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Abstract-For reactions m nomsothermal systems, the thermal tune dlstnbubon IS the analog of the residence tie 
dlstibution If the reaction can be characterrzed by a smgle activation energy, knowledge of the thermal tnne 
dtstnbution based on thus activation energy can be used to predict the yield of a tist order reaction umquely and to 
closely bound the yield for reactions of order other than first 

Thermal tie &stnbutions are a useful conceptual and analmcal tool for reaction engmeenng, particularly m 
systems where the temperature and velocity profiles are not strongly coupled to the extent of reaction Thus situation 
frequently occurs m the processmg of polymer melts, for example m the actwatton of blowmg agents or m chenucal 
mod&ahon of the polymer &am Slmphfied flow models of heat exchange and extrusion eqmpment are used to 
tiustrate the apphcation of thermal tune dlstnbutions and to show that they often Mer slgmficantly from the 
residence tune &stnbution m the same device In fixed wall heat exchangers, the thermal tune dlstrtbution shows less 
umform reaction con&tions than would be true for an isothermal reaction governed by the residence tnne 
Qstnbution In extruders, and particularly for those where VISCOUS Qsslpation IS the major energy mput, tlus situation 
IS dramattcally reversed vvlth a reaction envuonment very sun&u to that for piston flow and substantiy better than 
would occur m the same eqmpment operated Isothermally 

INTRODUCTION 

The theory of residence tune &stnbutions has well estab- 
hshed and broad apphcations m the field of chenucal 
reaction engmeermg Thus 1s true despite hnutation of the 
theory to homogeneous reactions m isothermal systems 
For such cases, knowledge of the RTD IS sufficient to 
predict the yield of a first order reaction umquely and to 
closely bound the yield for reactions of order other than 
tist [ 1,2] Although there are situations where a more 
prectse charactemation of nuxmg phenomena 1s needed 
to understand the system, the RTD sti represents a 
necessary startmg pomt for analysis Indeed, It 1s fa to 
say that knowledge of the RTD 1s the most important step 
m reactor analysts beyond knowledge of the batch kme- 
tics themselves 

However, for reactors which are not homogeneous and 
Isothermal, the RTD becomes much less useful and may 
even prove rmsleadmg If improperly apphed One ap- 
proach to these more complex systems 1s the theory of 
generahzed tune &stnbutions which 1s outhned m Appen- 
dur A For the case of an Isothermal, homogeneous 
reaction, the generahzed tune 1s Just the tune spent m the 
reactor, and thus the generahzed theory reduces to classl- 
cal RTD theory If the reactron ts homogeneous but 
nomsothermal, the pertment generahzed tune IS the ther- 
maltune 

TEERMAL TIME DISl’lUBL?TIONS 

The theory of thermal time dlstnbutions can be de- 
veloped along hnes very mm&u to those used by 
ZHnetermg[l] m his treatment of residence tune &stnbu- 
tions In tis theory, a molecule has three tune-based 
attributes a residence age a, a residence Me expectancy 

A, and a residence tune t These are relaied by 

r=a+A (1) 

Zwetermg considered the kmds of nuxmg that could 
occur between molecules of tiermg resldenck age, such 
nuxmg always bemg subject to the restnction of a con- 
stant residence tune drstrrbution He showed that 
molecules can rmx only tf they have the same hfe expec- 
tancy and that there are two extreme posstbtltttes for such 
nnxmg complete segregation and maxunum nuxedness 

In a completely segregated reactor, there 1s no muung 
at all between molecules of dlffermg residence age 
Molecules which enter together remam together and nux 
vvlth other molecules only at the reactor exit Such a 
system can be modeled as a piston flow reactor with a 
number of side exits All fled enters at a common pomt 
and flows down the reactor vvlthout rmxmg Fluid leaves 
from the reactor through the side exits, the number and 
placement of these exits being arranged to gwe the system 
the overall residence tune frequency function f(t) Mlxlng 
between molecules ~th Wermg a occurs only when 
a = t and h = 0 Thus such nuxmg 1s sad to be as late as 
possible Axial posItion down the reactor can be charac- 
tened by the value of a w&h ranges from (Y = 0 at the 
extrance to a = t, at the downstream end The concen- 
tration profile m tis isothermal reactor 1s governed by 

g = -kG(c) 

subject ot the con&tion that c = C, at (Y = 0 The solution 
to eqn (2) 1s Identical to that for a batch reactor The extt 
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concentration IS obtamed by averagmg over the vzulous 
side exits 

