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Abstract

Natural convection heating within a can of liquid food during sterilization is simulated by solving the governing equations for

continuity, momentum and energy conservation for an axisymmetric case using a commercial Computational Fluid Dynamics

(CFD) package (PHOENICS). Transient ¯ow patterns and temperature pro®les within model liquids (sodium carboxy-methyl

cellulose (CMC) and water) have been predicted. The model liquids, CMC and water, were assumed to have constant properties

except for the viscosity (temperature dependent) and density (Boussinesq approximation). It has been shown that the action of

natural convection forces the slowest heating zone (SHZ) to migrate towards the bottom of the can as expected. The shape and the

size of the SHZ area are di�erent for CMC and water. The magnitude of the axial velocity was found to be in the range of 10ÿ5±10ÿ4

m/s for CMS and of 10ÿ2±10ÿ1 m/s for water, these magnitudes of course vary with time and position in the can. The time required

for the SHZ to reach the sterilization temperature of 100°C was 1800 s for CMC and only, 150 s for water. Ó 1999 Elsevier Science

Ltd. All rights reserved.

1. Introduction

Conventional canning processes extend the shelf life
of food products and make the food safe for human
consumption by destroying the pathogenic microor-
ganisms. Despite the signi®cant advances made in the
techniques used for food preservation, canning is still
the most e�ective method. The sterilization of the can-
ned food is usually done by steam heating to a tem-
perature su�cient to kill the microorganisms. The time
required for the sterilization process depends on the
product speci®cations, container type and size, and its
orientation, as well as the heating medium characteris-
tics. Excessive heating will a�ect food quality and its
nutritive properties.

Most existing mathematical analysis are for conduc-
tion heated products only because of the simplicity of
the analytical and numerical solutions. However, de-
tailed analysis of the convection heating is of great im-
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Notation

Cp speci®c heat of liquid food (J kgÿ1 Kÿ1)

E activation energy (kJ kg molÿ1)

Gr Garshof number, Gr � gbDTx3q2=l2

g acceleration due to gravity (msÿ2)

H height of the can (m)

k thermal conductivity of liquid being heated (W mÿ1

Kÿ1)

n ¯ow behavior index

p pressure (Pa)

r radial position from center line (m)

ro radius of the can (m)

R gas constant (kJ (kg mol)ÿ1 Kÿ1)

t heating time (s)

T temperature (°C)

Tw wall temperature (°C)

Ti initial temperature (°C)

Tref reference temperature (°C)

u velocity in vertical direction (msÿ1)

v velocity in radial direction (msÿ1)

z distance in vertical direction from the bottom (m)

Greek letters

a thermal di�usivity (m2 sÿ1)

b thermal expansion coe�cient (Kÿ1)

c shear rate (sÿ1)

l apparent viscosity (Pa s)

g0 consistency index (Pa s)

q density (kg mÿ3)

qref reference density (kg mÿ3)
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portance in the food industry. In natural convection
heating, the velocity in the momentum equations is
coupled with temperature in the energy equation be-
cause the movement of ¯uid is solely due to the buoy-
ancy force. Because of this coupling, the energy
equation needs to be solved simultaneously with the
momentum equations. Estimation of the heat transfer
rates is essential in order to obtain optimum processing
conditions and to improve product quality. Also a better
understanding of the mechanism of the heating process
will lead to an improved performance in the process and
maybe to some energy savings. Basic principles for de-
termining the performance of di�erent, but related
processes have been presented by May (1997) and Wil-
bur (1996).

Conduction, natural convection and forced convec-
tion are important means of heat transfer in the thermal
processing of food. Foods like canned tuna, thick syr-
ups, purees and concentrates are usually assumed to be
heated by pure conduction. For these foods, the re-
quired processing time is generally determined by ana-
lytical or numerical solution of the heat conduction
equation (Datta, Teixeria & Manson, 1986).

