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Abstraet--F~ally developed, constant property, laminar flows of viscous power-law fluids in double-sine 
shaped ducts are considered. The double-sine cross section represents a limiting inter-plate channel 
geometry in plate heat exchangers with sinusoidally corrugated plates. The non-Newtonian fluid rheology 
is described by the power-law or Ostwald-de Waele model, and shear thinning (n < 1) as well as shear 
thickening (n > 1) flows are considered. Both fluid flow and convective heat transfer problems under (T) 
and (HI) thermal boundary conditions are analyzed. Analytical solutions based on the Galerkin integral 
method are presented for a wide range of flow behavior index (0.15 ~< n ~< 2.5) and duct aspect ratio 
(0.25 ~< 7 ~< .4.0). The effects of fluid rheology (pseudoplasticity or dilatancy), duct geometry, and thermal 
boundary conditions on the velocity and temperature field, are delineated. Also, isothermal friction factor 
and Nusselt number results for various conditions are presented, and strategies for predictingfRe and Nu 

are evaluated. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Analytical, numerical or experimental results for lami- 
nar flow heat transfer in complex duct geometries are 
essential for the design and application of compact 
heat exchangers [1l-3]. Of particular interest is the 
plate heat exchanger (PHE), which has found a wide 
spectrum of usage in food, pharmaceutical and chemi- 
cal processing [4, 5], where primarily non-Newtonian 
fluids are encountered. Many different plate surface 
corrugation patterns are employed in PHEs that 
essentially promote enhanced heat transfer, thereby 
providing close temperature control [4] which is par- 
ticulary beneficial tbr processing thermally degradable 
fluids such as food products and polymeric emulsions. 

The most widely used plate surface pattern consists 
of chevron type corrugations with a sinusoidal profile 
[4], as shown in Fig. 1. When the chevron inclination 
angle fl = 0 ° in these corrugations, inter-plate flow 
channels with a double-sine cross section are obtained. 
In effect, laminar flow heat transfer in a double-sine 
duct represents a limiting case for the heat transfer 
enhancement due to chevron or herringbone plates. 
However, despite the extensive usage and study of 
PHEs [4], results tbr laminar non-Newtonian flows in 
such channels do not appear to have been reported in 
the literature. This is addressed in the present paper. 

Processed food, pharmaceutical, chemical, and bio- 
chemical fluid media generally have non-Newtonian 
characteristics, with a non-linear shear stress-strain 
rate behavior. Extended reviews of their rheology and 
thermal-hydraulic performance are given by Bird et 
al. [6], Cho and Hartnett [7], and Irvine and Karni 
[8], among others. However, much of this research 

has been directed towards circular tube flows [7, 8], 
with some recent attempts to refine the results, provide 
newer insights in the transport phenomena, and 
address more fundamental issues [9-12]. The litera- 
ture on laminar forced convective heat transfer to non- 
Newtonian flows in non-circular ducts is somewhat 
limited. Results for fully developed heat transfer to 
power-law fluid flows have been reported for isosceles 
triangular [13], concentric annular [14], rectangular 
[15-17] and square [18] duct geometries. Lawal and 
Mujumdar [19] give solutions for thermally develop- 
ing laminar flows of pseudoplastic fluids in square, 
pentagonal, and trapezoidal ducts. More recently, 
thermal-hydraulic characteristics of pseudoplastic and 
dilatant fluids in semi-circular [20], cross, circular 
sector, parallel plate and triangular ducts, among 
others [21] have been reported. 

There also have been a few attempts to develop 
predictive methods for laminar non-Newtonian flows 
in irregular ducts [13, 22-23]. For the hydrodynamic 
problem, Kozicki et al. [22] suggest normalizing the 
geometric and flow behavior index effects by a modi- 
fied apparent viscosity based Reynolds number (Re*), 
thereby relating the results to circular tube flows; a 
somewhat similar, though simpler method has been 
adopted by Miller [23]. Cheng [13] has devised a cor- 
relation parameter that is based on the geometric con- 
stants used by Kozicki et al. [22], and it appears to 
predict the Nusselt number results for isosceles tri- 
angular ducts rather well. However, a general appli- 
cability of this scheme has not been established. 

The shear thinning or shear thickening behavior of 
non-Newtonian fluids greatly affects their thermal- 
hydraulic performance. For instance, in pseudoplastic 
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NOMENCLATURE 

characteristic dimensions of the duct, 
Fig. 1 [m] 

ck coefficients of series solution, 
equation (10) 
hydraulic diameter [m] 
Fanning friction factor, equation 
(16) 
constant axial wall heat flux with 
uniform peripheral temperature 
boundary condition 
fluid consistency [Ns" m -z] 

flow behavior index 
peripherally averaged Nusselt number, 
equations (18), (19) 
fluid pressure [N m -s] 
generalized Reynolds number, 
pUmdh/~g , equation (17) 
Reynolds number defined in equation 
(20) 
local and bulk fluid temperature [K] 
constant axial and peripheral wall 
temperature boundary condition 
axial and mean velocity [m s ~] 
dimensionless axial and mean velocity, 
equation (4b) 

Cartesian coordinates [m] 
dimensionless Cartesian coordinates, 
equation (4a). 