Zwertemq showed that the other extreme of uuc- 
ronuxmg can be modeled as a piston flow reactor with a 
number of side entrances Sumlarly to the exits m the 
segregated case, the side entrances are arranged to gve 
residence tune frequency function f(t) Now, however, 
entermg molecules with residence age a = 0 are nuxed 
~rlth molecules already m the reactor with quite dtierent 
ages Once rmxed, the molecules wfl all exit together and 
at the pomt of rmxmg all have a common value of A Axml 
position m the piston flow reactor 1s characterrzed by the 
value of A which varres from A = 0 at the exit to A = t,, 
at the upstream end In the maximum rmxedness reactor, 
nuxmg between molecules with different values of (I 
occurs as early as possible Indeed, some of the molecules 
uuxed ~IU have a = 0 and thus A = t wlule m the segre- 
gated reactor mucmg occurs only when Q = t and A = 0 
The composition profile down the reactor 1s governed by 

$=-kG(c)+ f(A NC - co) 
l-F(A) 

subject to the con&tton that c 1s bounded for all A The 
average elut concentration IS found by evaluating the 
solution of (4) at A = 0 

Havmg restated the basic results of RTD theory for 
isothermal reactors, it 1s now possible to develop the 
analogous theory for non-isothermal reactors We begm 
by defimng three temperature and tie-based attnbutes of 
a molecule the thermal age aT, the thermal hfe expec- 
tancy AT, and the thermal time fT The defimng equations 
are 

a 

a* = e-B/RT(t 1 dt’ (5) 

AT = 
e-H/RT(r 1 dt’ (6) 

and 

I 
I 

t* = 
e-RIRT(l ) dt r (7) 

0 

In these equations, the temperature expenenced by each 
molecule 1s considered to be function of the time that the 
molecule has spent m the reactor Physically, eqns (3--o--() 
represent mtegrals taken along various portlons of a fluid 
streamhne It 1s apparent that (Y=, AT and IT all have 
dunenslons of tune and are related by 

The physical slgmficance of the Arrhemus temperature 
dependency m eqns (3-o-() springs from the assumed 
form of the rate equation for the nomsothermaI reaction 

Rate = k. e-H’RrG(c) (9) 

We wdl return to ths physical mterpretatron shortly, but 
for the moment wtll develop the theory of uuxmg m 
nomsothermal systems Hrlthout reference to reaction 
kmetics 

Considermg all molecules which enter or leave the 
reactor, define the thermal tune frequency function as 

h(tT) dt, = Fraction of molecules vvlth a 
thermal hme between tr and tT + dt, (10) 

The mean, Fr and higher moments of the thermal tune 
&stnbutlon are defined m the usual way 

(11) 

where cl0 = 1 and JL, = g We also define the cumulative 
Qstibutton function as 

H(&) = 
I 

%(t;) dt: (12) 
0 

The exlstance of the dlstnbution functions and of f= 
follows from the exMance of f(t) and the mean residence 
tune t To see ths, note that there wdl be some muumum 
and maximum tempreatures wlthm the reactor and corres- 
pondmg mmunum and maximum Arrhemus factors 

VI,, = e-‘BIRT_‘, 

Thus for each molecule, 

qIr,, = e-WiRT_) (13) 

Y-r 5 fT <\V,r (14) 

If the entie reactor operated isothermally at T,,, the 
distibuhon of thermal tunes would be Identical to the 
dlstibubon of residence times except for a constant 
factor 

NT) = +ft,*nI (15) 
UIM 

A sun&r relation holds at T,, and thus we have 

V-t5 F= 5Y,i (16) 

For nomsothermal operation, ir wrll differ from i as Hrlll 
h(fT) from f(t) It 1s useful to define a system average 
Arrhemus factor by 

*= F-=/i (17) 

which corresponds to a specral kmd of system average 
temperature For every nomsothermal reactor, one can 
devise an equivalent isothermal reactor, operatmg at ths 
average temperature By equivalence we mean only that 

w!t UT) = f(f) I (18) 

but we shall subsequently show that the two reactors are 
also equivalent m that they have the same bounds on 
nucronuxmg 
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Now consider the kinds of nuxmg that can occur 
between molecules of &ffermg thermal age If a constant 
thermal tune tistnbution IS to be mamtamed, molecules 
can nux only If they have the same value of thermal hfe 
expectancy Consider two groups of molecules unth the 
same value of AT but Merent values of uT and hence of 
f= One posslb&y 1s that they nux only when AT = 0 which 
1s at the reactor exit Such rmxmg occurs as late as 
possible Another extreme IS for the rmxmg to occur 
when the younger of the two groups enters the reactor, 1 e 
when (Y= = 0 for one group and aT > 0 for the other Such 
mucmg occurs as early as possible If tT IS the thermal 
time for the younger of the groups, they can rmx when AT 
has any value wthm the range 0 5 AT 5 tT 