Dincer, Varlik and Gun (1993) has also studied
transient heat transfer during sterilization of canned
foods. Their model was based on solving the conduction
equation with constant wall temperature as a boundary
condition. Lanoiselle, Candau and Debray (1986) de-
veloped a linear recursive model to represent the heat
transfer inside a can during sterilization in a retort and
predicted the temperature of canned foods during ther-
mal processing.

Akterian (1994) developed a numerical model for the
determination of the unsteady-state temperature ®eld in
conduction heated canned foods of various shapes un-
der convective boundary conditions. The heat conduc-
tion equation is solved by means of a generalized ®nite
di�erence approach, allowing the reduction of a multi-
dimensional problem to a one-dimensional problem.

The numerical predictions of the transient tempera-
ture and velocity pro®les in a still retort during natural
convection heating of canned liquid foods has been
carried out by Datta and Teixeira (1988). Water was
used to simulate liquid food, which was heated uni-
formly around the can outside surface in a cylindrical
can, and it was found to be strati®ed inside the container
with increasing temperatures towards the top. They
predicted signi®cant internal circulation at the bottom
of the can and showed that, the slowest heating zone
(SHZ) has a doughnut-shape and is close to the bottom
of the can at about one tenth of the can height.

Sterilization of a viscous liquid food in a metal can
sitting in an upright position and heated from the side
wall (Tw� 121°C) in a still retort was simulated by
Kumar, Bhattacharya and Blaylock (1990). The equa-
tions of continuity, momentum and energy conservation

for an axisymmetric case were solved to provide plots of
temperature, velocity and streamlines for natural con-
vection heating. These were compared with pure con-
duction contour plots. They also presented a simulation
for the same can when its bottom and top surfaces were
insulated (Kumar et al., 1990). The model liquid food
was assumed to have viscosity varying with temperature
but with constant speci®c heat and thermal conductivity.
The results indicated that, natural convection again
tends to push the slowest heating region to the bottom
of the can.

The sterilization of a can ®lled with a viscous liquid
sodium carboxy-methyl cellulose (CMC), heated by
condensing steam on all sides and the case where the top
is insulated (i.e. there is an air gap present), were sim-
ulated most recently by Ghani, Mohammed and Chen
(1998). The temperature di�erence from top to bottom
of the can at the end of 2574 s was 12°C for the can with
top insulated and 10°C for the case of can heated from
all sides. The results show also that the locations of the
SHZ for both cases are similar. This is due to the strong
e�ect of the natural convection current, even when the
liquid was highly viscous. In some of the simulations,
and for water as a liquid food, the wall was not assumed
to be at a constant temperature, but a convective
boundary was also used by Ghani (1998). The results of
such simulations showed very little di�erence from those
predicted for the constant wall temperatures, this is due
to the large heat transfer coe�cient of the condensing
steam. The change in the temperature distribution was
very small in the above two cases, suggesting that the
simulation of a can heated from all sides, and assuming
constant wall temperature is appropriate for a general
purpose.

2. Computational ¯uid dynamics and the food industry

Computational ¯uid dynamics (CFD) o�ers a pow-
erful design and investigative tool to process engineers.
Its application would assist in a better understanding of
the complex physical mechanisms that govern the ther-
mal, physical and rheological properties of food mate-
rials. CFD has only recently been applied to food
processing applications. It has seen applications in many
di�erent processing industries, including air¯ow in clean
rooms, ovens and chillers, ¯ow of foods in continuous-
¯ow systems and convection patterns during thermal
processing (Scott & Richardson, 1997).

When considering the ¯ow of food products, it is
often necessary to take the rheological nature of a food
into account because this will dictate its ¯ow behavior.
Most foods exhibit some form of non-Newtonian be-
havior and many di�erent ¯ow models have been used
to describe such behavior. As for turbulence problems,
the inclusion of a non-Newtonian ¯ow model requires
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the solution of an extra equation. However, It should be
noted that the current state of CFD does not permit the
prediction of turbulent ¯ow for non-Newtonian ¯uids
because this is at the forefront of numerical non-New-
tonian rheology research (Holdsworth, 1993).

