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Abstract—For reactions 1n nomsothermal systems, the thermal time distribution 1s the analog of the residence time
distribution If the reaction can be characterized by a single activation energy, knowledge of the thermal time
dastnibution based on this activation energy can be used to predict the yield of a first order reaction umquely and to
closely bound the yield for reactions of order other than first

Thermal time distributions are a useful conceptual and analytical tool for reaction engmneering, particularly n
systems where the temperature and velocity profiles are not strongly coupled to the extent of reaction This situation
frequently occurs in the processing of polymer melts, for example 1n the activation of blowing agents or in chemcal
modification of the polymer chain Simpiified flow models of heat exchange and extrusion equipment are used to
illustrate the apphcation of thermal time distributions and to show that they often differ significantly from the
residence time distnibution mn the same device In fixed wall heat exchangers, the thermal time distribution shows less
uniform reaction conditions than would be true for an isothermal reaction governed by the residence time
distnbution In extruders, and particularly for those where viscous dissipation 1s the major energy mput, this situation
1s dramatically reversed with a reaction environment very similar to that for piston flow and substantially better than

would occur 1n the same equipment operated i1sothermally

INTRODUCTION

The theory of residence time distributions has well estab-
lished and broad apphcations mn the field of chemucal
reaction engineering This 1s true despite limitation of the
theory to homogeneous reactions m 1sothermal systems
For such cases, knowledge of the RTD 1s sufficient to
predict the yield of a first order reaction umquely and to
closely bound the yield for reactions of order other than
first[1,2] Although there are situations where a more
precise characterization of mixing phenomena 1s needed
to understand the system, the RTD still represents a
necessary starting point for analysis Indeed, 1t 1s fair to
say that knowledge of the RTD 1s the most important step
1n reactor analysis beyond knowledge of the batch kine-
tics themselves

However, for reactors which are not homogeneous and
1sothermal, the RTD becomes much less useful and may
even prove musleading if improperly apphed One ap-
proach to these more complex systems 1s the theory of
generahzed time distributions which 1s outhned in Appen-
dix A For the case of an 1sothermal, homogeneous
reaction, the generalized time 1s just the time spent in the
reactor, and thus the generahized theory reduces to classi-
cal RTD theory If the reaction 1s homogeneous but
nontsothermal, the pertinent generalized time 1s the ther-
mal time

THERMAL TIME DISTRIBUTIONS
The theory of thermal time distributions can be de-
veloped along hnes very sumlar to those used by
Zwietering[1] in his treatment of residence time distribu-
tions In thes theory, a molecule has three time-based
attributes a residence age a, a residence life expectancy
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A, and a residence time ¢ These are related by

t=a+A 1)
Zwietering considered the kinds of mixing that could
occur between molecules of differing residence age, such
muung always being subject to the restnction of a con-
stant residence time distribution He showed that
molecules can mux only if they have the same hfe expec-
tancy and that there are two extreme possibilities for such
mixing complete segregation and maximum mxedness
In a completely segregated reactor, there 1s no mixing
at all between molecules of differing residence age
Molecules which enter together remain together and mix
with other molecules only at the reactor exit Such a
system can be modeled as a piston flow reactor with a
number of side exits All fluid enters at a common point
and flows down the reactor without mixing Fluid leaves
from the reactor through the side exits, the number and
placement of these exits being arranged to give the system
the overall residence time frequency function f(¢) Mixing
between molecules with differing a occurs only when
a =t and A =0 Thus such mixing 1s said to be as late as
possible Axial position down the reactor can be charac-
terized by the value of &« which ranges from a =0 at the
extrance to a = ., at the downstream end The concen-
tration profile in this 1sothermal reactor 1s governed by

de _
P kG(c) )

subject ot the condition that ¢ = Cy at @ =0 The solution
to eqn (2) 1s identical to that for a batch reactor The exit
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concentration i1s obtamed by averaging over the various
side exits

;-
< f [C () houenf (2) 3)

