases, and, more generally, that the PSF model constitutes a
general framework for analysing and comparing most of the previous fractal
models of porous structures in soil science.

2. Fractal objects

2.1. Basic construction

Construction of a deterministic self-similar fractal object of fractal dimension
D, embedded in an Euclidean space of dimension d, is based on the following:

Ž .First, an initiator Fig. 1a which defines a region of linear size L in a space of
Euclidean dimension d. This region can be divided into N equal parts or

Žsubregions of linear size Lrn paving the whole object. Second, a generator Fig.
. Ž . Ž1b which i divides the N parts into two sets of Nz shown in light gray in

Ž .Fig. 1. Basic construction of a fractal object. In a space of Euclidean dimension d, the initiator a
defines a region of linear size L divided into N equal parts. At the first iteration step, the

Ž . Ž . Ž . Ž .generator b divides the N parts into two sets of Nz light gray and N 1y z dark gray
Ž .subregions, determines the location of the Nz subregions and defines a pattern inside the N 1y z

subregions. At the next step, each of the Nz subregions is replaced by a reduced replicate of the
generator.
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. Ž . Ž . Ž . Ž .Fig. 1b and N 1yz shown in dark gray in Fig. 1b subregions z-1 ; ii
Ž . Ž .defines a pattern inside the N 1yz subregions; iii defines the location of the

Nz subregions where the whole shape will be replicated.
Then a recursive process replaces each of the Nz subregions by the generator

Ž .reduced by the same ratio 1rn Fig. 1c for step 2 and so forth at subsequent
steps i.

2.2. General properties

Ž . d dThe smaller subregions pave the whole initiator so that N Lrn sL , that is

Nsnd 1Ž .
The fractal dimension D follows from the number of replicates and the

similarity ratio by

log NzŽ .
Ds . 2Ž .

log nŽ .
Ž .Eq. 2 may be rearranged as:

NzsnD. 3Ž .
Ž . Ž .Combining Eqs. 1 and 3 we obtain

zsnDyd , 4Ž .
and

nzsnDyŽdy1. . 5Ž .
Ž .Let NN r be the number of replicates of size r created at each step i of thez i i

development of the structure. r is defined byi

yi ir sL n or n sLrr . 6Ž . Ž .i i

Ž .The number of replicates created at step 1 is: NN r sNz.z 1

At the next iteration step, Nz replicates of size r are created in each2

replicate of size r . Then at step i,1

iy1
NN r s Nz NN r sNz Nz .Ž . Ž . Ž . Ž .z i z iy1

or

i
NN r s Nz . 7Ž . Ž . Ž .z i

Ž . Ž .Using Eqs. 3 and 6 we obtain

yDi yDi D yi y1 D yDNz s n s n s L r sL r , 8Ž . Ž . Ž . Ž .Ž .i i
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and

NN r sLDryD . 9Ž . Ž .z i i

Ž .Eq. 9 expresses the relationship between the number of replicates and their
size as a power law function with an exponent equal to yD, where D is the
fractal dimension.

In a similar way, several parameters of the fractal object can also be
Ž .expressed as power law functions of the resolution scale r . Formulas 10 toi

Ž . Ž . Ž .12 will be useful in further derivations:From Eqs. 1 and 6

N i sLdryd . 10Ž .i

Ž . Ž .From Eqs. 4 and 6

z i sLDydr dyD . 11Ž .i

Ž . Ž .From Eqs. 5 and 6
i DyŽdy1. Ždy1.yDnz sL r . 12Ž . Ž .i

2.3. Classical ways to model a porous medium

Ž .Depending on the modeling context, the N 1yz subregions may represent
different patterns. When fractal objects are used to model porous media made of

Ž .a solid phase and a pore phase, the set of these N 1yz subregions represents
Ž .generally an homogeneous material shown in dark gray in Fig. 2 rather than a

Ž .heterogeneous one Fig. 1 .

Ž . ŽFig. 2. The first two steps of the development of a fractal porous medium. The N 1y z dark
.gray subregions are associated with an homogeneous material.
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This homogeneous material can be identified either with the solid phase of
Ž . Ž .the porous medium shown in black in Fig. 3a.1 ‘pore mass fractal’ or the

Ž . Ž .pore phase shown in white in Fig. 3b.1 ‘solid mass fractal’ .
ŽAt each step i, reduced copies of the generator in the Nz subregions shown

. Žin light gray in Fig. 3a.1 reveal new details at finer resolution scales Fig. 3a.2
.and b.2 . These subregions constitute the ‘fractal set’.

Ž .Two main options have been considered in previous studies: i Iterations are
Ž . icarried out ad infinitum, and the fractal set of Nz subregions vanishes. The

Ž .model represents only solid in the so-called pore mass fractal Fig. 3a.3 or only
Ž . Ž .pores in the solid mass fractal Fig. 3b.3 . ii A lower cutoff of scale is

Ž .massumed, considering a finite number of recursive iterations m. The Nz
subregions created at the last iteration step ism will undergo no further
division and the fractal set is assumed to model the complementary phase: in a

Žpore mass fractal it is associated with the pore phase shown in very light gray
.in Fig. 3a.4 , and in a solid mass fractal it is associated with the solid phase

Ž .shown in black in Fig. 3b.4 .