In this work, sterilization of canned liquid food in a
still-retort was numerically studied and analyzed using
CFD and the results were presented in the form of
transient temperature, velocity pro®les and ¯ow pat-
terns. CMC and water were used as the model liquids.
Density variations were governed by the Boussinesq
approximation (a commonly used assumption for
buoyancy problems whereby the density variations are
not explicitly modeled but their e�ect is represented by a
buoyancy force which is proportion to the temperature
variation). The viscosity is varying with the temperature.
Speci®c heat, thermal conductivity and volume expan-
sion coe�cient were all assumed to be constants.

The PHOENICS code used is based on the ®nite
volume method, as developed by Patankar and Spalding
(1972). The key characteristic of this method is the im-
mediate dicretization of the integral equation of ¯ow
into the physical three-dimensional space, i.e. the com-
putational domain cover the entire can, which is divided
into a number of divisions in the three dimensions (NX,
NY, NZ). The details of this code can be found in the
PHOENICS manuals, especially the PHOENICS Input
Language (PIL) manual.

The observation of the SHZ is a di�cult task and
requires knowing detailed transient ¯ow patterns and
temperature pro®les, due to the complex nature of heat
transfer in natural convection heating. The partial dif-
ferential equations, governing such a system, need to be
solved in their entirety using numerical techniques. The
objective of this work is to study the e�ect of the natural
convection current on the movement of the coldest point
or zone in a can of liquid food. The results were com-
pared with those obtained by Kumar and Bhattacharya
(1991) for the viscous liquid and with Datta and Teixeria
(1988) for water as a liquid food.

3. Basic model equations and solution procedure

Most of the previous studies except that of Kumar,
Bhattarcharya and Blaylock (1990) and Kumar and
Bhattacharya (1991), have been applied to Newtonian
foods. In reality foods are generally non-Newtonian.
Incorporation of temperature dependence into the vis-
cosity model further complicates the problem for the
numerical simulation.

In this study, the computations were performed for a
can with the radius of 0.0405 m and height of 0.111 m
for the viscous liquid, similar to that used in the study of
Kumar and Bhattacharya (1991). For water, a can with
radius of 0.0419 m and height of 0.107 m was used,

similar to that used in the study of Datta and Teixeira
(1988). The choices of the dimensions of the cans were
purely for the purpose of comparison. The can outer
surface temperature (top, bottom and side) was assumed
to rise instantaneously and to be maintained at 121°C
throughout the heating period.

3.1. Computational grid

The boundary layer occurring at the heated walls and
its thickness is one of the very important parameters to
the numerical convergence of the solution. Temperature
and velocities have their largest variations in this region.
To adequately resolve this boundary layer ¯ow i.e. to
keep discretization error small, the mesh should be op-
timized and a large concentration of grid points are
needed in this region. If the boundary layer is not re-
solved adequately, the underlying physics of the ¯ow is
lost and the simulation will be erroneous. On the other
hand, in the rest of the domain where the variations in
the temperature and velocity are small, the use of a ®ne
mesh will lead to increases in the computation time
without any signi®cant increase in accuracy. Thus a
non-uniform grid system is needed, to resolve the
physics of the ¯ow properly.

A non-uniform grid system was used in the simula-
tions with 3519 nodal points: 69 in the axial direction
and 51 in the radial direction, graded in both directions
with a ®ner grid near the wall. The natural convection
heating of CMC was simulated for 2574 s. It took 100
steps to achieve the ®rst 180 s of heating, another 100
steps to reach 1000 s and 300 steps for the total of 2574
s of heating. In the simulation of water as a model
liquid food, the total time of heating was also divided
into 300 time steps. The time interval was increased
progressively with heating, It took 100 steps to achieve
the ®rst 200 s of heating, another 100 steps to reach
600 s and 300 steps for the total of 1800 s of heating.
This required 63 and 18 h respectively of CPU time on
the UNIX IBM RS6000 workstations at the University
of Auckland.