Zwiertering showed that the other extreme of mic-
romixing can be modeled as a piston flow reactor with a
number of side entrances Similarly to the exits in the
segregated case, the side entrances are arranged to give
residence time frequency function f(#) Now, however,
entering molecules with residence age a =0 are muxed
with molecules already 1n the reactor with quite different
ages Once mixed, the molecules will all exit together and
at the point of mixing all have a common value of A Axial
position 1n the piston flow reactor 1s characterized by the
value of A which varies from A =0 at the exat to A = ¢,,..,
at the upstream end In the maximum mixedness reactor,
mixing between molecules with different values of a
occurs as early as possible Indeed, some of the molecules
mixed wall have a =0 and thus A = ¢ while m the segre-
gated reactor mixing occurs only when a =t and A =0
The composition profile down the reactor 1s governed by

de _ fA)c —cv)
- kG(c)+—————1_F()‘) “4)

subject to the condition that ¢ 1s bounded for all A The
average exit concentration 1s found by evaluating the
solution of (4) at A =0

Having restated the basic results of RTD theory for
1sothermal reactors, 1t 13 now possible to develop the
analogous theory for non-isothermal reactors We begin
by defiming three temperature and time-based attributes of
a molecule the thermal age ay, the thermal hfe expec-
tancy Ar, and the thermal ttme ¢r The defimng equations
are

ar = L " e-EIRTE) gy ®)
,
Ar= [ emmroar ©
and
tr = J” &—EIRTE) gy )
o

In these equations, the temperature experienced by each
molecule 1s considered to be function of the time that the
molecule has spent 1n the reactor Physically, egns (5)«(7)
represent integrals taken along various portions of a fluud
streamhne It 1s apparent that ay, Ay and ¢ all have
dimensions of time and are related by

ar + I\T = tT (8)
The physical significance of the Arrhemus temperature
dependency 1n eqns (5)«(7) springs from the assumed

form of the rate equation for the nomsothermal reaction

Rate = k, e F'RTG(c) (6]

We will return to this physical interpretation shortly, but
for the moment will develop the theory of mixing m
nonisothermal systems without reference to reaction
kinetics

Considering all molecules which enter or leave the
reactor, define the thermal time frequency function as

h(t;y) dt;y = Fraction of molecules with a

thermal time between fr and tr +ditr 10
The mean, fr and higher moments of the thermal time
distribution are defined 1n the usual way

i = [ Grrhier diy an

where po=1 and g, = t; We also define the cumulative
distribution function as

Htr) = f TR ey (12)

The existance of the distribution functions and of fo
follows from the existance of f(#) and the mean residence
time ¢ To see this, note that there will be some mimmum
and maxaimum tempreatures within the reactor and corres-
ponding minmmum and maximum Arrhemus factors

Vo = €~ F R ) W ooy = € ER ) 13)
Thus for each molecule,
Wt < tr = Vot (14)

If the entire reactor operated i1sothermally at T, the
distribution of thermal times would be identical to the
distribution of residence times except for a constant
factor

h(t2) = o f(td ¥o) ()
A similar relation holds at T.., and thus we have
Voued <tr =V f (16)

For nomsothermal operation, t; will differ from ¢ as will
h(tr) from f(t) It 1s useful to define a system average
Arrhemus factor by
V=1t an

which corresponds to a special kind of system average
temperature For every nomsothermal reactor, one can
devise an equivalent 1sothermal reactor, operating at this
average temperature By equivalence we mean only that

Yh(tr) = f(t) (18)
but we shall subsequently show that the two reactors are
also equivalent in that they have the same bounds on
MmICromixing
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Now consider the kinds of muxing that can occur
between molecules of differing thermal age If a constant
thermal time distribution 1s to be mamtained, molecules
can mix only if they have the same value of thermal hife
expectancy Consider two groups of molecules with the
same value of Ar but different values of er and hence of
tr One possibility 1s that they mix only when A = 0 which
1s at the reactor exit Such muxing occurs as late as
possible Another extreme i1s for the mixing to occur
when the younger of the two groups enters the reactor, 1 ¢
when ar = 0 for one group and a > 0 for the other Such
mixing occurs as early as possible If #r 1s the thermal
time for the younger of the groups, they can mix when A,
has any value within the range 0 <Ay <#r

If all mixing between molecules with differing thermal
ages occurs when A =0, the system 1s said to be com-
pletely segregated with respect to thermal ages If 1t
occurs when ar = 0, the system 1s said to be 1n the state of
maximum mixedness with respect to thermal ages These
two conditions represent bounds on the level of mic-
romuxing (with respect to thermal ages) which 1s possible
in a real reactor with fixed A(tr) In the 1sothermal case,
Zwietering supposed that the bounds on micromixing
provided bounds on reaction yield We make the same
supposition for nomsothermal reactors It 1s also possible
to apply the recent proof and conditions of Chauhan, Bell
and Adler{2] directly to nomisothermal reactors This 1s
discussed in Appendix B