Greek symbols 
c~ thermal diffusivity [m 2 s-~] 
7 aspect ratio of the duct cross section, 

2b/2a 
Fy contour of duct cross-section, 

equation (1) 
Aij symmetrical rate of deformation 

tensor, equation (1) 
r/ dimensionless appraent viscosity, 

equation (4d) 
0, 0b dimensionless local and bulk 

temperature, equation (4c) 
2. the nth eigenvalue, equation (15c) 
Pa apparent viscosity, equation (2) 

[N s m-2] 
#g generalized viscosity, K ( u m / d h )  n -  I 

[N s m -2] 
p fluid density [kg m -3] 

r, z0 local and perimeter averaged wall 
shear stress [N m -z] 

09 weight function, equations (10), (1 1). 

Subscripts 
H 1 pertaining to the H1 thermal boundary 

condition 
max maximum value 
T pertaining to the T thermal boundary 

condition. 

: " i Y 

b 

I~ - - -  X 

Fig. 1. Flow cross-section geometry and coordinate system for a double-sine shaped duct in typical chevron 
plate (fl = 0 °) passages. 
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fluids, while the wall shear stress decreases, the tem- 
perature gradients tend to increase, thereby enhancing 
the heat transfer [9, 11]. In contrast, increasing dilat- 
ancy tends to exhibit larger wall shear stresses with a 
deterioration in the heat transfer [11]. These anom- 
alous characteristio; are further compounded in flows 
through irregular cross-section ducts, where the sharp 
corners of the flow geometry tend to significantly alter 
the convective behavior. Thus, in the absence of pre- 
cise friction factor and Nusselt number data for such 
flows, the effectiveness of the associated thermal pro- 
cesses is greatly compromised. For  laminar flows, a 
regime normally encountered in thermal processing of 
viscous fluids, issues relating to effects of flow 
behavior, aspect ratio of the double-sine duct, and 
wall heating/cooling conditions are addressed in this 
study. Fully developed flows are considered with both 
uniform wall temperature (T) and uniform wall heat 
flux (HI) boundary conditions; these simulate the 
most fundamental heating/cooling conditions in prac- 
tical heat exchangers. The Galerkin integral method 
[24-25] has been employed to obtain velocity and 
temperature field solutions. This technique has been 
successfully applied in the literature to obtain very 
accuratefRe and Nu results (within +0.3%) for for- 
ced convection in a variety of different irregular ducts 
[26-28]. Isothermal fRe, NUT and Num results for a 
wide range of flow behavior index (0.15 ~< n ~< 2.5) 
and aspect ratio of the double-sine duct 
(0.25 ~< 7 ~< 4.0) are presented, and generalized pre- 
diction strategies discussed. 

2. MATH4EMATICAL ANALYSIS 

To model the non-linear shear stress-strain rate 
relationship, the two-parameter power-law equation 
of Ostwald-de Wade  [6] is employed. This constitute 
relationship can be expressed in a general form as 

I • in-- 1 vii = g l x/ii(Ai:. A/j) Ai: = [damij, (1) 

1 t 
Aij = ~ [Vv + (Vv) ] = [(Ovi/Oqj) + (Ovj/Sqi)] 

where K is the fluid consistency, n the flow behavior 
index, and #a the apparent viscosity; n < 1 for pseudo- 
plastic fluids, n > 1 for dilatant fluids, and n = 1 for 
Newtonian fluids (K = #). For  fully developed flows 
in a two-dimensional duct and Cartesian coordinates, 
the apparent viscosity is given by 

]~a : K [ ( S i ~ / / S x )  2 "q- (c3u/Oy)2] <"- 1)/2.  ( 2 )  

The flow cross-seation geometry of the double-sine 
duct is shown in Fig. 1, where the outer boundary or 
wall surface contour is described by 

Fy = 4:(b/2)[1 + cos(rex~a)] (3) 

- a ' . < . x < . a , - b < . y < . b  

and the aspect ratio is defined as y = (2b/2a). Steady 
state, constant property, hydrodynamically and ther- 

mally fully developed laminar flow of viscous power- 
law fluids is considered, and body forces, axial con- 
duction, and viscous dissipation are ignored. 

In order to nondimensionalize the governing 
differential equations, the following dimensionless 
coordinates and variables are introduced : 

X = (x/2a) 

U = u/[(4aZ/#g)(dp/dz)] 

0 = (Tw --  T)/[(4a2Um/~t)(dTb/dz)] 

0 b = ( T  w - Tb)/[(4a2Um/~)(dTb/dZ)] 

= #a//./g = (dh/2aUm)n-l[(SU/OX) 2 

+ ( a u / a Y ) q ~ " - , / 2 .  