3.2. Physical properties

In the simulation of water and CMC, the viscosity
was assumed function of temperature, and a second
order polynomial of the form

l � a� bT � cT 2 �1�
was used as in the PHOENICS program.

In the simulation of water, values of a, b and c were
1.6 ´ 10ÿ3, ÿ2.988 ´ 10ÿ5 and 7.8 ´ 10ÿ8. These values
were obtained from the curve ®tting of viscosity verses
temperature (Holman, 1992).

Food materials are in general highly non-Newtonian
and hence the viscosity is a function of shear rate and
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temperature with a ¯ow behavior index typically less
than one. CMC suspended in water was used as the
model ¯uid. Due to the extremely high viscosity of the
CMC, which causes liquid velocities to be very low,
the shear rate calculated from our previous simulation
(Ghani, 1998), was found of the order of 0.01 sÿ1,
which is in agreement with values reported by Kumar
and Bhattacharya (1991). Because of the low shear rate
the viscosity may be assumed independent of shear
rate and the ¯uid will behave as Newtonian ¯uid. This
Newtonian approximation is valid for most liquids
food materials such as tomato puree, carrot puree,
green bean puree, apple sauce, apricot puree, and
banana puree which are regularly canned and usual-
ly preserved by heating (Ste�e, Mohamed & Ford,
1986).

Kumar and Bhattacharya (1991), used the following
viscosity model

l � g0c
nÿ1 exp

nE
RT

� �
: �2�

At the low shear rate observed in our work, Eq. (2)
shows that, the viscosity can be assumed independent of
shear rate. Eq. (2), with the parameters given in Table 1.
was used to calculate the values of viscosity at di�erent
temperatures. This was done to maintain the same val-
ues of viscosity that used by Kumar and Bhattacharya
(1991) for the purpose of comparison. These values were
correlated in a second order polynomial of the form
similar to that for water, with a, b and c having the
values of 4.135, ÿ6.219 ´ 10ÿ2 and 2.596 ´ 10ÿ4.

The variation of the density with temperature is
usually expressed (Adrian, 1993) as:

q � q0�1ÿ b�T ÿ T0��; �3�
where b is the thermal expansion coe�cient of the liq-
uid, T0 and q0 are the temperature and density at the
reference condition (Adrian, 1993). The density was
assumed constant in the governing equations except in
the buoyancy term (Boussinesq approximation), where

Eq. (3) was used to describe its variation with temper-
ature.

For viscous liquids, the viscous forces are high and
thus Grashof number is low. This can be shown clearly
for CMC at which Grashof number is in the range 10ÿ2±
10ÿ1 (using maximum temperature di�erence and max-
imum viscosity) as compared to the water case, which is
in the range of 109±1010. The magnitude of the Grashof
number gives a good indication whether the natural
convection ¯ow is laminar, transitional or turbulent.

3.3. Assumptions used in the numerical simulation

To simplify the problem, the following assumptions
were made:
1. Axisymmetry which reduces the problem from three-

dimensional to two-dimensional;
2. Heat generation due to viscous dissipation is negligi-

ble, this is due to the use of high viscous liquid with
very low velocities (Mills, 1995);

3. Boussinesq approximation is valid;
4. Speci®c heat (Cp), thermal conductivity (k), and vol-

ume expansion coe�cient (b) are constants (Table 1);
5. The assumption of no-slip condition at the inside wall

of the can is valid;
6. The condensing steam maintains a constant tempera-

ture condition at the can outer surface;
7. The thermal boundary conditions are applied to

liquid boundaries rather than the outer boundaries
of the can, because of the low thermal resistance of
the can wall.