At this point 1t remains to develop models and yield
expressions for reactors operating at the two extremes of
micromixing with respect to thermal ages These models
follow directly from the models used by Zwietering and
from the concept of equivalent reactor For the segre-
gated case the model reactor 1s a piston flow reactor with
many side exits It 1s operated 1sothermally at the temper-
ature defined by eqn (17) and with the side exits arranged
to give f(¢) as defined by eqn (18) In this model, t; =¥t
with ¥ constant The concentration profile 1s given by the
batch reaction kinetics

de _

P koW G(c) a9

or, substituting for o

de
dar koG (c) (20)
The average exit concentration 1s given by

£ — [T (COr e der @

0 ]

Simularly to the above, the maximum mixedness reactor
1s 1sothermal and piston flow but now side entrances are
used to duplicate f(1)=1/¥h(ty) The concentration
profile 1s governed by

jiL:—kOG(CHE%—%??_)

subject to the condition that ¢ 1s bounded for afl Ay This

conditton usually can be restated as

dc _
hm Sy =0

23)
The exit concentration 1s the solution to eqn (22)
evaluated at A =0

The model reactors have residence time distributions
with the same functional form as the thermal time dis-
tribution of the real reactor We note 1n passing that the
real reactor will also have a residence time distribution
but this 1n general will be different from that of the model
reactors Molecules with the same value for A+ may have
different values for A Thus the kinds of mixing possible
with a constant A (Zr) may not be possible with a constant
f(t) and conversely Simuilarly, reactors 1s an extreme
state of micromixing with respect to thermal ages need
not be 1n an extreme state of micromixing with respect to
residence ages In particular, one can devise systems
which are completely segregated with respect to thermal
ages but not so with respect to residence ages and
conversely

DETERMINATION OF A(tr)

Residence time distributions are determmned 1 two
main ways

(1) Experimentally by inert tracer techniques

(2) Theoretically by means of flow models

Turning to thermal time distributions, there 1s no sumple
experimental method for determining them, a fact that
severely himits therr usefulness However, theoretical
determimations based on a combined thermal and flow
model are possible These will tend to be specific for a
particular reaction system 1if the flow patterns or tempera-
ture profiles are strongly coupled to the extent of reaction,
but even here the thermal time distribution 1s a useful
conceptual tool for explanation and analysis of reactor
phenomena It becomes significantly more useful for that
class of problems where the extent of reaction does not
significantly affect the equations of motion or energy

The field of polymer reaction engineering includes
examples of both situations Polymerizations and particu-
larly bulk polymerizations usually show a dramatic influ-
ence of the extent of reaction on temperature and velocity
profiles Here the thermal time distnbution—hike the
residence time distribution—will be system specific and
useful only in an interpretative mode On the other hand,
the processing of polymers m extruders, heat exchangers,
and fabrication equipment often involves chemical reac-
tions whach have relatively little influence on the tempera-
ture and flow patterns Industrially important examples
include the modification of polymer end-groups and side
chamns, thermal depolymerization, and the activation of
chemical blowing agents It 1s usually true for such
systems that the fluid 1s 1n steady, lamunar flow so that the
equations of motion and energy are comparatively easy to
solve Further, the determunistic nature of the solutions
assures that the functions f(¢) and h(#;) are themselves
deterministic and can be calculated directly The follow-
mg sections will illustrate these calculations for some
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simphfied thermal and flow models of polymer processing
equpment

LAMINAR FLOW HEAT EXCHANGERS

Figure 1 illustrates the system to be considered and
indicates the nomenclature The important simplhifying
assumption 1s that there 1s only one significant velocity
component, V.(y) The geometry of the heat exchanger
determunes the specific choice of a coordinate system and
the exact nature of the solutions However, results will be
qualitatively similar for all situations involving heat trans-
fer to flluds 1n laminar flow with an axisymmetric velocity
profile which 1s independent of distance down the ex-
changer It is supposed that the flow problem has been
solved so that V,(¥)1s known Then the heat transfer and
temperature history aspects of the problem are defined by
three dimensionless groups

alL T, E
VB T, RT,

(24)