Y = (y/2a) (4a) 

Um= Um/[(4a2 /#g)(dp/dz)] 

(4b) 

(4c) 

(4d) 

Here, Um is the mean axial velocity, and Tb is the bulk 
mean temperature. Also, the generalized viscosity #g 
(=K[um/dh] "-1) has the virtue of normalizing the 
results relative to flows in an equivalent circular tube. 
Thus, the axial momentum and energy conservation 
statements take on the dimensionless form 

/C  82 U 82 U\ .[ 
820 82o ~- (UO/UmO0 
a X 2 + ~  - ° = °  ° = (_(U/Urn) 

where the coefficients Cx and Cy are given as 

and 

Cx(X, Y) = 1+ 
n - 1  

(0Ul(SU)2 
1 + \SY] /\OX,] 

(5) 

for T 

for H I  

(6) 

n - I  
C(X,  Y) = I +  

O 2 8 2' 

Equations (5) and (6) are subject to the following 
boundary conditions : 

U - - 0  0 = 0 o n  F (7a) 

Uand0  are finite at X = Y = 0 .  (7b) 

The application of Galerkin integral method [24] is 
based on the requirement that the solution of the 
governing differential equation correspond to the 
minimum of the integral 

I =  f l  [V2~(X' Y)+2f(X, 10~(X, Y)]dXdY 
d d A  c 

(8) 
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over the duct cross section, where • is the dependent 
variable. This functionally seeks a solution of the form 

¢b = ~ GkqJk(X, Y) (9) 
k--I 

such that the homogeneous boundary condition qb = 0 
on F is unconditionally satisfied. Here the Galerkin 
function qa is described by (X, Y) and a weight func- 
tion co(X, Y). Correspondingly, the fully developed 
velocity and temperature field solutions given by equa- 
tion (9) can be expressed as 

U = co(X, Y)(al +axX2 +a3 YZ+a4X4 

+ a s X Z Y 2 + a 6 y 4 +  . . . )  (10a) 

Or = co(X, Y)(bl +bzX2 +b3 YZ +b4X4 

+bsX2Y2+b6Y4+ . . . )  (10b) 

0H1 = co(X, Y)(ct +e2X 2 +c3 y2 +c4X 4 

+ c s X  2 y 2  + c6 y4 + . . .  ) (10c) 

where the coefficients Gk are designated as ak, bk, and 
c~ for the respective field variables q9 = U, 0r, and 0Hi. 
The weight function is obtained from a combination 
of trigonometric functions of (X, Y), such that it is 
continuous together with its first and second deriva- 
tives. For  the double-sine duct geometry (Fig. 1) it is 
expressed as 

co(X, Y) = [Y+ (~,/4)(1 + cos 2~X)] 

x [Y- (7 /4 ) (1+  cos2~zX)]. (11) 

Note that co(X, Y) = 0 on F, and it is continuous and 
twice differentiable ; additional details on the selection 
of co can be found in ref. [29]. 

By invoking Green's theorem for the Euler-Lag- 
range equation problem, the minimum value problem 
of the integral of the Poisson-type governing differ- 
ential equation is equivalent to 

ffA t v 2 , r , - f ( x ,  Y)]W~dXdY = 0 (12a) 
e 

where 

I 
1 O = U  

f(X, Y) = --(gO/gmOb) (ID = 0T . (12b) 

t - ( g / U m )  O = 0 . ,  

Equation (12) thus provides the system of equations 
that describe the coefficients Gk (or ak, bk, and ck, as 
the case may be). For  the velocity problem, with the 
substitution of equation (10a) into equation (12), the 
system of equations for coefficients ak is obtained as 

f f  Iq(Cx 02Wk ~ 2kIJ~ 
k~-,akJJa~J \ ~ x T + c y ~ )  WidXdY  

= ffA, W, dXdY. (13) 

Similarly, for the temperature problem with H1 
boundary condition, by combining equations (10c) 
and (12), the system of equations for evaluating the 
coefficients Ck is 

I I  (02't'k ~2~I'k\q, 
Ck + 

~VFv~ J i d X d Y  
k-- I , ~x ~x2 u l / 

= - f a . f f ( U / U m ) t r k t i d X d Y .  ( 1 4 ,  

For the T boundary condition, however, substituting 
equation (10b) in equation (12) yields 

bk WiV2qflkdXdY 
k=l  c 

+ ~ (bk/Ob) II  (U/Um)qJfi~ d X d Y  = 0 (15a) 
k=l  J JA  

which is an eigenvalue problem that can be expressed 
in matrix form as 

[AI{B} + [C]{B'} = 0. (15b) 

Note that the elements of {B'} are b; = (b~/Ob). The 
solution of equation (15b) is of the form 

{B} = b, {d, }e;,~ + b2 {d2}ea2: + . . . + b.{d.}e ~o-~ 

(15c) 

where 2.s are the eigenvalues that are obtained by 
solving de t l i [+2d l  = 0, and they are all negative if 
the matrix [C] is finite and positive ; {d.} are the cor- 
responding eigenvectors. Also, elements of the 
coefficient matrices [i[] and [C] in equation (15b) are 
obtained from 

and 

o~ik = ffa WiV2WkdXdY 

~ik = JJA. (U/Um)U?'qJk dXdY. 