3. The PSF model

3.1. Definition

Following the approach of Neimark, which combines pores and solids in the
Ž .model in an interesting symmetrical setting, we define the 1yz proportion of

the generator as a mixture of pore and solid defined as follows:

1yz s xqy 13Ž . Ž . Ž .
where x denotes the proportion of pore phase, y the proportion of solid phase
and z represents the proportion of the generator where the whole shape is
replicated at each step. Solids and pores generated at each step are kept whereas

Ž .the fractal set is transformed Fig. 4 .
Ž . Ž . Ž .Combining Eqs. 13 , 1 and 2 we can express the fractal dimension as:

log 1yxyyŽ .
Dsdq . 14Ž .

log n

Ž .Eq. 14 shows that for a given Euclidean dimension d, the value of the
fractal dimension D of a PSF model depends only on the value of parameters n,
x and y.

Ž . Ž .Fig. 3. Classical example of a pore mass fractal a and a solid mass fractal b modeling a porous
medium. The pore phase is shown in white or very light gray and the solid phase is shown in

Ž .black. If infinite iterations are carried out, the pore mass fractal represents only solid a.3 and the
Ž . Žsolid mass fractal only void b.3 . If a lower cutoff of scale is assumed, the fractal set shown in

. Ž . Ž .light gray is associated with the pore phase a.4 or the solid phase b.4 .
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Ž .Fig. 4. Definition of a PSF model. The N 1y z subregions are divided into Nxs4 pore
Ž . Ž . Ž .subregions white and Nys3 solid subregions black . The fractal set light gray corresponds to

Nzs2 subregions where the whole shape is replicated at next iteration step.

Ž .Parameters x, y and z can be considered as probabilities xqyqzs1 and
Ž .mathematical calculations can be done in a probabilistic way Neimark, 1989 .

However, for sake of simplicity, we will consider here that x, y and z are
proportions and Nx, Ny, Nz refer to the number of subregions of each type, to
get simple proofs based only on counting.

3.2. Counting elements

At step 1, there are only elements of size Lrn: Nx pores, Ny solids and Nz
subregions where the whole shape will be replicated at the next step.

At step 2, some elements of size Lrn are kept: Nx pores, Ny solids, whereas
Ž .y2 Ž . Ž .new elements of size L n are added: Nx Nz pores, Ny Nz solids, and

Ž .Nz Nz subregions where the whole shape will be replicated at the next step.
Ž . Ž .At step i, let NN r and NN r be the respective numbers of pores andx i y i

solids of size r . Theni

NN r s Nx NN r and NN r s Ny NN r .Ž . Ž . Ž . Ž . Ž . Ž .x i z iy1 y i z iy1

Ž .Using Eq. 7 we obtain

iy1
NN r sNx Nz , 15aŽ . Ž . Ž .x i
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Ž .and using Eq. 8 ,

Nx xi D yDNN r s Nz s L r . 15bŽ . Ž . Ž .x i iNz z

In a symmetric way, we can write
iy1

NN r sNy Nz 16aŽ . Ž . Ž .y i

or

Ny yi D yDNN r s Nz s L r . 16bŽ . Ž . Ž .y i iNz z

More generally, the number of elements of size r added at each step scalesi

as a power yD of the size:

NN r AryD , NN r AryD , NN r AryD . 17Ž . Ž . Ž . Ž .x i i y i i z i i

3.3. Porosity

Since x represents the proportion of pores kept at step 1 by the generator, zx
is the proportion of pores added in the replicates generated at step 2, and so on.
Thus the porosity f at step i is the following sum:i

iy1 iz y1
2 iy1 jfsxqzxqz xq . . . qz xsx z sx . 18Ž .Ý ž /zy1js0

Ž .From Eq. 13 we obtain
x

if s 1yz . 19Ž . Ž .i xqy
i Ž .As the number of iterations i increases to infinity, z ™0 and Eq. 19

Ž .becomes cf. Neimark, 1989 and Perrier, 1994 :
x

fs 20Ž .
xqy

Ž .Eq. 20 shows that a PSF model exhibits a finite value of the total porosity
which depends only on the value of parameters x and y.