The first of these 1s a form of the Graetz Number, and if
this 1s large enough, the thermal time becomes just a
constant multiple of the residence time For smaller Gz,
temperature gradients mn the y-direction become impor-
tant, and the H; must be calculated by integrating along
the streamlines according to eqn (7)

As a specific example, we treat a parallel plate heat
exchanger with Newtoman velocity profile

V.(y)=15V(1-y*B? 25)

The temperature profiles are calculated as functions of
Gz and T,/T,, and ¢ 15 calculated by integration down
the length of the exchanger

dz

L
= ~(E/RTG 3 92 26
() J; ® Va(y) @6)

which vields #r as a function of y Assuming that tr 1s
monotomc 1n y, the distribution function H can be found
as a function of y

H(y)= f V.M dy @n

Where M = 1/L for flow between flat plates and M =
2y/B? for flow m a circular pipe The parameter y can be
ehmimated between eqns (26) and (27) so that H 1s
obtamned as a function of fr Representative results are
shown 1n Fig 2 where, for ease of comparison, all the
distnibution functions have been scaled to have unit mean

L
Y
Flud
Entering ] velocit 1 L
fluid = L’Z profile’ 28 ——
Temperature, 7, 74¢ 7, L

Wall temperature, 7,

Fig 1 Lamunar fiow heat exchanger
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Fig 2 Thermal time distnbutions for parallel plate heat ex-
changer

This point 1s perhaps worth emphasizing since 1t 1s far
from obvious based on the graphical representations 1n
Fig 2 The vanous distribution functions differ dramati-
cally 1n the tail region, and those corresponding to high
activation energies show a phenomenon akin to bypass-
g Only the matenal near the wall makes a significant
contribution to the mean thermal time, 77, while material
near the center of the flow channel leaves the system with
a very low value of f; Appendix C describes the nomer:-
cal technique used to evaluate f,

The curve marked E/RT, = 01n Fig 2 1sidentical to the
residence time distribution This same distribution func-
tion also arises for the other limiting case of al/ VB2 =0
or Ty/To=1 For Newtoman flow between parallel
plates, this function 1s

F@)=0, 0<t<2/3f
F@)=(1+ t3t /(1 —-2t/3¢t),

(28)
t>2/3t

SINGLE SCREW MELT EXTRUDER

This section treats a simphfied thermal and flow model
of the single-screw meit extruder The flow model 1s
assumed to be independent of the thermal model, and 1n
treating it, we will closely follow the work of Pinto and
Tadmor{3] who denived the RTD for this model Figure 3
Hlustrates the geometry and indicates the notation There
are two velocity components V,(y) which represents
flow down the channel and V_(y) which represents a
circulatory pattern in the x-y plane It 1s assumed that the
channel width, W, 1s large compared to the height, H, so
that the y-direction velocity components at each end of
the channel will have a neghgible effect on residence time
and heat transfer characteristics

For a Newtoman flmd with constant viscosity, the

% Extruder barrel, temp = Ty K]
[~ Vv i
vz o) g
z
] | 1
. I
" w !

Fig 3 Flow channel in a single screw extruder
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circufatory velocity component is

V.(y)= Vo(y/B)2—yI/B)cos @ 9
Fluid moves 1 the negative x-direction while 1t 1s 1n the
upper third of the channel and 1n the positive x-direction
while 1n the lower two thirds, and a flmid element which
first crosses the channel at position y will later recross it
at position y., these two coordinates being related by
Y. =12[1-Y++v(1+2Y-3Y?)] (30)
where Y =y/B For the velocity component in the z
direction we use
V.(y)= Vo(y/B)smn 6 31
which assumes that the extruder operates with an open
discharge (no back pressure) The combination of the two
velocity profiles means that the flmd follows a helical path
down the extruder channel, and eqn (7) 1s evaluated by
mntegrating along these helical streamlines

Thermal aspects of the problem are governed by the
differential equation

aT oT_ 3°T
V,a+ V,E—a y? 32)

where conduction mn the two dimensions parallel to the
velocity components has been neglected More mmpor-
tantly, eqn (32) ignores viscous disstpation although this
restriction will later be removed since viscous dissipation
1s the major source of heat mput for most extrusion
operations Also, the viscosity of the melt 1s usually
dependent on temperature and shear rates, but these real
effects are neglected since the current emphasis 1s on
illustrating general concepts rather than on construction
of a ngorous model of the extrusion process

Heat conduction through the barrel wall 1s approxi-
mated by a constant wall temperature, T=T, at y= B
A neutral screw 1s assumed so that a zero flux condition 1s
apphed at y =0 The boundary conditions at x =0 and
x = W reflect circulation of fimd m the x — y plane

T, y)=T(0,y.)