After determining the fully developed velocity and 
temperature distributions in the double-sine flow 
cross-section, the corresponding isothermal friction 
factor and Nusselt number (for both T and H1 con- 
ditions) can be calculated. Based on a force balance 
across an element of the duct cross-section and its 
definition, the Fanning friction factor for power-law 
fluids is given by 

fReg = -- [(dh/2a) 2]/(2 Urn) (16) 

where the generalized Reynolds number Reg is defined 
a s  

=(pU m dh/K). (17) Reg = (pu,,dh/pg) 2 , n 

For the peripherally averaged Nusselt number, the 
usual hydraulic diameter based definition is employed. 
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With fully developed flow and the T boundary 
condition, the contribution of all eigenvalues, except 
2 ,  diminishes. Consequently, the Nusselt number can 
be calculated as 

NuT = -- (21/4) (dh/2a) z . (18) 

In the case of the H1 boundary condition, the Nusselt 
number is obtained, from 

NuuL = [(dh/Za)2]/(4Ob). (19) 

With the numerical computations of ak, bk, ck, and 
2k, the velocity and temperature distributions, and 
isothermal friction factors and Nusselt numbers can 
be evaluated from equations (10), (16)-(19), for 
different aspect ratios of the duct cross section and 
flow behavior index. These were carried out by using 
standard numerical techniques [29], with the number 
of terms and coefficients in the series expansion selec- 
ted such that the maximum error was less than 0.01%, 
relative to the solution with larger number of terms. 
The friction factor, Nusselt number and peak values 
of velocity and temperature profiles attain virtually 
constant values as the number of terms increase, 
thereby indicating convergent solutions. In general, 
6-21 terms were required in the series expansions, 
with more number of terms needed as y increases. 
Additional details of the methodology and accuracy 
are given in ref. [29]. The validity and accuracy of the 
present results and solution technique were estab- 
lished by calculating friction factor and Nusselt num- 
ber results for Newtonian flows in sine ducts, and 
comparing them eiith those given in ref. [1]. As pre- 
sented elsewhere [28], there was excellent agreement 
between the two; additional comparisons have been 
made with results for triangular and rhombic ducts, 
that are qualitatively similar. 

3. RESULTS AND DISCUSSION 

Analytical solutions based on the Galerkin integral 
method for fully developed laminar power-law fluid 
flow and heat transfer in double-sine shaped ducts 
are presented for a wide range of duct aspect ratios, 
0.25~<7~<4.0, and flow behavior indices, 0.15 
~< n ~< 2.5. Both local (velocity and temperature) 
and global (friction factor and Nusselt number) 
results are given, that highlight the effects of duct 
geometry, flow behavior index, and wall thermal 
boundary conditions (T and Ha). 

3.1. Velocity and temperature fields 
The shear behavior of a viscous non-Newtonian 

fluid, as represented by the power-law index n, has a 
strong influence on laminar flow axial velocity dis- 
tribution. This is seen from Fig. 2, where isovelocity 
(U/Um) contours fi~r typical pseudoplastic (n = 0.15), 
Newtonian (n --- i[.0), and dilatant (n = 2.5) flows in 
a double-sine duct of aspect ratio 3)= 1.0 are 
presented. As seen from the isovelocity maps, relative 

to Newtonian flows, shear thinning fluids (n = 0.15) 
tend to have a fiat, plug flow like velocity profile, 
whereas shear thickening fluids (n = 2.5) tend to have 
a sharper conical profile with a higher peak or cent- 
erline velocity. Also presented in Fig. 2 are the cor- 
responding isotherm (0/0b) maps for the T and H I  
thermal boundary conditions, and the effect of flow 
behavior index on the thermal field is evident from 
these plots. As would be expected, pseudoplastic fluids 
(n < 1) tend to have a somewhat flatter temperature 
profile in the core of the duct with relatively higher 
gradients near the wall. Dilatant flows (n > 1), on the 
other hand, are characterized by sharper core-region 
profiles with smaller wall-region gradients. 