3.4. CumulatiÕe number–size distributions of pores and solids

It is commonly assumed that, when a collection of self-similar objects
exhibits a cumulative number–size distribution of objects in the form:

N r AryD . 21Ž . Ž .
Ž .the collection may be called fractal of dimension D Mandelbrot, 1983 .
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Ž . Ž .Let N r and N r be the respective numbers of pores and solids of sizex i y i

greater than or equal to r .i
Ž . Ž .At iteration step is1, the number of pores is N r sNN r sNx.x 1 x 1

Ž . Ž . Ž . Ž . Ž .For is2, N r sN r qNN r sNxqNx Nz sNx 1qNz , and atx 2 x 1 x 2

any step i:

2 iy1
N r sN r qNN r sNx 1qNzq Nz q . . . q Nz .Ž . Ž . Ž . Ž . Ž .ž /x i x iy1 x i

Summation of this geometric series of ratio Nz yields:

iiy1 Nz y1Ž .j
N r sNx Nz sNx . 22Ž . Ž . Ž .Ýx i ž /Nzy1js0

Ž . i ŽŽ . i . Ž . i Ž .If Nz)1, as i™`, Nz 41 and Nz y1 ( Nz . Using Eq. 8 one
gets

Nx Nxi D yDN r ( Nz s L r . 23aŽ . Ž . Ž .x i iNzy1 Nzy1

In a symmetric way, the cumulative number of solids greater than or equal to
Ž .r is obtained by substituting x by y in Eq. 23ai

Ny Nyi D yDN r ( Nz s L r . 23bŽ . Ž . Ž .y i iNzy1 Nzy1

Ž . Ž . Ž .Eqs. 23a and 23b are discrete analogs of Eq. 21 . They can be rewritten
as:

N r AryD , 24aŽ . Ž .x i i

and

N r AryD . 24bŽ . Ž .y i i

Ž . Ž .Eqs. 24a and 24b show the symmetry exhibited by the PSF model: both the
pore number–size distribution and the solids number–size distribution assume a
power law form with identical exponent yD, where D is the fractal dimension.

3.5. Pore–solid interface

Another fractal property commonly observed in some porous media is related
to the measurement of the pore–solid interface.

Ž .A surface is called fractal of dimension D when its area S l measured with
units l dy1 scales as l dy1yD where dy1-D-d, that is:

S lŽ .
yDA l . 25Ž .dy1l
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Ž .Neimark 1989 has studied the properties of ‘‘the surface of a self similar
multiscale percolation system’’. For completeness, we include here our own

Ž .derivation of the interface behavior in a PSF model. The area S i of the
Ž .pore–solid interface perimeter when ds2, surface when ds3 can be first

approximated by summing the surfaces of all the boundaries of the solid
elements which have been created after i iteration steps. These solid elements

Ž . Ž .are squares ds2 or cubes ds3 of size greater than or equal to r . Eachi

solid subregion of linear size r has a surface 2 dr dy1 and the cumulativei i
Ž .boundary of the solid elements, denoted S i is equal to:y

i
dy1S i s NN r 2 dr . 26Ž . Ž . Ž .Ž .Ý ž /y y j j

js1

Ž . Ž .Introducing Eqs. 16a and 6 , we obtain

i
dy1jy1 yjS i s2 d Ny Nz Ln , 27Ž . Ž . Ž . Ž .Ýy

js1

dy1 jy1i iL Nzjjy1 Ž .dy1 y dy1S i s2 dNyL Nz n s2 dNy .Ž . Ž . Ž .Ý Ýy dy1ž / ž /n njs1 js1

28Ž .

Ž .Using Eq. 1 , we get

jy1dy1 y1di iL n z L jy1d dS i s2 dn y s2 dy L nz . 29Ž . Ž . Ž .Ý Ýy dy1ž / ž /ž /n n njs1 js1

Ž .The value of the geometric series in Eq. 29 depends on the value of nz. If
nzs1,

y1L
dS i s2 dy L i . 30Ž . Ž .y ž /n

Ž . Ž . Ž . Ž .From Eq. 6 we obtain is log Lrr r log n and Eq. 30 becomesi

2 dnyLdy1 L
S i s log . 31Ž . Ž .y log n ri

If nz/1,

iy1L nz y1Ž .
dS i s2 dy L . 32Ž . Ž .y ž /n nzy1
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Ž . Ž . i Dydq1 dy1yD Ž .From Eq. 12 we have nz sL r and Eq. 32 becomesi

2 dnLdy1 2 dnLD
dy1yDS i sy qy r . 33aŽ . Ž .y i1ynz nzy1

In a symmetric way, the cumulative area of the boundaries of pores created at
i iteration steps is given by

2 dnLdy1 2 dnLD
dy1yDS i sx qx r . 33bŽ . Ž .x i1ynz nzy1

Ž .The actual interface S i between solids and pores cannot be calculated so
simply, because the location of the solid and pores subregions in the model must

Ž .be taken into account. At each step i, we consider a constant number Ny or Nx
Ž .of solid or pore subregions but randomly distributed in space. If two solid

subregions have a common side, this side belongs to the total boundary
Ž . Ž . Ž .measured by S i , but not to the solid–pore interface. Thus S i -S i andy x

Ž . Ž .S i -S i .y
Ž .In a random realization, assuming x/0, y/0, the calculation of S i can

be done in a probabilistic manner. As the number of iterations increases to
Ž . i Ž .infinity, the fractal set of Nz subregions vanishes and the probability p ix

that an arbitrary chosen point on the solid boundary belongs to the interface is
equal to the probability that the neighboring point outside the solid is located in

Ž .a pore subregion. Thus as infinite iterations are carried out, p i ™ f,x i™`

where f is the porosity.
Ž .Then, using Eq. 19

x
S i sp i S i sfS i s S i 34aŽ . Ž . Ž . Ž . Ž . Ž .x y y yxqy

or in a symmetrical way we could get

y
S i sp i S i s 1yf S i s S i . 34bŽ . Ž . Ž . Ž . Ž . Ž . Ž .y x x xxqy

Ž . Ž . Ž . Ž .and from Eqs. 33a and 33b , Eqs. 34a and 34b are strictly identical.
Three cases must be distinguished.