3.4. Governing equations and boundary conditions

The partial di�erential equations governing natural
convection motion in a cylindrical space are the Navier±
Stockes equations in cylindrical coordinates (Bird,
Stewart & Lightfoot, 1976) as shown below:

Continuity equation:

1

r
o
or

rqv� � � o
oz

qu� � � 0: �4�

Energy conservation:

oT
ot
� v

oT
or
� u

oT
oz
� k

qCp

1

r
o
or

r
oT
or

� ��
� o2T

oz2

�
: �5�

Momentum equation in the vertical direction:

q
ou
ot

�
� v

ou
or
� u

ou
oz

�
� ÿ op

oz
� l

1

r
o
or

r
ou
or

� ��
� o2u

oz2

�
� qg:

�6�

Momentum equation in the radial direction:

Table 1

Properties of the Ôliquid foodÕ measured at room temperature used in

the simulation, same as those used by Kumar et al. (1991)

Property Value

Density (q)a 950 kg mÿ3

Speci®c heat (Cp) 4100 J kgÿ1 Kÿ1

Thermal conductivity (k) 0.7 W mÿ1Kÿ1

Volumetric expansion coe�cient (b) 0.0002 Kÿ1

Flow behavior index (n) 0.57

Consistency index (l0) 0.002232 Pa sn

Activation energy (E) 30.74 ´ 103 kJ kg molÿ1

a q� constant and varies only in the gravitational force term in the

momentum Eq. (6) according to Eq. (3).
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The boundary conditions used were:At the can

boundary, r � R,

T � Tw; u � 0; v � 0; for 06 z6H : �8�
At the bottom of the can, z � 0,

T � Tw; u � 0; v � 0 for 06 r6R: �9�
At symmetry, r � 0,

oT
or
� 0;

ou
or
� 0; v � 0; for 06 z6H : �10�

At the top of the can, z � H

oT
oz
� 0; u � 0; v � 0; for 06 r6R: �11�

Initially the ¯uid is at rest and is at a uniform temper-
ature

T � Ti; u � 0; v � 0 at 06 r6R; 06 z6H :

�12�
The same set of governing equations describes a wide

variety of ¯ow situations in liquids and gases. The
boundary and the initial conditions are the most im-
portant parameters that specify the desired solution
amongst many solutions possible for the set of equa-
tions.

To obtain a good convergence of the numerical so-
lution to these governing partial di�erential equations, it
is necessary to apply a proper under-relaxation or an
over relaxation. The improper over-relaxation or under-
relaxation parameter can easily make the computations
impracticably long. Many of these optimum parameters
are not known at the initial stage and can only be found
through numerical experimentation.

For the simulation of water as a liquid food, and
because it has lower viscosity, more iterations were re-
quired to improve the accuracy. Di�erent under relax-
ation was also used, to keep the computation stable.

Fig. 1. Velocity vector and ¯ow pattern of CMC in a cylindrical can heated by condensing steam (constant wall temperature, variable viscosity) after

1157 s.
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4. Results and discussion

4.1. Flow pattern

Figs. 1 and 2 show, the velocity vector and the ¯ow
pattern of the CMC and water in a can heated by
steam condensing along its outside surface. Both ®g-
ures show that, the liquid adjacent to the wall, top and
bottom surfaces will receive heat from the condensing
steam. As the liquid is heated, it expands and thus gets
lighter. Liquid away from the side wall stays at a much
lower temperature. The buoyancy force created by the
change in liquid density due to temperature variation
(from the wall to the core) produces an upward ¯ow

near the side wall. The hot liquid going up is de¯ected
by the top wall and then travels radially towards the
core. Being heavier, the liquid in the core moves
downwards and then towards the wall. Thus a recir-
culating ¯ow is created.