The effects of duct aspect ratio y on the velocity 
and temperature fields are shown in Fig. 3. Here, 
isovelocity (U/Um) contours and the respective iso- 
therms (0/0b) for T and HI  conditions are presented 
for flows with n = 1 in double-sine ducts with 7 = 0.25 
and 4.0. Because of the 'squeezing' effect of the chan- 
nel geometry, higher peak or centerline velocities are 
obtained when compared with flows in a duct of 7 --- 1. 
While higher centerline velocities produce greater fluid 
mobility in the core portion because of the narrowing 
of the duct cross section (~, < 1 or 7 > 1), the flow 
tends to stagnate in the sharp or narrow corner 
regions. As a result, local thermal hot or cold flow 
regions are obtained in the corner sections of the duct. 
Much of the fluid in the corner tends to attain the wall 
temperature in fully developed flows, with sig- 
nificantly cooler or hotter temperature in the core 
flow. This thermal maldistribution is much larger for 
the T boundary condition as compared with the HI  
condition. In the latter case, the wall temperature is 
higher and 'runs away' from the fluid local and bulk 
temperatures, whereas with the T condition the fluid 
local/bulk temperatures approach the wall condition 
as the flow becomes fully developed. In any event, this 
inhomogeneity in the flow and temperature field is 
particularly detrimental for thermal processing of 
food and biochemical products; such conditions 
would lead to inefficient processing and thermal 
degradation of the fluid product. 

The deviation from Newtonian behavior and the 
effect of duct shape are further illustrated in terms of 
the temperature difference [(0/0b),--(0/0b),= 1] o n  the 
mid-plane (y = 0) for typical flow conditions in Fig. 
4. The distortions in the temperature field due to the 
shear thinning or shear thickening flow behavior are 
clearly evident in Fig. 4. Primarily because of plug- 
like flows in highly shear-thinning fluids, as seen from 
Fig. 4(a), the deviations in the core region temperature 
distributions become very pronounced with increasing 
7. In highly shear-thickening fluids, on the other hand, 
these deviations are much larger in the middle region 
between the core and corners of the duct. This is seen 
in Fig. 4(b), and can be attributed to the conical flow 
behavior of dilatant fluids. Also, the wall-fluid tem- 
perature differences are smaller in this case, relative 
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Fig. 2. Axial velocity (U/Um) contours and isotherm (0/0b) maps for n = 0.15, 1.0 and 2.5 in a double-sine 
duct with 7 = 1.0. 

to Newtonian fluids, but are much larger in pseudo- 
plastic flows. 

The complex flow behavior due to non-Newtonian 
and duct geometry effects is also reflected in the wall 
shear stresses, and this is graphically depicted in Fig. 
5. The effect of  fluid rheology on laminar flows in a 
double-sine channel with 7 = 1.0 is shown in Fig. 5(a) 
in terms of (zw/%); Zw is the local wall shear stress 
and z0 is the average wall shear stress. With plug-like 
uniform velocity distributions in pseudoplastic fluids 
(n < I), in comparison with Newtonian flows, the wall 
shear stresses (Zw/Zo) are uniformly distributed along 
the duct surface. The relatively elongated or conical 
flow profiles due to the shear thickening charac- 
teristics of dilatant fluids (n > 1), however, produce 

large variations in (%/%). The lower mid-surface 
between the peak and valley of the sinusoidal wall 
profile sees the highest shear stresses, with much smal- 
ler values at the apex. Similar effects are also obtained 
when the duct aspect ratio is varied, and the influence 
of aspect ratio (7 = 0.25, 1.0, and 4.0) on (zwt%) is 
illustrated in Fig. 5(b). For  7 < l, (%/%) tends to 
become more uniformly distributed along the wall. 
On the contrary, flows in 7 > 1 ducts generate large 
variations in wall shear stress, with peak values near 
the (x/2a) ~ 0.3 portion of the duct geometry. 

3.2. Friction factor and Nusselt number 
Isothermal friction factor results for double-sine 

ducts with 7 = 0.25, 0.5, 1.0, 2.0 and 4.0, and non-  
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Fig. 3. Axizl velocity (U/Um) contours and isotherm (0/0b) maps for n = 1.0 in double-sine ducts with 

7 = 0.25 and 4.0. 
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(a) (b) 
Fig. 4. Effect of flow behavior index on the mid-plane (y = 0) temperature difference [(0/0b),- (0/0b),= ~] 

distribution under T and H1 boundary conditions : (a) for n = 0.15 and (b) for n = 2.5. 

0 . 5  

Newtonian flows with different flow behavior indices 
(0.15 ~< n ~< 2.5) are given in Table 1. Also tabulated 
are the values of maximum or peak centerline 
velocities in terms of (Um~/U,,~n) for each case. As 

discussed earlier, the latter listing quantitatively 
demonstrates the 'squeezing' effect of  decreas- 
ing/increasing duct aspect ratio on power-law fluid 
flows. Higher peak velocities are obtained when 7 < 1 
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0.1 0 .2  0 .3  0 .4  0 .5  

x/2a 
I l l l l l l l l | | l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l  

. . . . . . . .  y = 0 .25  (b) 
y = 1.00 (n = 1 .00)  
7 = 4.00 

.............................. / \Xx 

..:,,?,,, ......... , ......... , ...... 

x/2a 
Fig. 5. Wall shear stress distribution (%/t0) in double-sine ducts : (a) variation with n and (b) variation 

with 7. 