Ž . Ž . Ž .i If Dsdy1 that is nzs1 . From Eqs. 31 and 34a we obtainŽ .

xy 2 dnLdy1 L
S i s log . 35Ž . Ž .

xqy log n ri

The surface of the solid–pore interface approaches infinity approximately as the
logarithm of the inverse of r .i

If nz/1
Ž .ii if D-dy1 that is nz-1 .Ž .
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Ž . Ž .Using Eqs. 33a and 34a we get

x 2 dynLdy1 2 dynLD
dy1yDS i s q r 36aŽ . Ž .iž /xqy 1ynz nzy1

Ž . Ž .or from Eqs. 33b and 34b

y 2 dxnLdy1 2 dxnLD
dy1yDS i s q r . 36bŽ . Ž .iž /xqy 1ynz nzy1

As i™`, r ™0, r dy1yD ™0 thusi i

xy 2 dnLdy1

6

S i . 37Ž . Ž .
i™` xqy 1ynz

The surface of the solid–pore interface approaches a finite value.
Ž .iii If D)dy1 that is nz)1 .Ž .

Ž . Ž .Eqs. 36a and 36b may be rewritten as

xy 2 dnLdy1 xy 2 dnLD
dy1yDS i s q r 38Ž . Ž .ixqy 1ynz xqy nzy1

As i™`, r ™0, and r dy1yD ™`. As the second term of the right side ofi i
Ž .Eq. 38 grows without limit, the first constant term becomes negligible. Thus

xy 2 dnLD
dy1yD6

S i r , 39Ž . Ž .ii™` xqy nzy1

Ž Ž ..or cf. Eq. 25 :

S iŽ .
yD6

C r 40Ž .1 idy1 i™`ri

where C is a constant. The area of the pore–solid interface approaches infinity1

as a power law function of the resolution scale. It is fractal of dimension D.

3.6. Mass of pores and solids

Fractal models often refer to so-called mass fractal properties, where the term
Žmass actually means the solid or pore volume the mass is proportional to the

.volume if a uniform density is assumed .
Ž .An object is called a mass fractal if the number B r of boxes of size r

needed to cover it scales as ryD

B r AryD 41aŽ . Ž .
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Ž . d yDor if its mass M r measured with units r scales as r

M rŽ .
yDAr . 41bŽ .dr

Ž .In the PSF model, measuring mass with a box-counting method, let B i bey

the number of boxes of size r needed to cover the volume of solids.i
Ž .At the start, B 0 s1 box of size r sL covers the whole structure.y 0
Ž .At first step, B 1 sNyqNz boxes of size r are needed to cover the solids.y i

Ž . Ž . Ž .At step 2, there are B 2 sN Ny qNzB 1 boxes of size r , and at step i,y y 2
Ž . i Ž .there will be: B i sN yqNzB iy1 boxes of size r covering the volumey y i

of solids. We can show by recurrence that

z i y1 iiB i sN y q Nz 42Ž . Ž . Ž .y ž /zy1
z iy1 y1 iy1i i iy1B i s N yq NzB iy1 s N yq Nz N y q NzŽ . Ž . Ž .y y ž /ž /zy1

iy1 iy1z y1 z y1i ii iy1 is N yq Nz N y q Nz s N y 1q z q NzŽ . Ž .ž / ž /ž / ž /zy1 zy1

i izy1q z y z z y1i ii is N y q Nz s N y q Nz .Ž . Ž .ž / ž /zy1 zy1

Thus
i ii i i iz y1 N yz yN yqz Nz y NzŽ . Ž .iiB i sN y q Nz sŽ . Ž .y ž /zy1 zy1

i iNz yqzy1 yN yŽ . Ž .
s

zy1
or

i ix Nz qN yŽ .
B i s ,Ž .y 1yz

Ž .and introducing Eq. 13
x yi iB i s Nz q N . 43Ž . Ž . Ž .y xqy xqy

Ž . Ž . Ž .Using Eqs. 8 and 10 , Eq. 43 can be rewritten as
y x

d yd D yDB i s L r q L r . 44aŽ . Ž .y i ixqy xqy

Ž .In the same way, covering the pores needs a number B i of boxes varyingx

as
x y

d yd D yDB i s L r q L r . 44bŽ . Ž .x i ixqy xqy
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Ž . Ž .The symmetric expressions for B i and B i assume the form of the sumx y

of two power law functions of the box size r with exponents yd and yD,i

where d is the Euclidean dimension and D the fractal dimension. We conclude
that, in a PSF model, neither the solid phase nor the pore phase exhibit fractal
scaling. The PSF in its general form is not a true mass fractal.