If all nuxmg between molecules urlth ddfermg thermal 
ages occurs when AT = 0, the system 1s sad to be com- 
pletely segregated with respect to thermal ages If It 
occurs when aT = 0, the system 1s sad to be m the state of 
maxmmm nuxedness wrth respect to thermal ages These 
two con&tions represent bounds on the level of mlc- 
romtxmg (with respect to thermal ages) wluch 1s possible 
m a real reactor with fixed Is(t,) In the isothermal case, 
Zmetermg supposed that the bounds on rmcronnxmg 
provided bounds on reactlon yield We make the same 
supposition for nomsothermal reactors It IS also possible 
to apply the recent proof and comhtlons of Chauhan, Bell 
and Adler[2] duectly to nomsothermal reactors This 1s 
discussed m Appenti B 

At tlus point It remams to develop models and yield 
expressions for reactors operatmg at the two extremes of 
rmcromucmg wth respect to thermal ages These models 
follow bectly from the models used by Zwetermg and 
from the concept of eqmvalent reactor For the segre- 
gated case the model reactor 1s a piston flow reactor Hrlth 
many side exits It 1s operated isothermally at the temper- 
ature defined by eqn (17) and with the side exits arranged 
to @ve f(t) as defined by eqn (18) In this model, fT = It 
wth 8 constant The concentration profile 1s mven by the 
batch reaction kmetics 

(19) 

or, substltutmg for a 

-$ = -koG(c) 
T 

The average exit concentration 1s qven by 

Sumlarly to the above, the maxunum nuxedness reactor 
1s isothermal and piston flow but now side entrances are 
used to duplicate f(t) = ll\lrh(&) The concentration 
profile IS governed by 

(22) 

subject to the condition that; c 1s bounded for ail A= Tlus 

con&tion usually can be restated as 

dc 
hm==o 
*r+- 

(23 

The exit concentration IS the solution to eqn (22) 
evaluated at AT = 0 

The model reactors have residence tie dlstibu&ms 
~nth the same functional form as the thermal tie d~3- 
tibutlon of the real reactor We note m passmg that the 
real reactor WIU also have a residence tune &stnbution 
but thus m general HFllI be dtierent from that of the model 
reactors Molecules with the same value for AT may have 
Merent values for A Thus the kmds of nuxmg possible 
w&h a constant A&) may not be possible unth a constant 
f(r) and conversely Stiarly, reactors 1s an extreme 
state of mcronuxmg w&h respect to thermal ages need 
not be m an extreme state of mlcromuung wrth respect to 
residence ages In part~ular, one can devise systems 
which are completely segregated wth respect to thermal 
ages but not so wrth respect to residence ages and 
conversely 

DETERMNATlON OF h(t,) 
Residence tie Qstnbutions are determmed m two 

mam ways 
(1) Experrmentally by mert tracer techniques 
(2) Theoretically by means of flow models 
Turmng to thermal time &stibutions, there 1s no sunple 

experrmental method for determrmng them, a fact that 
severely lmuts thev usefulness However, theoretical 
determmations based on a combmed thermal and flow 
model are possible These WIN tend to be specdic for a 
particular reaction system d the flow patterns or tempera- 
ture profiles are strongly coupled to the extent of reaction, 
but even here the thermal tnne &smbution IS a useful 
conceptual tool for explanation and analysis of reactor 
phenomena It becomes slgmficantly more useful for that 
class of problems where the extent of reaction does not 
s@cantly affect the equations of motion or energy 

The field of polymer reachon engmeermg includes 
examples of both sltuatlons Polymenzations and part~cu- 
larly bulk polymenzatlons usually show a dramatlc mllu- 
ence of the extent of reaction on temperature and velocity 
profiles Here the thermal time dlstnbution-hke the 
residence time &strtbutton-4 be system specific and 
useful only m an interpretative mode On the other hand, 
the processmg of polymers 111 extruders, heat exchangers, 
and fabncation equipment often mvolves chermcal reac- 
tions which have relatively httle influence on the tempera- 
ture and flow patterns Indusmally important examples 
include the moddication of polymer end-groups and side 
chams, thermal depolymenzatlon, and the activation of 
chermcal blowmg agents It IS usually true for such 
systems that the flmd 1s m steady, lammar flow so that the 
equations of motion and energy are comparatively easy to 
solve Further, the deterrmmstic nature of the solutions 
assures that the functions f(t) and h(fT) are themselves 
deternumstic and can be calculated duectly The follow- 
mg sections will dlustrate these calculations for some 
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slmphfied thermal and flow models of polymer processmg 
eqrupment 

LAMlNAR FLOW IDCAT EXCELANGERS 

Fwe 1 tiustrates the system to be consldered and 
mmhcates the nomenclature The important amphfymg 
assumption Is that there is only one s&cant velocity 
component, V.(y) The geometry of the heat exchanger 
determmes the specific choice of a coordmate system and 
the exact nature of the solutions However, results will be 
qua&atively sundar for all situations mvolvmg heat trans- 
fer to fhuds 111 lammar flow vvlth an axlsymmetnc velocity 
profile wbch 1s mdependent of distance down the ex- 
changer It 1s supposed that the flow problem has been 
solved so that V,(y) IS known Then the heat transfer and 
temperature history aspects of the problem are defined by 
three dtmensionless groups 

aL 3 E 

VB=’ To’ RT, 
(24) 