Table 1. Fully developed laminar power-law fluid flow characteristics in double-sine ducts 

n 0.15 0.40 0.60 0.80 1.00 1.20 1.50 2.00 2.50 

7 = 0.25 
Umax/U m 1.6922 1.9127 2.0583 2.1625 2.2284 2.2730 2.3129 2.3683 2.3968 
fReg 2.6782 3.7812 5.2209 7.2724 10.256 14.446 24.135 56.636 132.96 

? = 0.50 
Umax/U m 1.6885 1.7766 1.9245 2.0349 2.1157 2.1769 2.2452 2.3222 2.3728 
fReg 3.1230 4.5011 6.027i 8.2064 11.440 15.920 26.254 60.867 142.04 

7 = i.O0 
Umax/U m 1.6674 1.7397 1.8840 1.9974 2.0809 2.1452 2.2194 2.3082 2.3718 
fRe~ 3.3107 5.1435 6.9306 9.5553 13.348 18.765 31.482 75.234 180.79 

Y = 2.00 
Umax/U m 1.7873 1.8148 1.9863 2.1184 2.2144 2.2858 2.3648 2.4534 2.5119 
fReg 2.7656 4.7203 6.7369 9.9555 14.860 22.233 40.598 109.28 281.99 

? = 4.00 
Umax/U m 1.8165 2.0204 2.2249 2.3623 2.4481 2.5006 2.5515 2.6010 2.6303 
fReg 1.6509 3.3125 5 . 7 8 9 1  9.6492 15.413 24.097 46.023 129.83 353.76 
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or y > 1 for all n. The isothermal friction factor results 
indicate that fReg generally increases with n. For 
example, in a double-sine duct with 7 = l,fReg varies 
from 3.3107 for n = 0.15 to 180.79 for n = 2.5; this 
trend is seen for all aspect ratio ducts. When con- 
sidering the combined effects ofn and 7, however, with 
n < 0.8, i.e. highly shear-thinning fluids, the 
maximum fReg is obtained for 7 = 1. This is not 
uncharacteristic of flows in irregular duct geometries 
with sharp edges, where the 'corners' greatly affect 
the fluid mobility. In Newtonian flows in isosceles 
triangular and rho~aabic ducts, for example, peak value 
offRe is obtained when 7 --- 1 [1]. Similarly, fRe vs Y 
variations in eccentric annuli and narrow annular- 
sector ducts exhibit maxima and/or minima at inter- 
mediate aspect ratios [1]. On the other hand in trap- 
ezoidal ducts, fRe for Newtonian flows is minimum 
for 7 ~ 1, and it tends to attain the value for parallel 
plate flows as 7 --" 3 or oo ; extended comparisons and 
discussion are presented in ref. [28]'L For slightly 
pseudoplastic (n := 0.8), Newtonian (n = 1.0), and 
dilatant (n > 1) fluids, fReg increases with increasing 
aspect ratio. 

There have been few attempts at developing gen- 
eralized correlations for non-Newtonian flows [22, 
23]. Of these, by Jaormalizing hydrodynamic charac- 
teristics with those of Newtonian flows in circular 
tubes, Kozicki et al. [22] have suggested that friction 
factors in irregular ducts can be predicted by 

2--n n pum dh 
fRe* = 16 Re* - (20) 

8"- ~ K[(a + bn)/n]" 

where a and b are geometric constants that depend 
upon the duct shape. This expression is supposedly 
valid for any power-law index n > 0, and the relation- 
ship betweenfReg andfRe* is as follows : 

f R , o *  " 

A comparison of Lhe present study's results withfRe* 
predictions of Kozicki et al. [22] is presented in Fig. 
6. As is evident, there is reasonable agreement only for 
near unity values ofn  (0.6 ~< n ~< 1.5), i.e. moderately 
pseudoplastic or dilatant fluids. For n < 0.6 or 
n > 1.5, equation (20) fails to provide adequate pre- 
dictions ; for dilalant fluids and ducts with 7 = 4 par- 
ticularly, the disagreement is quite large. This is not 
unexpected, give~a that sharp corners in the duct's 
cross-section geometry greatly influence the flow field, 
and more so in 'very small/large aspect ratio ducts. 
Even in the original treatment of Kozicki et al. [22], 
for example, 17"/;-25% deviations were observed in 

fRe* predictions for concentric annuli with very small 
inner cylinder radii. As such, in the present case, the 
Kozicki et al. [22] scheme should be generalized and 
extended to highly shear-thinning or shear-thickening 
fluid flows and sharp-cornered channels with caution. 