The volumes of pores and solids measured with resolution r , which wei
Ž . Ž . Ž .denote by M i and M i respectively follow immediately from Eqs. 44ax y

Ž .and 44b as
x y

d d D dyDM i sB i r s L q L r , 45aŽ . Ž . Ž .x x i ixqy xqy
y x

d d D dyDM i sB i r s L q L r . 45bŽ . Ž . Ž .y y i ixqy xqy

Ž . Ž .If infinite iterations are carried out, M i and M i approach finite valuesx y

x
d dM i ™ L sfL , 46aŽ . Ž .x xqy

y
d dM i ™ L s 1yf L , 46bŽ . Ž . Ž .y xqy

as required.

4. Discussion

4.1. A new, consistent geometric representation of a two-phase porous structure

Many attempts to model fractal properties of complex real porous media
involve rather simple geometric figures: the Sierpinki carpet, the Menger
sponge, the fractal cube considered by Rieu and Sposito and many types of

Ž .fractal, lacunar models see Rieu and Perrier, 1997, for a review . Several
models of fractal surface have been first proposed based on the Von Koch curve
Ž .Pfeifer and Avnir, 1983 or similar shapes. These theoretical models generally
represent only the pore–solid interface and their use to model soil structure is
limited. Mass fractals constitute a great improvement in the sense that they
closely associate both solid and pore phases in a geometrical frame. Two main

Ž .types of mass fractal model are commonly used Rieu and Perrier, 1997 . Pore
mass fractals exhibit a fractal pore ‘mass’ by introducing a fractal cumulative
number–size distribution of elements identified with solids in a fractal set

Ž .identified with the pore phase Fig. 3a . Solid mass fractals exhibit a fractal
solid mass by introducing a fractal cumulative number–size distribution of

Želements identified with pores in a fractal set identified with a solid phase Fig.
.3b . However it should be noted that if, as in a true mathematical fractal, infinite
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Fig. 5. Randomized PSF based on a square pattern. In this example, Ds1.

iterations are carried out in the recursive construction of the mass fractal, the
pore space vanishes in pore mass fractals while the solid space vanishes in solid
mass fractals. Paradoxically in this limit a pore mass fractal can represent a

Ž .particle size distribution but no pores Tyler and Wheatcraft, 1992, cf. Fig. 3a.3
and a solid mass fractal can represent a pore size distribution but no solids
Ž .Tyler and Wheatcraft, 1990, cf. Fig. 3b.3 . Both may represent a purely
theoretical fractal pore–solid interface, but neither in the limit is able to
represent a two-phase porous medium.

Since it always associates in a single geometric shape two fractal cumulative
number–size distributions of elements with a fractal set, the PSF model pre-
sented in this paper, is a more advanced fractal model of porous medium.
Irrespective of the range of scale over which the structure is developed, both a
solid phase and a pore phase are modelled by two power law distributions
whereas the fractal set can be identified with either the solid or the pore phase if
a lower cut-off of scale is considered or vanishes if infinite iterations are carried

Ž . Ž .out Figs. 5 and 6 . This matter is not addressed by Neimark 1989 who was
not interested in the properties of the solid whereas it is a central point of view

Ž .in the approach of Perrier 1994 .
A PSF and a mass fractal exhibit structure over a range of scales specified by

the modeller. A well-known property of a solid mass fractal is that when this
structure extends to arbitrarily small scales the porosity of the model approaches
unity, assuming that the fractal set is identified with the solid phase and its
complement is identified with the pore phase. When these identifications are

Ž .reversed pore mass fractal , the porosity approaches zero. These limiting values
of porosity clearly have no physical relevance. This is in marked contrast to the
porosity of the new model which is designed to attain limiting value of total
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Fig. 6. Randomized PSF based on a square pattern. General case of dy1F D- d.

porosity f lying between these two extremes and depending only on the values
of the parameters x and y, that is the proportion of pore space and solid kept at
each step. This peculiarity of PSF model is thus an important extension to the
range of models available for modelling multiscale porous media and specifi-
cally soil structures.

4.2. The PSF model compared to classic mass fractal models

The scaling of the mass of solid or pores is a crucial point in modelling soil
Ž .structures. This matter is not developed by Neimark 1989 neither by Perrier

Ž .1994 , but the interesting scaling properties of a PSF deserve attention. A mass
fractal possesses characteristic scaling properties which identify it as a fractal

Ž .structure see Rieu and Perrier, 1997 for a review . A PSF in its general form is
not a mass fractal and its scaling properties are different. For a mass fractal a
power law scaling relation is obtained from which the mass fractal dimension

Ž . Ž .may be inferred. For a PSF, as shown by Eqs. 44a and 44b , the correspond-
ing relation assumes the form of the sum of an Euclidean power law function
and a fractal power law function. Thus neither the solid mass nor the pore mass
properly exhibit a fractal scaling. Whilst the scaling relations identify the PSF as
a structure other than a mass fractal, it is important to note that it can
nevertheless easily be confused with that of a mass fractal if it is examined over
a narrow range of scales. Some degree of caution is thus required in the use of
any algorithm to analyse soil data, and the theory suggests that some soils might
have been called mass fractals on approximate grounds and might be better
modelled by a PSF.