T(W,y.)=T(W,y) (33)
where y and y. are related through eqn (30)

Using these boundary conditions, egqn (32) can be
solved for the three-dimensional temperature profile using
standard numerical techniques A convement approach 1s
a fimte difference approximation with a grid spacing in the
y-direction based on eqn (30) Thus one mught choose
equally spaced gnd points in the region 2/3< Y <1 and
then use eqn (30) to calculate the points for the region
0<¥Y<2/3

The solution of eqn (32) depends on three dimension-
less groups

alL Lcosd T,

VeBZsin® Wsm#8 T, G4)

The first of these 1s a form of the Graetz Number and the
second 1s an aspect raho Figure 4 shows a typical
temperature profile at the discharge end of the channel
Note the expanded scale used m the plot The exit
temperature distribution 1s actually quite uniform Sup-
pose T,/To=12 corresponds to an inlet temperature
difference of 100°C Then the maximum temperature
difference between any two pomts in the exit stream
would be 17°C

With known temperature profiles, ¢+ 1s found by mnteg-
rating along a streamline according to eqn (7) Exact
specification of the streamhnes requires knowledge of the
mitial values for both x and y However, the effect of the
inttial x coordinate becomes ummportant in long channels,
and, as in the RTD analysis of single screw extruders[3],
we neglect the effect of imtial x Then the streamhne
mntegral 1n eqn (7) can be expressed as

L(w dx dy
= ~ErRn 94X _CY
() "’LL WYL

LW dx dy,
_ 1 — —l
+a-a) [ [T e Gy

where 2B/3 <y < B and where ¢ i1s the fraction of the
volumetric flow rate passing through a differential ele-
ment, dy, in the upper third of the channel compared to
the total flow through differential elements, dy and dy. 1n
both portions of the channel Thus,

(35}

1

¢=
V(YY) | dYC
1+ v,(Y)| dy
1
= (36)
Y. GY=1)
1+ﬁ[1+\/(1+2Y—3Y2)]

Note that ¢ 1s a fraction based on volumetric flow rates
and 1s thus different than the fractions based on velocities
which were defined by Pinto and Tadmor[3] Practical
evaluation of ¢{r means that one first averages across the
channel and then integrates in the downstream direction
Thas 1s done separately for the upper and lower portions

120

g

118

116 +—

115
[e] [10]

Y/8
Fig 4 Temperature profile in extruder channel
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of the channel and the results are combined according to
eqn (35) This gives ¢ty as a function of y Pinto and
Tadmor’s result for F(y) can be directly appled to give H
as a function of y

H(y)=122Y*-1+(Y - 1)/ +2Y -3Y?)]
37

The parameter y 1s then eliminated to give H as a function
of tr Typical results, scaled so that tr =1, are given 1n
Fig 5 Appendix C describes the numerical techmque
used to obtam #r

The curve for E/RT,=0 1s the same as the residence
time distribution, and, like the RTD, gives (fr)ua =0 75 £
For E/RT, up to about 10, the value for (#7)m. 1S higher
for that for the RTD Thus with activation energies 1n this
range, the model suggests a more uniform reaction envi-
ronment than of the extruder were operated 1sothermally
This perhaps surprising result 1s due to a compensatory
coupling between temperature and residence time where
the fluid elements with shorter residence times tend to
experience higher temperatures In the fixed-wall,
lammar-flow heat exchanger considered earher, the oppo-
site coupling occurs and H (#;) shows much greater devia-
tions from the ditribution corresponding to plug flow than
does F(t)

10

o8

o6 —

04 |—

l-H(’r)

Fig 5 Thermal time distributions in a single screw extruder

EXTRUDER WITH VISCOUS DISSIPATION
Viscous dissipation 1S an important phenomenon In
most extrusion operations Indeed, it 1s usually the major
and sometimes the sole source of energy input To
account for this, we must add the appropriate source
terms to the energy equation

