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Interpolation of spatially varying point precipitation depths introduces uncer- 
tainties in the estimated mean areal precipitation (MAP). This paper describes 
a geostatistical approach - the Kriging method - to calculate the daily MAP on 
real-time basis. The procedure provides a linear unbiased estimate with 
minimum estimation variance. The structural analysis of the random precipita- 
tion field is automatized by relating the time-varying semivariogram model to 
the sample variance. This is illustrated on data from a Danish IHD catchment. 

The conceptual rainfall-runoff model NAM incorporated into a Kalman- 
filter algortithm is applied to investigate the effects of uncertainties in MAP on 
the runoff predictions. Measurement and processing errors are not included in 
the investigation. 

Introduction 

The daily mean areal precipitation (MAP) is frequently used in hydrological appli- 
cations, e.g. calculation of regional crop water requirement or  as input to lumped 
hydrological models for predictions of floods or  water yields. The MAP is usualy 
estimated from point values sampled at a limited number of points located in the 
catchment. Since the precipitation varies in space, it is impossible to  achieve an 
exact estimate of the total precipitation depth. Consequently, it is important to  
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know the accuracy of the estimate. Neglecting measurement and processing errors, 
the precision of MAP depends on the observation network as well as the spatial 
autocorrelation of the rainfall event. 

Several methods have been applied in hydrological studies, among which the 
Thiessen polygonal method, Thiessen (1911), is perhaps the method most often 
used. Frequently these estimations have been made without any structural analysis 
of the phenomenon. One reason might be that an analysis of the spatial structure of 
rainfall events is time-consuming and long records make this impossible without 
some operational procedure. 

Several authors have studied the spatial variations of the precipitation. Among 
Nordic contributions, Gottschalk and Jutman (1982) presented a method using 
information about the correlation structure in space, and Simeonides (1984) has 
made an extensive research including a review of earlier works in this field. Finally, 
Allerup and Madsen (1981) have proposed a method which specifically takes the 
topographic information into account. 

A widely applied method for interpolation of spatially distributed variables is the 
kriging method, based on "Theory of Regionalized Variables" developed by 
Matheron (1963,1971). This method uses the autocorrelation between the samples 
and estimates values at ungauged points or regions without bias and with minimum 
estimation variance. In hydrology and related areas, several applications have been 
reported, e.g. Delhomme (1978, 1978), Virdee and Kottegoda (1984), and Veira et 
al. (1983). In rainfall applications, Delfiner and Delhomme (1975) show an exam- 
ple of MAP estimation for a catchment in Chad, Chua and Bras (1982) use univer- 
sal kriging technique for estimations in mountainous regions, and recently Bastin et 
al. (1984) have proposed a procedure for real-time estimation of the MAP. This 
work is particularly interesting because it uses the kriging technique for a large 
quantity of time-varying data in a convenient manner. They utilize that if the time- 
varying semi-variogram models are proportional, then the weights associated to 
each precipitation station become time invariant, whereas the estimation variance 
depends on the individual time-varying semivariogram. Seasonal semivariograms 
related to the rainfall intensity are used. 

The present paper follows in the line of Bastin et al. (1984), but proposes a 
procedure in which daily semivariograms are identified and relates these to the 
daily sample variance s2 of the rainfall event. In future predictions, only S2 needs to 
be calculated in order to obtain the estimation variance of the mean areal precipita- 
tion (MAP). The procedure is implemented to data from the Danish Tryggevalde 
Aa catchment. It is assumed that the data are not subject to any kind of drift. 