The first of these IS a form of the Graetz Number, and d 
thus IS large enough, the thermal time becomes Just a 
constant multiple of the residence time For smaller Gz, 
temperature gradients m the y-&e&on become lmpor- 
tant, and the HT must be calculated by mtegratmg along 
the streamhnes accordmg to eqn (7) 

As a spectic example, we treat a parallel plate heat 
exchanger with NewtoNan velocity profile 

V,(y) = 1 Sv(l- y’/B*) (25) 

The temperature profiles are calculated as functions of 
Gz and Tw/To, and tT IS calculated by mtegratlon down 
the length of the exchanger 

I 
1. 

f=(Y) = 
dz 

0 
e-(EIRT(z Y)) v,o 

wbch yields tT as a function of y Assummg that tT 1s 
monotomc 111 y, the &stnbution function H can be found 
as a function of y 

HO=[ KMdy Cm 

Where M = l/L for flow between flat plates and M = 
2y/BZ for flow m a ctrcular pipe The parameter y can be 
ehmmated between eqns (26) and (27) so that H IS 
obtamed as a function of tT Representatwe results are 
shown m Fa 2 where, for ease of companson, all the 
&stnbution functions have been scaled to have umt mean 

_L4 

E$=p 

Temperature, T, 1 
- L Yr 
I t I 

Wall temperature. r, 

Fa 1 Lammar tlow heat exchanger 

I II I I I I I 
04 06 08 I.0 12 14 16 

Thermal time, r,/& 

Fa 2 Thermal time dlstnbutions for parallel plate heat ex- 
changer 

This pomt 1s perhaps worth emphaslzmg smce It IS far 
from obvious based on the graphIcal representations m 
Fa 2 The V~IZOUS &stnbutlon functions ddfer drama& 
tally m the ti remon, and those correspondmg to h& 
activation enermes show a phenomenon akm to bypass- 
ing Only the mated near the wall makes a sdcant 
contnbubon to the mean thermal tune, &, whde matinal 
near the center of the flow channel leaves the system w&h 
a very low value of tT Appemhx C describes the numerr- 
cal techmque used to evaluate F* 

The curve marked E/RT, = 0 111 FQ 2 IS identical to the 
residence tune dtstibution This same &stnbution func- 
tlon also mses for the other hrrutmg case of aL / VB’ = 0 
or TWIT0 = 1 For Newtoman flow between parallel 
plates, this function IS 

F(t) = 0, oct<2/3t (28 

F(t) = (1 + ;/3t)d(l- 2f/3t), t > 2/3t 

‘lks section treats a slmphfied thermal and flow model 
of the smgIe-screw melt extruder The flow model IS 
assumed to be independent of the thermal model, and m 
treatmg it, we wdl closely follow the work of Pinto and 
Tadmor [3] who denved the RTD for this model FQure 3 
tiustrates the geometry and mlcates the notation There 
are two velocity components V,(y) which represents 
flow down the channel and V,(y) which represents a 
cvculatory pattern m the x-y plane It 1s assumed that the 
channel width, W, IS large compared to the height, H, so 
that the y-due&on velocity components at each end of 
the channel WIU have a nehble effect on residence tune 
and heat transfer charactenstlcs 

For a Newtoman flmd vvlth constant vlscoslty, the 

t 

i 

Fa 3 Flow channel m a smgle screw extrude1 
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cvculatory velocity component 1s 

V,(Y) = VdY/B)(2-y/B)cos 8 (29) 

FIuld moves 111 the negative x-due&on whde It 15 111 the 
upper third of the channel and m the positive x-dtrection 
wMe m the lower two thuds, and a fluid element wbch 
first crosses the channel at position y Hnll later recross it 
at position ye, these two coordmates being related by 

Y,=1/2[1-Y+g(1+2Y-3p)] (30) 

where Y = y/B For the velocity component m the z 
duectlon we use 

V,(Y) = VdylB) s1n 8 (31) 

whch assumes that the extruder operates with an open 
&charge (no back pressure) The combmatron of the two 
velocity protiles means that the fhud follows a helical path 
down the extruder channel, and eqn (7) 1s evaluated by 
mtegratmg along these helical streamhnes 

Thermal aspects of the problem are governed by the 
dSerentlal equatron 

(32) 

where conduction m the two dunenslons parallel to the 
velocity components has been neglected More unpor- 
tantly, eqn (32) mores VISCOUS dlsslpatlon although tis 
restnction wrll later be removed since viscous dlsslpation 
1s the major source of heat mput for most extrusion 
operations Also, the vlscoslty of the melt IS usually 
dependent on temperature and shear rates, but these real 
effects are neglected smce the current emphasis IS on 
lllustratmg general concepts rather than on construction 
of a ngorous model of the extrusion process 