O,y 2T 2T, 2 [(2V) (222)']
V. ox +V, 9z a 3y +pCv P + 3y (38)

where V, and V, are the same as used by Pmto and
Tadmor{3] and are given by eqns (29) and (31) Reducing
eqn (38) to dimensionless form gives rise to two very
similar versions of the Brinkman Number

wVlsin? o upV,2cos®é8
«T, T,

(39

The solution to egn (38) also depends on the same

dimenstonless groups and boundary conditions as for eqn
(32) Figure 6 gives sample results for a case where a
zero-flux condition was apphed at both the screw root
(y =0) and at the barrel surface (y = B) Physically, this
example might correspond to heating a polymer melt by
100°C Then the exit temperature distribution i1s even
more uniform than in the wall conduction case treated
earlier. The maximum temperature difference in the exit
stream 1s only 11°C, and this temperature difference 1s 1n
fact the maximum one that occurs anywhere down the
extruder With heat transfer through the barrel, the max-
mum exit temperature difference 1s 17°C while flmd
elements near the inlet of the extruder will show a
temperature difference up to 100°C

Figure 7 shows the thermal time distributions resulting
from the viscous heating example The curve for E/RT, =
01s1dentical to thatin Fig 5 and 1s the same as the residence
time distribution The other curves show thatlow residence
tumes are coupied with higher temperatures to a re-
markable extent For E/RT:=35, ((r)em=098 and

Hg

18

o al

cosfL

D 117 -, sin88* -o! singw " '°
uWlsin?8  ply°cos®d 02
e - K, KT,
15 o
Ys/8

Fig 6 Extruder temperature profile with viscous dissipation and
msulated walls
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Fig 7 Thermal time 1n an extruder with viscous dissipation

H (¢r) 1s practically indistinguishable from that of a piston
flow reactor For all values of E/RT,, (tr)m. hes 1n the
range 0 75-1 0 Thus for all activation energies, one can
expect a more umform reaction environment In an ex-
truder with viscous heating than 1n the same equipment
operated 1sothermally
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CONCLUSIONS

We have introduced the concept of thermal time dis-
tnbutions in nomsothermal reactors This 15 a unifying
concept which allows nomisothermal systems to be treated
within the theoretical framework previously used for
1sothermal systems

From a predictive viewpoint, thermal time distributions
are most useful in systems where the temperature and
velocity profiles are independent of the extent of reaction
Thus one may calculate the thermal time distribution from
a thermal and flow model of the system and then use the
calculated results to bound the reaction yield 1n exactly
the same way that the residence time distribution can be
used to bound the yield of an 1sothermal reaction

The sample calculations provide useful msight into the
design of laminar flow reactors with conduction through
the wall of a fixed-wall heat exchanger Long residence
times are coupled to relatively high temperatures The
result 1s a thermal time distribution grossly different from
that of piston flow or even the residence time distribution
in the same device However, in moving-wall devices such
as single screw extruders, 1t 1s possible to reverse this
coupling at least partially so that flud elements with
higher temperatures have lower residence times The
circulatory flow pattern within the screw channel also acts
to mmprove umiformmty The overall result 1s that reactor
performance 1s greatly improved compared to fixed-wall
devices Depending on the activation energy, the thermal
tume distribution 1s roughly similar to the residence time
distribution 1n the same equpment For extruders with
thermal mput from viscous dissipation rather than heat
conduction through the barrel, the thermal environment 1s
still more uniform Within a range of activation energies,
the thermal time distribution may be virtually identical to
the piston flow distribution, and for any activation energy,
the thermal time distribution represents a more uniform
reaction environment than the residence time distribution

NOTATION

a thermal diffusivity
B channel height or half height
concentration
C, heat capacity
activation energy

f residence time frequency function
F  residence time distribution function
G concentration function

h thermal time frequency function
H thermal time distribution function
ko, constants in rate equation

K function of reaction parameters
L length of channel
reaction parameters
Q volumetric flow rate

r reaction rate function
R gas law constant

t residence time
tc generalized time
tr thermal time

T absolute temperature
To 1nlet temperature

Tw wall temperature

V flmd velocity

Vo velocity at barrel surface, #DN
W width of channel

x coordinate

coordinate

y. defined by eqn (14)

Y dimensionless coordmate, y/B

z coordinate

Greek symbols
« residence age
generalized age
thermal age
mixing time 1n 1sothermal systems
mixing tume 1n nomsothermal systems
residence life expectancy
generalized life expectancy
thermal hfe expectancy
helex angle of screw extruder
thermal conductivity
VISCOSItY
Arrhemus factor
ratio of thermal time to residence time
fraction defined by eqn (18)