In the case xs0, the PSF model reduces to a fractal number–size distribu-
tion of solids and a fractal set. If the latter is associated with the pore phase, the

Ž . Ž . Ž .result is a pore mass fractal. From Eqs. 44a and 44b we then have that B iy
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Ž .exhibits Euclidean scaling while B i exhibits fractal scaling as required.x

Similarly, if ys0 and the fractal set is associated with the solid phase we
Ž . Ž . Ž .obtain a solid mass fractal. Then Eqs. 44a and 44b show that B i exhibitsy

Ž .fractal scaling whilst B i exhibits Euclidean scaling. Thus mass fractal modelsx

appear as degenerate cases of a PSF.
Both a PSF in its general form and a mass fractal exhibit self-similar

properties in the sense that where local structure occurs, it is similar to the
whole. The essential difference between the two which leads to the different
scaling properties as shown above is that a PSF model is in places devoid of
such local structure, whereas a mass fractal is not.

4.3. Pore and solid number–size distributions

In this paper, we use the expression ‘solid’ or ‘solid element’ instead of
Ž .‘particle’ or ‘grain’ used in other works e.g., Haverkamp and Parlange, 1986 .

But we do not mean ‘solid, porous aggregate’ in the sense of Rieu and Sposito
Ž . Ž .1991a,b or Crawford et al. 1995 . We clarify this statement by noting that we
identify ‘particles’ with the primary elements of a soil structure. The number–
size distribution of solids and pores differ significantly between a mass fractal
and a PSF. If a lower cut-off of scale is considered, in a solid mass fractal, i.e., a

Žfractal set identified with the solid phase, the solids are of equal size cf. Bird et
.al., 1996 , whilst the complementary pore space exhibits a power law number–

size distribution of pores, with a power law exponent equal to yD. Similarly for
a pore mass fractal, i.e., a fractal set identified with the pore phase, the pores are
of equal size while the solids size distribution is power law. In contrast, in a PSF
symmetry exists between the pore-size and solid-size distributions. Specifically
both distributions assume a power law form with identical power law exponent

Ž .yD cf. Perrier, 1994 , where D is the fractal dimension of the pore–solid
interface. The existence of such a symmetry is interesting in relation to the
established view that solid-size distributions convey information relating to
porosity and pore–size distributions and consequently soil hydraulic properties,

Žthrough relations which map known solid sizes onto inferred pore sizes e.g.,
.Arya and Paris, 1981; Haverkamp and Parlange, 1986 . A PSF provides an

example of a porous material where this view appears to some extent valid. Also
of interest are previous suggestions that power law fractal pore-size and

Žparticle-size distributions can coexist within a soil e.g., Tyler and Wheatcraft,
.1992, who acknowledged that ‘‘a theoretical development is not yet available’’ .

Again a PSF, in contrast to a mass fractal, provides an explicit example of one
such model where this situation occurs.

4.4. Pore–solid interface

In a mass fractal the pore–solid interface is the boundary between the solid
Ž . Ž .or the pores distributed in the fractal pore or solid mass. This surface grows
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as a power law of the resolution scale. It is fractal of dimension D. When the
Ž .fractal structure is developed ad infinitum, the fractal pore or solid mass

vanishes and the interface has no physical relevance. However, if a lower cut-off
of scale is used, the area of the interface has a finite value and the fractal surface

Ž .can model a real solid–pore interface. Neimark 1989 has shown that in his
‘self-similar multiscale percolation system’ both fractal and nonfractal surfaces
can arise depending on the value of nz and consequently D. When a fractal
surface occurs, this D is also the dimension of the surface. In our own
derivation of the scaling behavior of the interface, based on the number–size
distribution, we obtain the same result. Because it always associates both solid
and pore phases, the PSF model exhibits a pore–solid interface even if the
structure is developed towards infinity. Depending on the value of the fractal
dimension, the area of the interface assume the form of a logarithmic function of

Ž Ž ..the length scale r in the case of Dsdy1, cf. Eq. 35 , or of a fractal poweri
Ž Ž .. Žlaw D)dy1; cf. Eq. 39 , or it tends towards a constant finite value for

Ž ..D-dy1; cf. Eq. 37 .
It follows from the above that whilst a porous material can exhibit self-similar

Žproperties and fractal number–size distributions of its elements pores, solids or
.both this does not imply a fractal surface. This only occurs when D)dy1

Žsee e.g., Pfeifer and Avnir, 1983; Friesen and Mikula, 1987; Toledo et al.,
.1990 . Here mathematical calculation of the area of the interface brings evidence

of this critical value dy1. Fig. 5 presents the particular case of a PSF model
with a fractal dimension Dsdy1. It is interesting to note that although not
visually obvious, the solid–pore interface is not fractal in this instance as it

Table 1
Scaling properties of the PSF model and of pore and solid mass fractal models
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grows in a logarithmic fashion when the structure is developed. Apart from the
relatively small extension of the fractal set, nothing points out why the area of
the solid–pore interface is on the critical point between a nonfractal surface
whose area tends towards a finite constant value and a fractal surface whose area

Ž .tends towards infinity when the structure is developed ad infinitum Fig. 6 .
Calculations of the area of the interface have been derived for x/0, y/0.