Heat conduction through the barrel wall 1s approxl- 
mated by a constant wall temperature, T = T’ at y = B 
A neutral screw IS assumed so that a zero flux con&tion IS 
applied at y = 0 The boundary condrtions at x = 0 and 
x = W reflect circulation of fluld m the x - y plane 

w4 Y) = m9 YJ 

VW, Yc) = VW, Y) (33) 

where y and y, are related through eqn (30) 
Usmg these boundary condltrons, eqn (32) can be 

solved for the three-dlmenslonal temperature profile using 
standard numerical techmques A convement approach IS 
a fimte &fference approximation wth a gnd spacing m the 
y-duection based on eqn (30) Thus one nught choose 
equally spaced gnd points m the regon 213 < Y < 1 and 
then use eqn (30) to calculate the points for the regon 
Oc Y<2/3 

The solution of eqn (32) depends on three dunennon- 
less groups 

aL Lc0s e 
VoB2 sm 8’ W sm t?’ (34) 

The first of these IS a form of the Graetz Number and the 
second IS an aspect ratio Fm 4 shows a typrcal 
temperature profile at the hscharge end of the channel 
Note the expanded scale used m the plot The exit 
temperature &stibubon IS actually quite umform Sup- 
pose T, ITo = 12 corresponds to an mlet temperature 
dtierence of 100°C Then the maxlmum temperature 
difference between any two pomts m the exit stream 
would be 17°C 

With known temperature protiles, tT IS found by mteg- 
ratmg along a streamline accordmg to eqn (7) Exact 
specticatlon of the streamlmes reqmres knowledge of the 
uutal values for both x and y However, the effect of the 
uutial x coordmate becomes ummportant m long channels, 
and, as m the RTD analysis of smgle screw extruders 133, 
we neglect the effect of uutml x Then the streamhne 
mtegral m eqn (7) can be expressed as 

where 2B/3 < y <B and where I#I IS the fraction of the 
volumetnc flow rate passing through a tierentlal ele- 
ment, dy, m the upper thud of the channel compared to 
the total flow through tierential elements, dy and dy, m 
both potions of the channel Thus, 

4= 
1 

I+ v,(E) dY, 
I I V,(Y) dy 

1 = 
(3Y- 1) 1 

(36) 

v(l+2Y -3Y,) 

Note that 4 IS a fraction based on volumetnc flow rates 
and IS thus dfferent than the fractions based on velocities 
which were defined by Pmto and Tadmor[3] Practical 
evaluation of tT means that one fist averages across the 
channel and then integrates m the downstream tiectlon 
Thus IS done separately for the upper and lower potions 

120 

I 19 

I I8 

h? 

L- 117 

116 

t 

-y&=,0 

II5:, 

Y/5 

Fig 4 Temperature profile III extruder channel 
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of the channel and the results are combmed accordmg to 
eqn (35) ms gves tr as a function of y Pinto and 
Tadmor’s result for F( y ) can be duet tly apphed to @ve H 
as a function of y 

H(y)=1/2[2p-l+(Y-l)v(1+2Y-3p)] 
(37) 

The parameter y 1s then ehmmated to pve H as a function 
of tT Typical results, scaled so that & = 1, are aven 111 
Fu 5 Appendur C describes the numerical tecluuque 
used to obtam t; 

The curve for E/RT,, = 0 IS the same as the residence 
tune dlsmbutlon, and, hke the RTD, gves (&)_ = 0 75 f* 
For E/RTo up to about 10, the value for &)_ IS hu&er 
for that for the RTD Thus vvlth activation enerLpes m tlus 
range, the model suggests a more umform reaction envl- 
ronment than If the extruder were operated rsothermally 
ms perhaps surpnsmg result IS due to a compensatory 
couplmg between temperature and residence time where 
the fled elements vvlth shorter residence tunes tend to 
expenence hlgber temperatures In the fixed-wall, 
lammar-flow heat exchanger considered earher, the oppo- 
site couphng occurs and H( tT) shows much greater devla- 
bons from the &tibutlon correspondmg to plug flow than 
does F(t) 

08 - 

06- 

02- 

I 
OO 

I I I 
04 0.6 12 16 

r/t; 

F+g 5 Thermal tune &stnbuhons ~1 a smgle screw extrude1 

EXTRUDES WIT3 VISCOUS DISSPATION 
VISCOUS disstpatlon 1s an unportant phenomenon m 

most extrusion operations Indeed, It 1s usually the major 
and sometunes the sole source of energy input To 
account for this, we must add the appropnate source 
terms to the energy equation 

where V, and V, are the same as used by Pmto and 
Tadmorf31 and are @ven by eqns (29) and (31) Reducmg 
eqn (38) to dnnenslonless form mves nse to two very 
sumlar versfons of the Brmkman Number 

p v,’ sd 0 J&v,’ co2 e 
uTo ’ KTO 

(39) 