R
Q

>
Q-q'é't:xm:'c:>-'|"m3
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APPENDIX A

Theory of generalized time distnibutions
Consider a reaction with rate equation
Rate=r(ca,cs, P, P2, ) 40)
where c,, €a, represent concentrations of the vartous molecu-
lar species involved in the reaction and where the P,, P,, are
all those reaction parameters, other than concentration, which
vary from point to point in the system These include such factors
as temperature, catalyst density, radiation intensity, etc as may
be appropriate for the particular system Following an earher
work[4] we suppose that 7 can be factored to give

)G(ca,cu, )

so that K depends only on the P, G depends only on the ¢, and ko
1s system constant included for convenience

For each molecule m the reactor we define three attnibutes a
generalized age ag, a generalized Ife expectancy Ag, and a
generalized time ¢; The defining equations are

Rate = k. K(P,, P,, (C3)]

o= J’ " K@) ar “@2)
Ao = f " K@) ar “3)
ta= L K@Hdr )



366 E B Nauman

and 1t follows that

ag+Ag =tg 45)
Considering all molecules as they leave the system, the general-
1zed time function 1s defined by

h(ts) dts = Fraction of molecules with a generahized
time between t; and {; +dtg

From a theoretical viewpont, 1t 1s not necessary that h(tg) be
regarded as determimstic in nature It will be determumstic if, for
example, the parameters P are fixed functions of the spatial
coordinates and if the flud 1s 1n laminar flow For turbulent flow 1t
may be more useful to consider h (fg) as a probability distnibution

With the above definttions, it 1s possible to develop the theory in
a manner essentially indentical to that for thermal time distribu-
tions Micromixing 1s characterized by the earliness or lateness of
mixing between molecules with different generahized reaction
ages If the mixing 1s done as late as possible,1e¢ when As = 0, the
system 1s said to be completely segregated with respect to
generalized ages The model reactor operates at a suitably average
value for K so that f(z) has the same functional form as k()
The concentration profile down the reactor 1s given by

dc

EE =—-K.K(P,, P, )G(Ca, Co, ) (46)
or, substituting for o,
L KeGlencn ) @
Qg

The analog of eqn (21) follows directly, the only difference being
that t; 1s replaced by #5

When all mixung between molecules with differing as 1s done as
early as possible, 1 ¢ when ag = 0 for the youngest molecule, the
system 1s 1n maximum mixedness A Zwietenng type differential
equation can be derived for the model reactor The result 1s simply
egn (22) with A; substituted for Ar

The two extremes of micromixing normally provide bounds on
the yield of a reaction The proof of this statement and necessary
conditions are discussed in Appendix B, the extension from
thermal times to generalized times being obvious

It 1s seen from the above that the generahized time distribution 1s
a generahzation of the residence time distribution which allows
complex reaction systems to be treated within the same theoret:-
cal framework used for 1sothermal, homogeneous reactions From
a theroetical viewpoint, applicability of this theory rests on the
assumed separability of variables according to eqn (41) From a
practical viewpont, difficulties in determining #(is) represent a
more serious obstacle although these are gradually bemg over-
come Table 1 summarizes applications to date

APPENDIX B

Optimum micronuxing tn nonisothermal reactors

In this Appendix we apply the theory of Chauhan, Bell and
Adler[2] to nomsothermal reactors They considered the mixing
between two groups of molecules with the same residence hfe
expectancy This muxing can occur at any time e within the

interval 0 < ¢ < A It was shown that the averaged concentration
for the mixed group of molecules as they leave the reactor 1s a
monotonic function of € Conversion increases monotonically
with increasing € for concave-up rate expressions and decreases
monotomcally with increasing ¢ for concave-down rate expres-
sions This conclusion applies to all groups of molecules which
will be mixed within reactor and thus applies to the average
conversion for the entire reactor

To apply the above approach to nomsothermal reactors, we
begin with the batch rate equation

—- E - —EIRT,
e - koe G(c)

48)
Converting this to a rate based on thermal age rather than
residence age gives

de _
—d—;r_— koG(C)