Fig. 3 gives an illustration of the limiting cases xs0, ys0. When xs0, the
PSF becomes a pore mass fractal combining a fractal distribution of solids and a
fractal set. Now if the supplementary assumption is made that the fractal set of
Ž . iNz subregions represent pores we can still define and measure a pore–solid
interface. Symmetrically a pore–solid interface can be defined when ys0. The
general results concerning the fractal character of the pore–solid interface hold
in these limiting cases.

4.5. Summary

The scaling properties of the PSF model are summarized in Table 1. It can be
observed how the PSF is a generalization of mass fractal which may be viewed
as special albeit degenerate case. Thus the PSF model can be used in many cases
for the following purposes.

1. Either to represent soils which have been shown to be surface fractals, in
Žthe same way as simple surface models have already been used e.g., Pfeifer and

.Avnir, 1983; de Gennes, 1985 .
2. Or to represent soils which exhibit a fractal pore size distribution, in the

Žsame way as simple lacunar fractal models have already been used e.g., Tyler
.and Wheatcraft, 1990; Rieu and Sposito, 1991a .

3. Or to represent soils which exhibit a fractal solid size distribution, in the
same way as simple models of fractal number–size distributions have already

Ž .been used e.g., Tyler and Wheatcraft, 1992; Wu et al., 1993
4. Or to represent soils which exhibit a fractal solid mass, in the same way as

Žsimple models of a fractal solid phase have already been used e.g., Rieu and
.Sposito, 1991a; Young and Crawford, 1991 .

5. Or to represent soils which exhibit a fractal pore mass, in the same way as
Žsimple models of a fractal pore phase have already been used e.g., Katz and

.Thompson, 1985; Ghilardi et al., 1993 .
In addition, because the PSF model is a self-consistent geometric model of

the whole porous structure, whatever the particular fractal property it has be
designed to model, it gives also information about the possible scaling behaviour

Ž .of the other properties of the porous structure cf. Table 2 . For example, if we
Ž .consider a soil exhibiting a fractal pore size distribution Perrier et al., 1996 , the

PSF model suggests which properties of the solid phase and which hydraulic
properties could be associated to this particular pore size distribution.
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Fig. 7. Randomized PSF based on a polyedral pattern, with a division process obtained by a
Voronoı tessellation. General case of dy1F D- d.¨

4.6. Extension: effect of different local geometric patterns

The ability of a fractal model of porous medium to represent a soil structure
depends on its structural features: number–size distribution of its components,
porosity, fractal scaling of the pore and solid phases, fractal scaling of the
pore–solid interface, and on the behaviour ad infinitum of these properties. But
this ability also depends strongly on the geometric patterns of the model. As an
example, two realizations of the PSF model are presented Figs. 6 and 7. The
first one is based on a square pattern. In the second, the division of the initiator

Ž .is obtained by a Voronoı tessellation process Perrier, 1994 and the basic¨
pattern is polyhedral. In both cases, the proportions x, y and z have a constant
value and the location of the pore and solid subregions is randomly determined
at each iteration step. At any stage of its development, both structures exhibit
the same properties: total porosity value lying between 0 and 1, fractal
number–size distribution of pores and solids, nonfractal scaling of the pore and
solid phases and fractal scaling of the pore–solid interface.

Improved geometric patterns may help in the construction of more realistic
models of soil structure. As an example Figs. 8 and 9 present structures
equivalent respectively to those presented in Figs. 6 and 7 in terms of their basic
properties, but here the pores are located around the solids. Instead of keeping

Ž .Ny solids and Nx pores among the N 1yz subregions, an homothetic
d Ž .reduction of ratio k replaces each subregion of size r among the N 1yz onesi

d d Ž d. dby one solid of size k r surrounded by one pore of size 1yk r . Thisi i
Ž . Žpattern proposed by Perrier 1994 is defined by a set of three parameters N, z

. Ž .and k whereas Neimark’s percolation system and PSF model use N, x and y .
Equivalence between these two approaches is given in Appendix A.
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Fig. 8. PSF numerically equivalent to the example presented in Fig. 6. Here, the void phase is
located around the solid, resulting in a very different shape.

Obviously, some of these examples resemble soil structures more than others.
In particular, each of them exhibits a specific kind of pore connectivity. As an
illustration of this latter, Fig. 10 presents a mass fractal variation of the

Ž .Sierpinski Carpet carried out by Perrier 1994 . This degenerate form of PSF
model is a 2D representation of a random realization of the fractal cube

Ž .considered by Rieu and Sposito 1991a , fragmented by a Voronoı tessellation¨
Ž .Perrier et al., 1995 . This fractal object is a solid mass fractal where a fractal
cumulative number–size distribution of fractures is associated with a solid phase
that exhibits a fractal scaling. As in the model presented in Fig. 3b, when this
structure extends to arbitrarily small scales its porosity approaches unity.