The solution to eqn (38) also depends on the same 

duuenslonless groups and boundary conktions as for eqn 
(32) Figure 6 gves sample results for a case where a 
zero-flux con&tion was apphed at both the screw root 
(y = 0) and at the barrel surface (y = B) Physlcally, tlus 
example m&t correspond to heating a polymer melt by 
100°C Then the exit temperature dlstnbution IS even 
more umform than m the wall conduction case treated 
earher_ The maxunum temperature ddference m the exit 
stream IS only ll°C, and tlus temperature tierence IS m 
fact the maxunum one that occurs anywhere down the 
extruder With heat transfer through the barrel, the max- 
unum exit temperature tierence IS 17°C while fluid 
elements near the mlet of the extruder UrllI show a 
temperature Merence up to 100°C 

Figure 7 shows the thermal tune &stnbutions resultmg 
from the viscous heatmg example The curve for E IRT, = 
0 IS Identical to that m Fig 5 and IS the same as the residence 
tune dlstriiution The other curves show that low residence 
tunes are coupled with higher temperatures to a re- 
markable ext&t For ErRTo = 5, - (TV)- = 0 98 

118 - 

h? ai 
h i 17 - V, sln8@ 

-01 S!Z%*(O 
sin8W 

p V,’ sin’89 p V,’ coo% 

116 - KT, = KT, 
102 

. II 0 I 

Y/B 

and 

Fu 6 Extruder temperature profile with VISCOUS dlsslpatron and 
Insulated walls 

w t; 
Fu 7 Thermal tune m an extruder with VISCOUS bsslpation 

H&) IS practically mndlstmgmshable from that of a piston 
flow reactor For all values of E/RTo, (h),,,,,, hes m the 
range 0 75-l 0 Thus for all activation eneraes, one can 
expect a more umform reaction envnonment in an ex- 
truder mth viscous heatmg than m the same eqmpment 
operated isothermally 
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TW 
V 

VO 
W 
X 

Y 

YC 
Y 

z 

wall temperature 
fluid velocity 
velocity at barrel surface, ?rDN 
width of channel 
coordmate 
coordinate 
defined by eqn (14) 
dimensionless coordinate, y/B 
coordinate 

CONCLUSIONS 

We have introduced the concept of thermal time dis- 
tnbuttons in nomsothermal reactors This 1s a umfymg 
concept which allows nomsothermal systems to be treated 
within the theoretical framework prevtously used for 
isothermal systems 

From a predictive vlewpoit, thermal tune distributions 
are most useful in systems where the temperature and 
velocity profiles are independent of the extent of reaction 
Thus one may calculate the thermal tune distribution from 
a thermal and flow model of the system and then use the 
calculated results to bound the reaction yreld m exactly 
the same way that the residence time dtstributron can be 
used to bound the yield of an rsothermal reaction 

The sample calculahons provide useful mstght into the 
design of lammar flow reactors with conduction through 
the wall of a fixed-wall heat exchanger Long residence 
times are coupled to relatively high temperatures The 
result IS a thermal tmre distribution grossly different from 
that of piston flow or even the residence tune distrtbution 
m the same device However, m movmg-wall devices such 
as smgle screw extmders, tt is possible to reverse this 

couplmg at least partially so that flmd elements wtth 
higher temperatures have lower resnlence tunes The 
circulatory flow pattern within the screw channel also acts 
to Improve umformity The overall result is that reactor 
performance is greatly improved compared to fixed-wall 
devices Dependmg on the actrvatron energy, the thermal 
tune dtstnbutron is roughly sunilar to the residence tune 
distribution in the same equtpment For extruders with 
thermal input from vtscous rllsstpation rather than heat 
conduction through the barrel, the thermal environment is 
still more uniform Within a range of activatron energies, 
the thermal tune Qstrrbution may be virtually identical to 
the piston flow distnbution, and for any acttvation energy, 
the thermal tune distribution represents a more uniform 
reaction envtronment than the residence tnne dtstrrbution 

ii 
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c. 
I? 

f 
F 
G 
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H 

k, ko 
K 
L 

PI, p2 
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R’ 

t 

to 

tT 

T 

TO 

NOTATION 

thermal dlffusivrty 
channel height or half height 
concentration 
heat capacity 
activatton energy 
residence time frequency function 
residence time drstrtbutron function 
concentration funchon 
thermal time frequency function 
thermal time distrrbution function 
constants in rate equation 

function of reaction parameters 

length of channel 
reactron parameters 
volumetric flow rate 
reactron rate function 
gas law constant 
residence time 
generalized tune 
thermal time 
absolute temperature 