The predicted MAP and estimation variance is used as input to a lumped concep- 
tual rainfall-runoff model which has been reformulated in a state space form. The 
uncertainties in the MAP input is transferred to an uncertainty in the run-off 
hydrograph. The paper illustrates how this uncertainty is reduced by the evapo- 
transpiration processes and the smoothing effect of the flow processes in the catch- 
ment. 
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Kriging Interpolation Technique 

The MAP for a catchment of area A is defined as 

where p(k,zi) denotes the point precipitation depth in day k at point zi = (xi, yi) E 

R ~ . .  Given a set of N observations randomly scattered in space, an optimal estimate 
of p, is obtained by 

where ki(k) is the weight associated to the point zi. For a fixed day k, each p(k,zi) 
can be considered as a realization of a two-dimensional random field (RF) on R ~ .  
The weights ki(k) are determined such that the RF estimator jA(k) is unbiased and 
with minimum variance. This is mathematically written as 

E { i ) A ( k )  - p A ( k ) )  = O  

and 

E ( $ A ( k )  - p A ( k )  1 2 )  minimum 

The spatial dependency of the RF is described by the autocovariance function 
C(k,zi,z,) or alternatively by the semivariogram, which is defined as 

where (zi,z,) is a pair of points in the region of interest. In simple kriging, which is 
applied in the present paper, it is assumed that the random function p(k,zi) is 
weakly stationary of second order, i.e. the expectation E(p(k,zi)) exists and inde- 
pendent of zi; and for each pair (z ,  zj) , the covariance function C(k, zi, 2,) exists and 
depends only on the distance hi, between the points. This implies, however, that the 
R F  has a finite variance. To avoid this rather restrictive demand, a hypothesis of 
'intrinsic' stationarity is usually applied in kriging. This weaker assumption re- 
quires a finite variance on the increments of R F  and not on R F  itself, which is 
expressed by using the semivariogram y(k,zi,z,) instead of the covariance 
C(k, Zi, 2,). 

It is additionally assumed that p(k,zi) is isotropic so that the semivariogram 
depends only on the distance hi, between zi and zj and not on the direction. 

By formulating Eqs. (3) and (4) in terms of y(k,h), the weights ki(k) are found as 
the solution to the following kriging system 

N 
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where p(k) is the Lagrange parameter. The minimum estimation variance d,(k) is 

p(k,zi,A) is the average semivariogram between the data points zi and all points 
within the cathment area A, and p(k,A,A) is the average semivariogram between 
all points within A, the within-block variance of classical statistics (Burgess and 
Webster 1980). The average semivariograms are in practice calculated by discretiz- 
ing the catchment in a large number of grid squares. 

Semivariogram Model 

The semivariogram in Eq. (5) is estimated from the data by 

where N(h) is the number of sampling pairs separated by a distance within the 
interval [h-Ah; h+Ah]. It displays a series of discrete points corresponding to each 
value of h. 

By definition, P(k,h) = 0 when h = 0, and it increases as h increases. Some 
models assume that the function reaches a maximum value C (denoted the sill 
which is approximately equal to the sample variance) at some distance a (called the 
range). Beyond the range a, it remains constant and the data are not correlated. 

Other models may show an ever increasing behaviour, e.g. the model of the 
power type which is presented later. It may also be found that P(k,h) approaches a 
positive definite value C, called the nugget value as h approaches zero. This 
discontinuity is interpreted as an existence of variability at scales smaller than the 
sampling distance or as measurement errors (Journel and Huijbregts 1978). Final- 
ly, if the experimental semivariogram shows a constant behaviour C, (pure nugget) 
for all k, the data are completely random and no spatial dependence exists. It is 
important to emphasize what effect this latter behaviour has on the kriging system, 
Eqs. (6a) to (7). The weights hi(k) will all be equal to 1/N which means that mean 
areal precipitation is found simply as the arithmetic mean, and a2, is equal to s2(k)l 
N where S2(k) is the sample variance. 

Several semivariogram models may represent P(k,h) in Eq. (8). Bastin and Gev- 
ers (1985) present examples on models particularly suitable in real-time estima- 
tions. In the present study, a power type model has been selected 
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where a and @ are two time-dependent parameters which can be estimated from 
the experimental semivariogram P(k, h).  A reasonable and convenient approxima- 
tion is to assume P(k) = 6, as time invariant (Bastin et al. 1984) which simplifes Eq. 
(9) to 

Two obvious benefits arise from this simplification. Firstly that the solution of the 
kriging system, Eqs. (6a) and (6b), does not depend on the time-varying parameter 
a(k). This means that the kriging system only needs to be solved once (i.e. hi(k) = 
hi is time independent). This saves a large amount of computer time. Secondly, the 
estimation variance a?, may be written as 

where a*: is calculated from Eq. (7) by substituting y(k,h) and y(k) with y*(h) and 
p* respectively. Also, a*: needs to be calculated only once. 