Fig. 9. PSF numerically equivalent to the example presented in Fig. 7, with a void phase
surrounding the solid.
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Fig. 10. 2D representation of a random realization of the fractal cube considered by Rieu and
Ž .Sposito 1991a,b,c , fragmented by a Voronoı tessellation. In this solid mass fractal, the fractal set¨

is associated to the solid phase.

Unfortunately the network of fractures appears excessively connected for mod-
elling a soil pore space.

5. Conclusion

Ž .In conclusion, the PSF model originating with Neimark 1989 and Perrier
Ž .1994 can be viewed as a fully self-consistent fractal model of general
application in the sense that it is not tied to a specific local geometry. Whilst this
is equally true of a mass fractal, the generality of a PSF obviously exceeds that
of a mass fractal. Mass fractals have already featured prominently in modelling
complex porous materials and it remains to be seen to what extent the wider
class of PSF models follows this trend.

Neither the pore phase nor the solid phase of a general PSF exhibit mass
fractal scaling. On the other hand the pore–solid interface is fractal for
D)dy1. At any stage of its development, the PSF can model a two-phase
porous structure. When the structure extends ad infinitum, its porosity ap-
proaches a finite value that can be chosen by the modeller between the extreme
value 0 or 1 independently of the fractal dimension. Finally the main peculiarity
of the PSF is the association in the same geometric shape of a distribution of
pores and a distribution of solids which both assume a power law form with the
same fractal exponent. As a result of this symmetry, the PSF model appears
promising in terms of modelling hydraulic properties based on structural proper-
ties of the solid phase. If in addition an appropriate geometric shape is used, the
connectivity of the pore network can be taken into account in pore network
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simulations. Intrinsic to a mass fractal and a PSF model as presented in this
paper are the notions of multiscale structure and self-similarity of structure.
Further generalization is possible when the latter notion is relaxed. Construction
of a model in which similarity of structure at different scales is not required
further widens its scope of application. These points will be developed in
forthcoming papers.

6. List of symbols

D fractal dimension
d Euclidean space dimension
L linear size of the initiator
N number of subregions paving the initiator
n inverse of the similarity ratio
z proportion of subregions where the whole shape is replicated
x proportion of subregions kept as pores
y proportion of subregions kept as solids

Ž .NN r total number of replicates of size r created at iteration step iz i i
Ž .NN r total number of pores of size r created at iteration step ix i i
Ž .NN r total number of solids of size r created at iteration step iy i i
Ž .N r total number of replicates of size greater than or equal to rz i i
Ž .N r total number of pores of size greater than or equal to rx i i
Ž .N r total number of solids of size greater than or equal to ry i i

m last step of division if any
A means ‘proportional to’
f porosity
f partial porosity at step ii

Ž .B i number of boxes of size r needed to cover the poresx i
Ž .B i number of boxes of size r needed to cover the solidsy i
Ž .B i number of boxes of size r needed to cover the fractal setz i
Ž . Ž .M i volume or mass of pores at iteration step ix
Ž . Ž .M i volume or mass of solids at iteration step iy

Ž .S i area of the pore–solid interface
Ž .S i cumulative boundary of pores at iteration step ix
Ž .S i cumulative boundary of solids at iteration step iy
Ž .p i probability that an arbitrary chosen point on the solids boundaryx

belongs to the solid–pore interface
Ž .p i probability that an arbitrary chosen point on the pores boundaryy

belongs to the solid–pore interface
Ž .k ratio of the similarity transformation used by Perrier 1994 to

define the size of the solids and pores associated to any subregion
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Appendix A

( )A.1. EquiÕalence between the model of Perrier 1994 and the PSF model

Ž .Perrier’s model is defined on the basis of three parameters N, z, k which
Ž .are equivalent to the set N, x, y defining the PSF model.

Ž .Perrier’s model involves Nz and N 1yz subregions as does the PSF. The
parameter k defines the ratio of the contracting similarity used to replace each of

Ž . d dthe N 1yz subregions of linear size r by one solid of volume k r sur-
Ž d. d Ž .rounded by one pore of volume 1yk r see Figs. 8 and 9 . An equivalent

PSF model can be created by choosing the same N and the following x and y
Ž .Ž d. Ž . dproportions: xs 1yz 1yk , ys 1yz k

Ž .Conversely, if a PSF model is defined by the parameters N, x, y , an
equivalent model is obtained using Perrier’s definitions by choosing the same N
and the following z and k values:

1rdy
zs1yxyy , ks ž /xqy

All the results obtained in this paper could have been also derived using
Perrier’s definition. For instance, the equivalent of the total porosity given in Eq.
Ž . Ž . d20 , fsxr xqy , is: 1yk . Limiting cases xs0 and ys0 correspond
respectively to ks1 and ks0.
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