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Abstract---The maximum possible specific cooling load that can be obtained from two-heat-reservoir 
refrigerators with a set of high-temperature heat sinks and low-temperature heat sources is analyzed. The 
refrigerators considered in this paper include (1) externally and internally reversible, (2) externally 
irreversible and internally reversible, (3) externally reversible and internally irreversible and (4) externally 
and internally irreversible refrigerators. The irreversibilities are assumed to be caused by heat transfer only. 
The specific cooling load, defined as the cooling load per unit total heat-exchanger surface area, is adopted 
as the objective function for the refrigerator performance analysis in this paper. Published by Elsevier 
Science Ltd. 
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I N T R O D U C T I O N  

Among the important topics in thermodynamics has been the formulation of criteria for comparing 
the performance of real and ideal processes. For example, the Carnot cycle provides an upper 
bound on the COP (coefficient of performance) of all cyclic refrigerators operating between two 
fixed-temperature heat reservoirs. The work by Clausius, Kelvin and others carried out in this 
tradition identified the limits on work, heat transfer, thermodynamic efficiency, COP, energy 
effectiveness and energy figure of  merit of various energy conversion devices. Since Gibbs, however, 
the focus has been directed toward state variables rather than the process variables of heat and 
work. An unavoidable consequence of  this shift is the emphasis on equilibrium states and reversible 
processes. The use of  reversible processes as standards of performance is not desirable because a 
reversible process must be carried out at an infinitesimally slow pace. Since power produced by 
a heat engine is work divided by time, a finite amount of work produced by the engine over an 
infinite time delivers no power. The need to develop a nontrivial amount of power in real energy 
conversion devices is one reason why the high-performance criteria of an ideal, reversible heat 
engine are seldom approached. Similarly, the cooling load provided by a refrigerator is heat divided 
by time. A finite amount of heat transferred in a reversible process requires an infinitesimally small 
temperature difference. Therefore, a finite amount of cooling load provided by the reversible 
refrigerator needs an infinitely large heat exchanger. In this instance, the specific cooling load 
(cooling load per unit total heat exchanger surface area) of a Carnot refrigerator is zero. Hence, 
there is a need to find a new bound in specific cooling load for comparing the performance of  real 
refrigerators. 

The consequence of  incorporating finite-time processes into an otherwise ideal thermodynamic 
cycle was elegantly demonstrated by Curzon and Ahlborn [1]. They considered the case of  finite 
rates of  heat transfer to and from a Carnot heat engine. After maximizing the power output, they 
derived a simple expression for the efficiency that was different from the well known Carnot 
efficiency. Since finite-time thermodynamics was advanced in 1975, many authors have studied the 
effect of  irreversibilities on the performance of  heat engines. Some detailed literature surveys of 
the endoreversible heat engine were given by Sieniutycz and Salmon [2], Chen [3] and Sun and 
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Chen [4]. Yet, only a few authors, including Left [5], Sun [6, 7], Chen [8-10], Agrawa [11], Yan [12], 
Klein [13], Grazzini [14], Bejan [15, 16], Gordon [17] and Wu [18], have assessed the effect of finite 
rates of  heat transfer on the performance of irreversible refrigerators. 

In this paper, we shall examine the upper limit on the specific cooling load that can be delivered 
by a two-heat-reservoir refrigerator. We chose the specific cooling load (cooling load per unit total 
heat exchanger surface area) as the objective function for four types of refrigerators. The four cases 
are (1) externally and internally reversible (Carnot), (2) externally irreversible and internally 
reversible (endoreversible), (3) externally reversible and internally irreversible (exoreversible), and 
(4) externally and internally irreversible (real) refrigerators. The internal and external 
irreversibilities of  the refrigerators are assumed to be caused by heat transfer only. 

SPECIFIC  C O O L I N G  LOAD ANALYSIS  

The determination of the specific cooling load of a refrigerator is of  considerable practical 
interest to practising engineers. Our investigation was undertaken to evaluate this quantity with 
the following assumptions: 

1. The heat capacities of the heat source and heat sink are infinite, so that heat source and heat 
sink temperatures remain constant in the heat transfer processes. 

2. The overall heat transfer coefficients (Uu and UL) in the heat exchangers between the 
refrigerator and its surrounding heat reservoirs are constant. 

3. The heat transfers are continuous and steady. 
4. The irreversibilities are associated with the transfer of heat only. 