For the thermal problem, non-Newtonian effects 
are further highlighted by the maximum centerline- 
to-wall temperature differences (0max/0b)- These are 
tabulated in Tables 2 and 3, respectively, for T and 
HI boundary conditions. Reflecting the flow 
behavior, the centerline-to-wall temperature differ- 
ence increases with increasing pseudoplasticity 
(n < 1) ; the converse is true for increasing dilatancy 
(n > 1), and (0 rnax /0b)  decreases. This holds for both 
T and HI conditions, though relatively smaller values 
are obtained with the latter boundary condition. Fur- 
thermore, because of the flow 'squeezing' when ~ < 1 
or 7 > 1, higher (0max/00 values are obtained for 
shear-thinning or shear-thickening flows with the 
same n. The corresponding Nusselt numbers for the 
T and HI  thermal boundary conditions are also listed 
in Tables 2 and 3, respectively. The results clearly 
demonstrate that shear-thinning flows with higher 
wall temperature gradients enhance heat transfer, 
whereas shear-thickening flows lead to a deterioration 
in heat transfer. Furthermore, irrespective of the ther- 
mal boundary condition and flow behavior index, as 
the duct aspect ratio 7 increases from 0.25 to 4.0, Nu 
increases up to y = 1.0 and then decreases with further 
increase in 7- That is, the peak value of Nu is obtained 
for a double-sine shaped duct with an aspect ratio 
of unity. Also, consistent with the influence of wall 
boundary conditions, Num > NUT for any flow 
behavior index n and duct aspect ratio 7- 

In an attempt to provide a general prediction of 
heat transfer in non-circular cross-section ducts with 
any type of boundary condition, Cheng [13] has pro- 
posed the following correlations : 

= F(a+ bn) T/3 
(Nu), [ _ ~ j  (Nu),=,. (22) 

Here a and b are the same geometric constants as 
those developed for isothermal flow by Kozicki et al. 
[22]. Comparisons with the present study's results for 
double-sine ducts with T and H1 boundary conditions 
are presented in Fig. 7. This figure shows the results 
for variations in both the flow behavior index n and 
duct aspect ratio 7. With the exception of n = 0.15, 
there is good agreement between the predictions and 
present results. This is not surprising given that Cheng 
[13] has formulated the correlation on the basis of 
isosceles triangular ducts [8], a shape that is somewhat 
similar to a sine profile. 

$ It may be noted that the analytical results for Newtonian 
flows given in ref. [28] are for double half-sine ducts, i.e. the 
duct's boundaries axe described by mirror images of a half- 
sine wave. In the p::esent case, the shape is a full sine wave, 
which is a more appropriate model for inter-plate channels 
in plate heat exchangers. 

4. CONCLUSIONS 

For constant property, fully developed laminar 
flows of power-law fluids in double-sine shaped ducts, 
solutions for both T and HI boundary conditions 
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Fig. 6. Comparison of present results withfRe* predictions of Kozicki et al. [22] for fully developed laminar 
flows with different flow behavior index n in double-sine ducts. 

Table 2. Fully developed laminar power-law fluid flow heat transfer characteristics in double-sine ducts with the T thermal 
boundary condition 

n 0.15 0.40 0.60 0.80 1.00 1.20 1.50 2.00 2.50 

y = 0.25 
0max/0 b 2.1429 2.0712 2.0506 2.0400 2.0381 2.0376 2.0366 2 . 0 3 5 3  2.0349 
NUT 2.1116 1 . 9 3 7 0  1 . 8 7 2 7  1.8434 1.8245 1.8145 1 . 8 0 3 7  1 . 7 9 3 2  1.7908 

7 = 0.50 
0 m a x / 0  b 1.9290 1 . 9 0 7 8  1 . 8 7 4 9  1.8620 1.8538 1.8524 1 . 8 4 7 5  1 . 8 3 9 7  1.8363 
NuT 2.6702 2 . 4 9 4 3  2.4374 2.3787 2.3422 2.3143 2.2867 2.2506 2.2315 

), = 1.00 
0 m a x / 0  b 1.9281 1 . 8 9 6 4  1 . 8 7 4 4  1.8608 1.8512 1.8508 1 . 8 4 5 3  1 . 8 3 6 7  1.8347 
NUT 3.1671 3.0604 2 . 9 4 7 1  2.8786 2.8361 2.7865 2.7509 2 . 7 1 4 9  2.6814 

y = 2.00 
0 m a x / 0  b 2.1277 2.0969 2.0680 2.0500 2.0488 2.0470 2 . 0 3 9 8  2.0354 2.0281 
NuT 3.0326 2.9980 2 . 9 4 5 3  2.8473 2.7660 2.7093 2 . 6 5 8 6  2.6237 2.6183 