These ®gures, also, show that the liquid next to the
wall is at rest because of the no-slip boundary condi-
tions. For CMC, the magnitude of the maximum axial
velocity at the mid-height near the wall were 0.31 mm
sÿ1 at t� 1157 s, which was in a good agreement with
the results of Kumar and Bhattacharya (1991), who
used the same viscous liquid (CMC) and the same
heating conditions. Much higher velocities for water
contained in a can and heated under similar conditions
have been obtained. The magnitudes of the velocity
were 40 and 19 mm sÿ1 after 30, 240 s of heating. These
di�erences in the magnitudes of the velocity vectors
between CMC and water can be explained in terms of
the Grashof number, which represents the ratio of the
buoyancy force to viscous force. These results are also
in reasonable agreement with the results of Datta and
Teixeria (1987) for water. Because of these high veloc-
ities, the coldest region in the can reached 99°C after
only 120 s of heating, compared to 1700 s for the CMC.
As heating progressed, a more uniform velocity was
obtained, reducing buoyancy force in the liquid that
lead to signi®cant reduction in the velocity. The dif-
ference in the magnitude of the velocities for water and
the more viscous liquid used in our analysis is expected
to be due to the large di�erence in the viscosity of the
two liquids.

Hiddink (1975) reported that for viscous ¯uids, the
thickness of the ascending liquid region near the wall
was greater than that for water which was attributed to
the large di�erence in the values of viscosity of the two
¯uids. The reported thickness was about 12±14 mm for
the viscous liquid as compared to 6±7 mm for water.
Kumar and Bhattacharya (1991) illustrated that the
thickness of ascending liquid for a more viscous liquid
was in the range of 15±16 mm. Fig. 1 shows that the
thickness of ascending viscous liquid (CMC) is in the
range of 16±20 mm, which is the distance between the
location of the stagnent region and the wall (measured
based upon the actual can dimension). This results is in
agreement with the results of Kumar and Bhattacharya
(1991) and Hiddink (1975). Datta and Teixeira (1987)
have reported the formation of secondary ¯ow (or ed-
dies formation) at the bottom of the can near the center
line. The simulation, which has been done by Kumar
and Bhattacharya (1991) for thick liquid (CMC) did not
show any formation of secondary ¯ow or eddies, how-
ever in our simulation, the secondary ¯ow was evident in
all the cases studied which is expected whenever there is
heating from the buttom. Figs. 1 and 2for both CMC
and water show clear secondary ¯ow formation at the
bottom of the can.

Fig. 2. Flow patterns of water as a liquid food in a cylindrical can

heated by condensing steam (constant wall temperature, variable vis-

cosity) after 180 s.
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4.2. Slowest heating zone and temperature pro®le

The temperature distribution during heating is pre-
sented in the form of isotherms in Figs. 3 and 4, for CMC
and water respectively, and for di�erent periods of
heating. For CMC, the isotherms at t� 54 s are almost
identical to pure conduction heating but over time, the
isotherms are seen to be strongly in¯uenced by convec-
tion. However for water, Fig. 4 shows a strong in¯uence
of natural convection, even at the early stages of heating.

After short period of heating, the ¯uid near the bot-
tom is heated by conduction. However, instability re-
sults from the large di�erence in the temperature
between the heated bottom and the colder liquid coming
in contact with the bottom. This instability in the bot-
tom layer gives rise to bursts of convective cells (i.e. the
Benard convection cells). Fig. 4 for water shows the ir-
regular shape of the isotherms near the bottom, which is
caused by the random nature of Benard convective cell
formations.

Fig. 3. Temperature contours in a can ®lled with CMC and heated by condensing steam after periods of (a) 54 s; (b) 180 s; (c) 1157 s; (d) 2574 s. The

right-hand side of each ®gure is centre line.
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The SHZ in the can (i.e. the location of the lowest
temperature at a given time) is not a stationary region in
the liquid undergoing convection heating. Its location is
not at the geometric center of the can as it is in the case
of conduction heating. Initially the content of the can is
at uniform temperature. As heating begin, the mode of
heat transfer changes from conduction to convection,
and the SHZ moves from the geometric center to the
heel of the can as shown in Fig. 3 for CMC. Fig. 4 for
water, shows that the SHZ is not at the center of the can
even during the initial period of heating. As heating

progresses, the SHZ is pushed more towards the bottom
of the can as with the CMC. It appears that the SHZ
keep moving during heating and eventually stays in a
region that is about 10±12% of the can height from the
bottom in both cases.