Case 1: externally and internally reversible (Carnot) refrigerator 

The Carnot refrigerator is a totally reversible cycle which is composed of four reversible 
processes-two isothermal and two adiabatic ones, as shown in Figs 1 and 2. In the heat addition 
process, heat is added to the refrigerator from the low-temperature heat source at TL. If  the 
temperature of the cold refrigerant (To) of the refrigerator is the same as the source, i.e. the 
temperature difference between the refrigerant and the heat source never exceeds a differential 
amount, an infinitely large heat exchanger surface area (AL = ~ )  is required in order to transfer 
a finite amount rate of heat flow (QL). Similarly, in the heat rejection process, heat is rejected from 
the warm refrigerant at Tw to the high-temperature sink at TH. If the warm refrigerant is at the 
same temperature as that of the heat sink (T~ = TH), the heat transfer surface area between the 
refrigerator and the heat sink must again be infinitely large (AH = c~) in order to reject a finite 
amount rate of heat flow (QL) from the warm refrigerant to the heat sink. Thus, the specific cooling 
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Fig. 1. Externally and internally reversible (Carnot) refrigerator T-s  diagram. 
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Fig. 2. Externally and internally reversible (Carnot) refrigerator. 

991 

load of  the Carnot refrigerator [QL/(AH -t- AL)] is equal to zero for the cycle producing any finite 
amount  of  cooling load. The COP of  the Carnot refrigerator is the complete reversible Carnot COP: 

flCarno, = TL/(TH- TL). (1) 

Case 2. Externally irreversible and internally reversible (endoreversible) refrigerator 

An endoreversible Carnot refrigerator is a modified Carnot cycle, as shown in Figs 3 and 4. The 
only irreversible processes in the cycle are the two heat transfer processes from the refrigerator to 
the heat sink and from the heat source to the refrigerator. To analyze this cycle, we assume that 
the temperatures of  the heat sink, heat source, warm refrigerant in the heat rejection process, and 
cold refrigerant in the heat addition process are 7"8, TL, Tw and To, respectively. Thus heat flows 
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Fig. 3. Externally irreversible and internally reversible (endoreversible) refrigerator T-s diagram. 
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Fig. 4. Externally irreversible and internally reversible (endoreversible) refrigerator. 

from the heat source to the cold refrigerant across a temperature difference of  (TL -- To) and heat 
flows from the warm refrigerant to the heat sink across a temperature difference of  (Tw - TH). 

The rate of  heat flow (QL) from the heat source to the cold refrigerant in the low-temperature 
side heat exchanger of  the refrigerator is proportional to the temperature difference (TL -- T,) and 
is given by 

QL = ULAL(TL- To), (2) 

where QL is the cooling load of the refrigerator, UL is the overall heat transfer coefficient and AL 
is the surface area of  the low-temperature side heat exchanger between the heat source and the 
refrigerator. 

Similarly, the rate of  heat flow (QH) from the refrigerator to the heat sink in the high-temperature 
side heat exchanger of  the refrigerator is 

QH = UHA.(Tw-  T . ) ,  (3) 

where UH is the overall heat transfer coefficient and A.  is the surface area of  the heat exchanger. 
The First Law of  Thermodynamics requires that the power input (P) to the refrigerator be 

e = QH - QL. (4) 

From the Second Law of Thermodynamics, the rate change of  entropy of  the refrigerant of the 
cycle requires 

QH/Tw - QL/Tc = 0. (5) 

The COP (fl) and the specific cooling load (qL) of the refrigerator are 

fl = QL/P (6) 

qL = QL/(A. + AL) = QL/Ar, (7) 

where AT is the total heat transfer surface area of  the two heat exchangers. 
Combining equations (2)-(7) yields 

# = {T./{TL - qLfA. + AL)[(UaA.)-' + (ULAL)-'1} -- I}-' (8) 
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o r  

q, = [TL -- 7"./(1 + fl-')]/{(AH + AL)[ (U .A . ) - I  + (ULAL)-t]}. (9) 

By either maximizing fl in equation (8) or maximizing qL in equation (9), we obtain the following 
optimal parameter relationship between the two heat exchangers: 

A. /AL  = (UL/U.) '/2 . (10) 

The specific cooling load has the optimal value for any given COP value from equation (9) in 
the following form: 

qL = [TL -- TH/(1 + fl- ')]/[(UH)- 'j" + (UL)-,/2]2. (1 1) 

It can be shown that equation (11) also presents the optimal COP value for any given specific 
cooling load. 

Equation (11) verifies that the specific cooling load (qL) is equal to zero if fl = tic ..... Since a 
practising refrigeration engineer does not want to design a real refrigerator that delivers a specific 
cooling load of  zero, the Carnot refrigerator COP is not a realistic bound which a real refrigerator 
may approach. 