Greek symbols 
ce 

ffG 

ffT 

c 

El- 

A 

AC 
AT 

8 

K 

f 

i 

residence age 
generahzed age 
thermal age 
mixmg trme in isothermal systems 
mixing trme in noiusothermaI systems 
residence life expectancy 
generalized life expectancy 
thermal hfe expectancy 
helex angle of screw extruder 
thermal conducttvity 
vlscoslty 
Arrhenius factor 

ratio of thermal time to residence tune 

fraction defined by eqn (18) 
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APPENDIXA 

Theory of generalrzed trme drstnbutrons 
Consider a reaction with rate equation 

Rate = r(c*, c,, > PI, p2, 1 w 

where c,, c,, represent concentrations of the various molecu- 
lar species mvolvcd m the reactton and where the PI, Pa, are 
all those reactton parameters, other than concentration, which 
vary from pomt to point 111 the system These Include such factors 
as temperature, catalyst density, radiatton mtensity. etc as may 
be approprtate for the part~ular system FoBowmg an earher 
work[4] we suppose that r can be factored to gave 

Rate = k,K(P>, P,, )G(c,, c,, ) (41) 

so that K depends only on the P, G depends only on the c, and go 
IS system constant included for convenience 

For each molecule m the reactor we define three attnbutes a 
generahxed age oC). a generahxed life expectancy Ao, and a 
generalized tune ta The definmg equattons arc 

CXa= = K(t’)dt’ (42) 

A,= I ’ K(F) dt' 
_ (43) 

to= [’ K(t’) dt’ (44) mlet temperature 
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and d follows that 

l&J-+& =t, (45) 

Consldermg all molecules as they leave the system, the general- 
ued tune functron 1s defined by 

h(t,) dto = Fraction of molecules wtth agenerabxed 
tune between ta and to + dto 

From a theoretrcal vrewpomt, rt 1s not necessary that h(t,) be 
regarded as detenmmstrc m nature It wrll be deternumstrc d, for 
example, the parameters P are fixed funcbons of the spatral 
coordmates and d the flurd IS m lammar flow For turbulent flow It 
may be more useful to consrder h (to) as a probabrlrty drstnbutron 

W~tb the above defimtrons, rt IS possrble to develop the theory m 
a manner essentmlly Identical to that for thermal time dlstibu- 
hons Mrcromwng 1s characterrxed by the earbness or lateness of 
nuxmg between molecules u&h Merent generahzed reactton 
ages If the mrxmg IS done as late as possible, 1 e when ho = 0, the 
system IS satd to he completely segregated with respect to 
generabxed ages The model reactor operates at a smtably average 
value for K so that f(f) has the same functional form as h(t,) 
The concentratron protile down the reactor IS gven by 

g = -K,K(P,, P,, )G( c.4, cm 1 146) 

or, substrtutmg for (r, 

e = -K,G(c,, CB. 1 
ct 

The analog of eqn (21) follows duectly, the only dtiference bemg 
that tT IS replaced by to 

dc _u 
da= 

>-dcsaforalla ZO 
da= 

T (50) 

When all mrxmg between molecules wtth drtfermg a, IS done as so that cU decreases more rapldly wth thermal age than cM, for 
early as possrble, t e when ao = 0 for the youngest molecule, the Uus concave-up example, the nuxmg me which maxumzes con- 
system IS m maxllllll~ll nuxedness A Zwetermg type dtierentml version ( mminuzes concentrahon) for the two groups of molecules 
equation can be denved for the model reactor The result IS sunply wdl be as late as possible, 1 e at A= = 0 which IS complete 
eqn (22) ~rlth & substituted for & segregation Hrlth respect to thermal ages 

The two extremes of mlcronuxmg normally provide bounds on 
the yield of a reaction The proof of thus statement and necessary 
conditions are dlscussed m Appenduc B, the extension from 
thermal tunes to generabzed tunes bemg obvious 

The argument IS easdy repeated for the concave-down case The 

It IS seen from the above that the generahzed tnne dlstibuhon IS 
a generabzation of the residence bme dntnbution which allows 
complex reaction systems to be treated wlthm the same theoretl- 
cal framework used for Isothermal, homogeneous reactions From 
a theroetrcal vlewpomt, applrcabrbty of thts theory rests on the 
assumed separabrltty of vanables accordmg to eqn (41) From a 
practrcal vrewpomt, ticulttes m determmmg h(&) represent a 
more serious obstacle although these are gradually bemg over- 
come Table 1 summarrzes appbcatrons to date 

Optdmum mrcrommng m nonzsothemnl reactors 
In thm Appendrx we apply the theory of Chauhan, Bell and 

Adler[Z] to nomsothermal reactors They consldered the nnxmg 
between two groups of molecules wth the same residence hfe 
expectancy This rmxmg can occur at any tune e wlthin the 