As mentioned earlier, the semivariogram is closely related to the sampling var- 
iance s2(k), and it is therefore natural to find a unique relation between the time- 
varying parameter a(k) and s2(k). Eq. (11) may be rewritten as 

where a, is the average slope on the a(k)-s2(k) curves. It is seen from Eq. (12) that 
once a, and a*: have been identified, the estimation error 02,(k) may be directly 
inferred from the sampling variance, which makes it possible to calculate d,(k) on 
real-time basis. 

Parameter Estimation 

The theoretical semivariogram model is found from a so-called structural analysis. 
By fitting the model to the daily experimental semivariogram ?(k, h), the parame- 
ters a(k) and P(k) are estimated. A least square procedure is used in the fitting 
process. 

Daily precipitation data for the period 1980-1984 from the Danish Tryggevaelde 
Aa catchment, see Fig. 1, have been avarilable for the identification. Only days 
showing an arithmetric sample mean larger than 1 mmlday are included in the 
analysis. 

The result of the structural analysis is shown in Table 1. Approximately one- 
third of the data record is included in the analysis. In 15% of these cases, the 
experimental semivariograms P(k,h) show no spatial dependence (Pure Nugget 
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Fig. 1. Tryggevrelde Aa catchment, location of precipitation and discharge gauge stations. 

effect, $(k)  = 0 and y(k,h) = a ( k ) ) .  Table 1 shows the mean monrhly values of 
6 ( k )  and p(k) from the first fits. As it appears from Table 1, the variations in p(k) 
are less pronounced than for E(k). In a repeated least square fitting with a fixed 
p(k) = $, = .689, new values of 6 ( k )  and a, are found. 

Two examples of daily semivariograms are given in Fig. 2. The theoretical mod- 
els are the best fits of a ( k )  with $(k)  = $,. It is seen that the experimental data from 
April 4 indicates a pure nugget effect without any spatial dependency at all. In a 
real-time estimation, a constant semivariogram model y(k,h) = S2(k) would be 

Table 1 - Mean Monthly Values of a(k) and P(k) Calculated on Daily Basis 
- 

Month Total no. No. of h(k) P(k) a0 
of days days with 

Pure Nugget 

Jan. 62 16 1.45 .62 .202 
Feb. 37 8 2.31 .56 .I75 
Mar. 53 8 1.36 .57 .I75 
Apr. 39 4 .93 .67 .I95 
May 46 7 1.40 .82 .194 
Jun. 55 2 1.98 .79 .I88 
Jul. 41 6 4.04 .67 .I84 
Aug . 42 4 2.67 .62 .202 
Sep. 53 5 1.35 .80 .I90 
Oct. 79 5 1.43 .68 .I91 
Nov. 63 10 1.36 .67 .I98 
Dec. 55 11 1.56 .80 .I92 

Total 595 86 
Mean .689 .I91 

(= Po)  (= ho)  
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Fig. 2. Experimental and theoretical semivariograms for April 4 and 30, 1983. 
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Fig. 3. Relation between sample variance s2(k) and a(k) for the months April and July. 

adopted. A pure nugget effect would in a prediction be identified in the least 
square procedure by giving a parameter value of f3 less than or equal to zero. The 
second example from April 30 shows a clear spatial dependency, and the fitted 
model is used, but Fig. 2 shows larger s2 for the dependent situation (April 30) than 
for the independent (April 4). 

Fig. 3 shows the relation between a ( k )  and the sampling variances S2(k) for April 
and July. The slopes a, for each month are given in Table 1. They show a relative 
constant value without any clear seasonal variation. It is therefore reasonable to 
use a constant mean value of ii, = .I91 in Eq. (12). 