Equation (11) also indicates that qL is a monotonic decreasing function of  ft. The specific cooling 
load approaches its maximum value when the COP is zero, i.e. 

(qL)max = TL/[(U.) - "-' + (UL) -"21. (12) 

Combining equations (6), (7), (10) and (1 1), we obtain the optimal specific cooling load or the 
optimal COP for any given power input (P) and total heat transfer surface area (AT) in the following 
forms: 

qL = {[(7". - -  TL + DP/AT) 2 + 4 D P T L / A T ]  zj2 - -  [(Tn - -  TL) + DP/AT]}AT/(2DP) (13) 

o r  

/~ = {[(TH - TL + De~AT) 2 + 4TLDP/AT]':'- -- [(7. -- TL) + DP/AT]}AT/(2DP),  (14) 

where D = [(U.) -...2 + (UL) - ,j2]. 
Equations (13) and (14) provide more general performance characteristic relationships for an 

endoreversible Carnot refrigerator for practising engineers in designing their real refrigerators. 
Notice that these optimal COP and specific cooling load are real bounds which are reachable if 
internal irreversiblities of  the real refrigerators are minimized to zero. 

Case 3. Externally reversible and internally irreversible (exoreversible) refrigerators 

An exoreversible refrigerator is an externally reversible and internally irreversible system, as 
shown in Fig. 5. An ideal thermoelectric refrigerator is a typical exoreversible refrigerator, as shown 
in Fig. 5. The thermoelectric refrigerator is composed of two dissimilar semiconductors, p and n. 
The refrigerator is assumed to be insulated, both electrically and thermally, from its surroundings, 
except at the junction-reservoir contacts. The internal irreversibilities are caused by the Joulean 
electrical resistive loss and heat conduction loss through the semiconductors between the warm and 
cold junctions. The Joulean loss generates an internal heat FR,  where R is the total internal 
electrical resistance of  the semiconductor couple and I is the electrical current flowing through the 
couple. The conduction heat loss is K ( T w -  To), where K is the thermal conductance of  the 
semiconductor couple. 

Assuming that the material properties of  the thermoelectric refrigerator are fixed, the traditional 
thermoelectric refrigerator analysis has the following expressions for the rates of  heat transfer from 
the heat source to the refrigerator (QD and from the thermoelectric refrigerator to the heat sink 
(QH), electrical power input (P), COP (/~), Seebeck coefficient (~), internal electrical resistance (R) 
and heat conductance (K) as 

QL = czTcI-  0.5/2R -- K(Tw -- To) (15) 

QH = ctTwI + 0.5FR - K(Tw - To) (16) 

ATE I6/IZ-E 
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e = F R  + ~I(Tw -- To) (17) 

fl = QL/P (18) 

ot = ~p -- ~. (19) 

R = &L. /A , ,  + 6.Lp/Ap (20) 

K = k . A . / L .  + kpAe/Lp ,  (21) 

where ~,, and ctp are the Seebeck coefficients o f  the n- and p - semiconduc to r  legs, L ,  and Lp are the 
lengths o f  the n- and p - semiconduc to r  legs, A,, and Ap are the cross-sectional  areas o f  the n- and 
p - semiconduc to r  legs, c5° and 6p are the electrical resistivities o f  the n- and  p - semiconduc to r  legs 
and k,, and kp are the thermal  conductivit ies o f  the n- and p - semiconduc to r  legs, respectively. 

Equat ions  (15) and  (18) indicate that  QL ---- 0 and fl = 0 when I = {Bt - [(BO a - 2BI/(ZTc)]'f2}/R 
and I = {B~ + [(B0-' -- 2B~/(ZT¢)]'/2}/R, where Bt = Tc/(Tw -- To) and Z = etZ/(Kg). 

To find the m a x i m u m  cooling load f rom equat ion  (15), taking the derivative o f  OL with respect 
to I and setting it equal  to zero (~QL/OI = 0) gives 

Iml = ~ T / R  (22) 

(Qc)m, = [(Tc)2/2 - (Tw - T¢)IZ]~tZ/R (23) 

and 

tim, = [To --  I / (ZB , ) ] / (2Tw) .  (24) 

where Imj, (QL)mJ, and •ml are  the op t imal  current,  cooling load and  C O P  o f  the refr igerator  at its 
m a x i m u m  cooling load condit ion.  