Traditionally, the movement of the coldest point is a
critical parameter in identifying the SHZ for food
products in thermal process designs. Zechman and P¯ug
(1989) reported a location of the SHZ at about 10%
height from the bottom whereas Datta and Teixeira
(1987) found it to migrate to slightly higher locations

Fig. 4. Temperature contours in a can ®lled with water heated by steam (constant wall temperature, variable viscosity), for the periods of (a) 20 s; (b)

60 s; (c) 120 s; (d) 180 s. The right-hand side of each ®gure is center line.
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(15% from the bottom). These observations are in
agreement with those found in this work and also with
those reported by Kumar and Bhattacharya (1991).

Fig. 3 shows that, for CMC, the SHZ develops pe-
culiar shape after only short period of heating. The SHZ
does not cover the whole bottom section of the can.
However, for water, the SHZ ®lls the whole bottom
section of the can as shown clearly in Fig. 4. The sim-
ulation shows, for the ®rst time, the e�ect of secondary
¯ow on the shape of the SHZ. The e�ect is to push the
SHZ towards the wall as may be clearly seen in Fig. 3
for the CMC. According to this ®nding, careful con-
sideration must be made in representing the coldest
point by the measured temperature at the axis of the
can, particularly at extreme locations close to the top
and bottom, as may be seen in both Figs. 3 and 4. The
temperature of the SHZ reached about 100°C in 1800 s,
in comparison to 150 s for water.

Fig. 5 for water, shows that, the change of the tem-
perature of the SHZ with heating time as predicted by
our simulation based on constant viscosity (measured at
the ®lm temperature) and the viscosity as function of
temperature. This ®gure includes also, the data reported
by Datta and Teixeira (1987), which based on constant
viscosity. The result of the simulation done in this work,
based on constant viscosity, is in a good agreement with
that of Datta and Teixeira (1987). When the viscosity is
assumed a function of temperature, a much faster
heating rate is observed. This shows the importance of
taking into account, the variation of viscosity with
temperature, which has not been considered in the
simulation of water as a liquid food, in most of the
previous work. Similar observation may be found in
Fig. 6 for the temperature at the mid point location of
the can.

5. Conclusions

Transient temperature and velocity distribution
evolving during natural convection heating of thick
liquid (CMC) and water in a cylindrical can have been
simulated by solving the governing equations for con-
tinuity, momentum and energy conservation using ®-
nite volume method of solution. A CFD software
package (PHOENICS) was used to carry out the
computations.

The results of the simulation show a recirculating
¯ow inside the can consisting of liquid rising near the
wall, radial ¯ow, and uniform core ¯ow downwards
near the axis. Also, a secondary ¯ow occurs at the
bottom of the can due to reverse ¯ow. The liquid inside
the container shows an increase in temperature towards
the top. For CMC the coldest region ( i.e. the location of
the SHZ) covers the whole cross sectional area of the
can at the early stages of heating while it migrates to-
wards the bottom of the can. The secondary ¯ow at the
bottom of the can pushes the SHZ closer to the wall.

The SHZ in the simulation of water ®lls the whole
bottom section of the can. While for CMC, the region
develops peculiar shape after only short period of
heating. Also, it appears that the SHZ kept moving
during heating and eventually stayed in a region that is
about 10±15% of the can height from the bottom in both
cases. It was found also, that, the heating rate is much
faster, when the viscosity assumed to be function of
temperature, than for constant viscosity.
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Fig. 5. Transient temperature of water at a slowest heat location in a

cylindrical can during 600 s of heating.

Fig. 6. Transient temperature of water at a mid point location on axis

in a cylindrical can during 600 s of heating.
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