(49)
Figure 8 1llustrates the case where G(c) 1s a concave-upward
function of ¢ The pomnts marked A and B represent the concen-
trations of two groups of molecules with the same value of Ay If
they were mixed immediately, 1 e, at € = 0, the resultant average
concentration, ¢y, and average reaction rate are shown at point M
in Fig 8 The pont U represents the mathematically averaged
concentration, cy, and rate which results from leaving the two
groups of molecules unmixed Since the reaction rate 1s concave-
up, the rate 1s higher without mixing With a shght change m
nomenclature, the analysis of Chauhan, Bell and Adler can be
followed directly to prove

_den
dor

_dey

forall a;r =0
dar

(50)

so that ¢,; decreases more rapidly with thermal age than c,,, for
this concave-up example, the mixing time which maximizes con-
version (minimizes concentration) for the two groups of molecules
will be as late as posstble, 1e at Ar =0 which 1s complete
segregation with respect to thermal ages

The argument 1s easily repeated for the concave-down case The

Reaction rate, —dc/da, =k, G/

A

Concentration, ¢

Fig 8 Concave-up reaction rate

Table 1 Examples of generalized time distrtbutions

Type of system Type of distnibution Reference

Isothermal, Dankwerts[5]
Homogeneous Residence time distribution

Isothermal, Orcutt et al [6]
Heterogeneous Contact time distribution Nauman and Collinge[4]
Non-1sothermal,

Homogeneous Thermal time distribution Thas paper
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result 1s that

_deu

>-9% ¢orallar=0
dar

da, 51)
so that conversion 1s maximized with mixing as early as possible,
1e¢ at ar =0 which 1s maximum mixedness with respect to
thermal ages

When the reaction rate i1s a linear function of concentration,
Cp = ¢y and

_db‘u=

~9% forallar=0
dar

dar 52
so that conversion 1s independent of the time of mixing This 1s the
classical result that the yreld of a first order reaction 1s indepen-
dent of micromixing

APPENDIX C

Numencal evaluation of t,

A finite difference method for the numerical determination of
thermal time distributions gives a value for £ at each of the
mtenor gnd points Sice H can also be obtamned at each of these
pounts, 1t 1s possible to ekminate y as a parameter and to evaluate
tr from its defining equation {(egn 11) or from simlar forms such
as

fr= L‘ [1-H@r)ldtr = Iol t-(H)YdH (53)

The problem with such a direct method for determming #;- 1s that
tr 15 unbounded over the internal of interest Even with sophisti-
cated numerical techniques, the difficulty in accurately integrating
funcuions such as those i Fig 2 will be readily appreciated

To develop an alternate calculation techmique for £, note that

Q
tr dQ (59

fr=—

QJ
where fr remains unbounded but we have now converted to an
mtegral over the volumetnic flow rate Now, the residence time ¢ 1s
easily calculated for any position y

t=LIV.(y) (55)
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We thus define the vanable

T=tft (56)
and can evaluate its value at each of the interior gnd points We
can also evaluate r at the boundanes with the known boundary
conditions, t e for constant wall temperature

hm r=e®*'w

y—rwall

(57

Thus 7 1s known for each grid pomnt and 1s bounded for all y
Substituting mto eqn (54) gives

- 1]‘0 lf"deQ
by = — =—
r=ol 7t dQ o). V. (58)
Now, for the parallel plate problem, dQ = WV, dy and
- 1 {(®+L LWJ'"
fr=— w === 59
=g ) Ewva = "0y 9

Thus, evaluation of fr merely requires integrating a bounded
variable over a finite range One simple method for doing this 1s to
fit + to a piecewise quadratic in y, For equally spaced mesh
points, this 1s just Simpson’s rule

For geometries other than parallel plates the same general
approach works although the specific form of eqn (59) will be
altered For a circular pipe, dQ =27V, dy and

B
o

which again has a bounded variable integrated over a finite range

In the extruder problem, eqn (35) gives tr(y) with a collapsed
range on y Equation (58) remains vahd, but V, and dQ are now
comphcated functions of y over the collapsed range 2/3< y/B <
1 A better approach 1s to leave f; mn uncollapsed form by
rewnting eqn (35) as

(60)

tr(y)=p(tr)u + (1~ d)tr) (61)
Then 7 18 defined 1n terms of (fx);. for0 < y/B < 2/3 andn terms of
(tr)., for 2/3<y/B <1 With this definition, eqn (59) stands as
written, and #; 1s readily calculated