T o  find the m a x i m u m  C O P  f rom equat ion  (18), taking the derivative of  fl with respect to I and 
setting it equal  to zero (~ f l /~I  = 0) gives 

Ira., = ct(Tw -- T c ) / [ ( M -  1)R] (25) 

(QL)m2 = (Tw -- T c ) M ( M T e  - Tw)Ct~-/[R(M + 1 ) ( M -  1) 2] (26) 
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Fig. 5. Externally reversible and internally irreversible (exoreversible thermoelectric) refrigerator. 



Effect of heat transfer on cooling load of refrigerators 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

13M1 

_ . _ , _  _ ' y  
~ " ~ ' ~ " ~  I I I BM2 

0.1 0.2 0.3 0.4 0.5 0.6 0,7 

Fig. 6. Cooling load versus COP characteristics of the exoreversible thermoelectric refrigerator. 

995 

and 

tim2 = B , ( M -  Tw/Tc)/(M + 1), (27) 

where M = [1 + Z(Tw + T¢)/2]~i2; /mE and (QL)m2 a r e  the optimal current, cooling load and COP of 
the refrigerator at its maximum COP condition. 

The cooling load versus COP characteristic curve of the exoreversible thermoelectric refrigerator 
with TH = Tw = 300 K, TL = Tc = 273 K, ot = 4 × 10 -4 V/K, Z = 0.002 and tic ..... = B~ is shown 
in Fig. 6. 

To achieve external reversibility, the warm and cold junctions of  the thermoelectric refrigerator 
must have the same temperatures as the heat sink and the heat source reservoirs, i.e. TH = Tw and 
Tc = TL. The specific cooling load of  the exoreversible refrigerator is zero, since it requires two 
infintely large surface area heat exchangers to transfer a finite amount  of  heat input and to produce 
a finite amount  of  cooling load. 

Case 4. Externally and internally irreversible (real) refrigerator 

Irreversibilities, such as friction, finite-rate heat transfer, heat leaks, free expansion, mixing, 
pressure drop, etc., do occur in real processes. In case 4, we consider only the finite-rate heat 
transfer, heat leaks and Joulean losses are accounted for in both internal and external 
irreversibilities in predicting the performance of the real refrigerator, as shown in Fig. 7. 

The rate of  heat transfer from the heat source at temperature TL to the refrigerator cold junction 
at temperature Tc is 

QL-~ ULAL(TL- Tc). (28) 

The rate of  heat transfer from the refrigerator hot junction at temperature Tw to the heat sink 
at temperature TH is 

Q .  = UHAH(Tw- TH). (29) 

Combining equations (28), (15), (29) and (16) gives 

Tw = [(UHAHTn + FR/2)(ULAL + lot) + K(UnAHTn + ULALTL + P R ) I / N  (30) 

Tc = [(ULALTL + PR/2 ) (UHA.  - lot) + K(UHAHTH + ULALTL + I2R)]/N (31) 

qL = ULAL(q~ + q,_)/[N(AL + AM)] (32) 

qt = leRot/2 --/2(TLot2 + UnAnR/2 + K R )  (33) 

q2 = IUHAHTLot -- KUnAn(TH - TL) (34) 
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Fig. 7. Externally and internally irreversible (real thermoelectric) refrigerator temperature sink at T.. 

and 

P = (PI + P2 + P3)/N 

P, = PR(U.AH - ULAL)~/2 

P,_ = F[(UHAHTn + ULAL TL)O~ 2 + UHAHULAI.R --~ KR(UnAH + ULAL)] 

P3 = Io~UHAHULAL(TH -- TL) 

fl = qL(AH + AL)/P , 

where N = (UHA. - I~)(ULAL + I~) + K(UHA. + ULAL). 

(35) 

(36) 

(37) 

(38) 

(39) 

The specific cooling load and COP of the refrigerator can be obtained by finding the optimum 
current and (AH/AL) first under the condition (Am + AL = AT) with a numerical calculation method. 
The specific cooling load versus COP characteristic of the real refrigerator is similar to that of  the 
exoreversible refrigerator shown in Fig. 6. 

C O N C L U S I O N  

For practical, space, weight and economic reasons, real refrigerators are designed to operate at 
their maximum specific cooling load. This paper utilizes a specific cooling load as an objective 
function for practising engineers to design a new refrigerator or to evaluate an existing one. The 
result gives a much more realistic approach to the cooling load and COP than those of the Carnot 
ideal reversible refrigerator. It also allows one to model these sources of irreversibilities as 
parameters to refrigerators so one can see qualitatively their impact on the performance of  
refrigerators. 
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