7 = 4.00 
0 m a x / 0 b  2.6682 2 . 5 2 3 5  2 . 4 7 1 2  2.3910 2.3841 2.3837 2.3820 2.3804 2.3794 
NuT 2.8011 2 . 5 5 6 3  2 . 4 3 5 3  2.3710 2.2941 2.2873 2.2822 2 . 2 7 0 9  2.2630 

are obtained by the Galerkin function based integral 
method. Results for velocity and temperature dis- 
tributions, and the corresponding values offReg, NUT, 
and Num with varying flow behavior index 
(0.15 ~< n ~< 2.5) in double-sine ducts of  different 
aspect ratios (0.25 ~< ~, ~< 4.0) illustrate the following : 

(1) Larger peak velocities and wall-to-centerline 
fluid temperature differences are obtained in small and 
large aspect ratio ducts (Y < 1 or  y > 1), with sharper 
gradient changes in the respective distributions. In 
shear-thinning fluids (n < 1), flatter plug-like velocity 
profiles are obtained, and in shear-thickening fluids 
(n > 1), sharper and almost conical profiles are 
obtained. As a consequence, there is considerable 
deviation in the temperature profiles. In the former 
case, the core region flow has higher temperatures, 
compared with Newtonian fluids. The converse is true 

in dilatant fluids, with larger maldistribution in the 
core-to-corner middle region. 

(2) The isothermal friction factors increase with 
increasing duct aspect ratio, as well as with increasing 
flow behavior index n. The exception to this is highly 
shear-thinning flow (n ~< 0.6), where maximumfReg is 
obtained for ~ = 1. Friction factors for pseudoplastic 
fluids (n < I) are much less than those for Newtonian 
(n -- 1) flows in double-sine duct with a given y and 
the same flow rate;  for dilatant fluids (n > 1) friction 
factors are significantly higher. 

(3) Reflecting the fluid flow behavior and its 
rheology, for both T and H I  conditions Nu decreases 
as n increases, irrespective of  the duct aspect ratio. 
The heat transfer is enhanced in pseudoplastic flows ; 
conversely, lower Nu is obtained in dilatant flows. 
Furthermore,  Nu decreases when 7 < 1 and Y > 1 for 
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Table 3. Fully developed laminar power-law fluid flow heat transfer characteristics in double-sine ducts with the H I  thermal 
boundary condition 

n 0.15 0.40 0.60 0.80 1.00 1.20 1.50 2.00 2.50 

? = 0.25 
Omax/Ob ] .8010 1.7664 1.7542 1.7489 1.7463 1.7449 1,7438 1,7430 1.7424 
Num 2.9004 2.5882 2.4596 2.3853 2.3417 2.3132 2.2834 2.2508 2.2324 

? = 0.50 
0max/0b ].7298 1.6957 1.6819 1.6751 1.6709 1.6679 1.6647 1.6614 1.6593 
Num 3.0228 2.9419 2.8641 2.8006 2.7517 2.7128 2.6667 2.6100 2.5689 

y = 1.00 
0 m a x / 0  b ].7143 1 . 6 9 4 7  1.6817 1.6747 1.6703 1.6672 1.6638 1.6602 1.6578 
Num 3.8217 3.5464 3.4318 3.3741 3.3203 3.2729 3.2124 3.1328 3.0717 

y = 2.00 
0 m a x / 0  b ] .8326 1 . 8 1 1 3  1.7916 1.7774 1.7682 1.7623 1.7572 1.7534 1.7522 
NuHt 2L6231 3.4697 3.3697 3.2717 3.2042 3.1551 3.1019 3.0430 3.0036 

y = 4.00 
Omax/O b 2.1034 2.0214 1.9685 1.9406 1.9293 1.9261 1 . 9 2 5 1  1.9244 1.9235 
Null, 3.5044 2 . 8 4 1 1  2.8274 2.8007 2.7484 2.7258 2.7173 2.6870 2.5911 
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Fig. 7. Effectiveness of Cheng [13] parameter for correlating Nu in double-sine ducts: (a) for T and (b) for 
H1 boundary conditions. 
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bo th  T and  H I  condi t ions ,wi th  the peak heat  t ransfer  
per formance  for 7 ~ 1. Fo r  all cases of  7 and  n, 
however,  consis tent  with the effects of  wall thermal  
condit ions,  Num > Nut.  

(4) The correlating parameters proposed by Kozicki 
et al. [22] forfRe* and by Cheng [13] for Nu are found 
to give reasonable first order estimates in most  cases. 
While the heat transfer predictions are in excellent agree- 
ment  with results for all 7 and n (except n = 0.15), the 
friction factor results correlate well only for near unity 
values of  n and 7. More  generalized predictions of non- 
Newtonian flow and  heat transfer in irregular shaped 
ducts perhaps require modified strategies. 
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