Concentration, c 

Fig 8 Concave-up reaction rate 

Interval 0 I l 5 A It was shown that the averaged concentration 
for the mued group of molecules as they leave the reactor IS a 
monotomc function of d ConversIon mcreases monotomcally 
with mcreasmg .E for concave-up rate expressions and decreases 
monotomcaliy Hrlth mcreasmg B for concave-down rate expres- 
slons Thus conclusion appbes to all groups of molecules wtuch 
wdl be nuxed wthm reactor and thus apphes to the average 
conversion for the entie reactor 

To apply the above approach to nomsothermal reactors, we 
begm w& the batch rate equation 

--_ zi - k. emB”%(c) 

Convertmg tlus to a rate based on thermal age rather than 
resrdence age grves 

--$= k,G(c) 
T 

Ftgure 8 rllustrates the case where G(c) IS a concaveupward 
function of c The pomts marked A and B represent the concen- 
trations of two groups of molecules with the same value of Ar If 
they were nuxed mune&ately, 1 e , at c = 0, the resultant average 
concentration, c,, and average reaction rate are shown at pomt M 
m Fig 8 The pomt U represents the mathematically averaged 
concentration, cU, and rate w&h results from leavmg the two 
groups of molecules unrmxed Smce the reaction rate IS concave- 
up, the rate 1s lllgher w&out nuxmg With a sbght change m 
nomenclature, the analysis of Chauhan, Bell and Adler can be 
followed tiectly to prove 

Table 1 Examples of generabxed tune drstrrbuttons 

Type of system 

Isothermal, 
Homogeneous 

Isothermal. 
Heterogeneous 

Non-Isothermal, 
Homogeneous 

Type of dlstnbutlon 

Resrdence hme &stnbution 

Contact tune dlstnbution 

Thermal tune &stnbution 

Reference 

Dankwerts[S] 

Orcutt et al 161 
Nauman and Collmge 143 

Thus paper 
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result 1s that We thus define the vanable 

-s>-* for all a,20 
dar dar 

(51) 

so that conversIon IS m axmuzed wrlth nuxmg as early as possible, 
I e at (zy = 0 wluch 1s maxunum nuxedness wltb respect to 
thermal ages 

7 = I& (56) 

and can evaluate Its vatue at each of the mtenor gnd pomts We 
can also evaluate 7 at the boundanes with the known boundary 
con&tions, I e for constant wall temperature 

When the reaction rate 1s a lmear function of concentration, llm 7 = e-EmTw 
c, = cU and 1-a 

(52) 

so that conversIon is mdependent of the tune of mrxmg This IS the 
classical result that the yield of a first order reachon IS mdepen- 
dent of mlcronuxmg 

APPENDJXC 

Numerical evaluatwn of & 
A fin&e &fference method for the numerical determma aon of 

thermal tune &stnbutlons mves a value for & at each of the 
mtenor md pomts Smce H can also be obtamed at each of these 
eomts, It IS possible to elunmate y as a parameter and to evaluate 
tT from Its defimng equation (eqn 11) or from smular forms such 
as 

ii- = 1._ [l -H&-)1 d& = 1.’ r&H) dH (53) 

The problem with such a tie& method for determmmg i= IS that 
tT IS unbounded over the Internal of mterest Even with soplst~- 
cated numerical techmques. the dd6culty m accurately mtegratmg 
functions such as those m Fw 2 w1u be rea&y apprecmted 

To develop an alternate calculation techmque for in note that 

where & remams unbounded but we have now converted to an 
mtegral over the volumetnc flow rate Now, the residence tune t 1s 
easdy calculated for any position y 

t = L/v,(Y) IS9 

(57) 

Thus 7 IS known for each gnd pomt and IS bounded for all y 
Substituting mto eqn (54) gwes 

Now, for the parallel plate problem, dQ = WV* dy and 

Thus, evaluation of g merely requves mtegratmg a bounded 
vanable over a fimte range One sunple method for domg &IS IS to 
fit 7 to a pzcewlse quadratic m y, For equally spaced mesh 
pomts, thus fs just Sunpson’s rule 

For geometies other than parallel plates the same general 
approach works although the specfic form of eqn (59) wdl be 
altered For a c~~ular pope, dQ = 2vV. dy and 

i=zrrt * 
T Q I o TY dy 

whch agam has a bounded varmble mtegrated over a fin& range 
In the extruder problem, eqn (35) gwes t,(y) wntb a collapsed 

range on y Equanon (58) remams vahd. but V. and dQ are now 
compbated functions of y over the collapsed range 213 < y/B c 
1 A better approach IS to leave & m uncollapsed form by 
rewntmg eqn (35) as 

MYI = 4&r), + u - bWl)L 161) 

Then T IS defined m terms of (&)& for 0 < y/B < 2/3 and m terms of 
(b). for 2/3 C y/B < 1 With thus defimtion, eqn (59) stands as 
wrttten, and t; IS readdy calculated 
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