Runoff Simulation 

In order to investigate to what extent the estimation error in the MAP gives rise to 
errors in the runoff hydrograph, the NAM-model (Nielsen and Hansen 1973) has 
been used to simulate the runoff from the catchment. NAM is a deterministic 
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rainfall-runoff model of the lumped, conceptual type. In the present study, the 
model has first been calibrated for the period 1980-1984 on a subcatchment where 
the only discharge station in the catchment is situated. A reformulated state-space 
version, in which the NAM-model is incorporated in a Kalman filter algorithm, was 
introduced (Refsgaard et al. 1983). In this version, the uncertainties of the various 
states in the model are calculated for every time step. The daily MAP and its 
standard error are necessary input data to the model. These figures calculated from 
kriging, are utilized directly as input to the NAM-modelIKalman filter. In this 
way, it is possible to simulate both the runoff and the uncertainties as a result of 
various input uncertainties. The model was applied for prediction of the runoff 
from the whole catchment for the two years 1983 and 1984. 

Several sources of errors exist in rainfall-runoff modelling. Besides errors in the 
input data, not only the MAP but also other climatological input, the resulting 
error in the simulated runoff may arise from errors in inappropriate model struc- 
ture and non-optimal model parameter. It is emphasized that these errors also play 
an important role on the size of the uncertainty of the simulated hydrograph. 
However, these sources of errors have not been included in the following results. 

The simulated hydrograph with a 95% uncertainty band is shown in Fig. 4. It 
appears from the figure that the error band in general is largest in the wet period, 
both in absolute and in relative terms. This is confirmed by the monthly average 
values in Table 2. In the summer period with a small runoff, all the precipitation 
evapotranspirates and the uncertainty with it. Only large summer thunder storms 
which result in runoff may give rise to large uncertainties. 

The differences in the standard errors between the MAP and the runoff are 

Table 2 - Standard Error of Simulated Hydrograph a,, Coefficient of Variation of Simu- 
lated Hydrograph CVQ and Percentage Reduction in Standard Error aQ/ae bet- 
ween Runoff and MAP. 

a, (mmld) CVQ (%I O Q / ~ E  (%) 
1983 1984 1983 1984 1983 1984 

Jan. .045 .084 3.4 4.5 29 28 
Feb. .044 .033 3.2 2.4 32 37 
Mar. .041 ,030 3.8 6.2 29 33 
Apr. .066 .009 4.2 3.9 33 10 
May .081 .002 5.6 2.2 32 2 
Jun. ,018 ,088 3.0 11.8 16 23 
Jul. .003 .013 2.1 7.1 10 9 
Aug. .002 .006 2.1 7.1 8 5 
Sep. .002 .022 2.1 10.0 1 11 
Oct. .001 .047 2.1 7.0 1 23 
Nov. .011 .025 4.0 4.0 6 33 
Dec. .059 .027 6.9 3.5 39 37 
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Fig. 4. Simulated daily runoff, 1983-1984, with 95 % confidence limits. 

illustrated in Fig. 5 and the right column of Table 2. The instantaneous error is 
strongly damped as a consequence of the filter effect in the model. In the period 
from late autumn to early spring, even relatively small errors on the MAP result in 
runoff uncertainties, whereas large isolated rainfall events with large estimation 
errors during the summer may not show up on the runoff hydrograph. The mean 
monthly reduction in the standard error is approximately 30% in the wet season 
and only a few percent in the summer. This seasonal pattern corresponds well with 
the proportion of rainfall that runs off. 
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Fig. 5. Daily standard error and mean areal precipitation and runoff for 1983-1984. 
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Conclusions 

The paper applies the kriging interpolation technique for a real-time prediction of 
the daily mean areal precipitation and the associated estimation variance d , ( k ) .  
The procedure relates d , ( k )  directly to the sample variance s2(k) .  This relation is 
found from a structural analysis of 5 years daily data in the catchment. The relation 
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between d,(k) and s2(k) is catchment specific, and before predictions in other 
regions, a similar structural analysis is necessary. 

The analysis reveals that in approximately 15 % of days investigated (with MAP 
larger than 1 mmlday), there is no sign of spatial correlation. At days where a 
correlation is found, the estimation variance on the MAP is reduced approximately 
60 % in relation to an estimation of purely independent data. 

The MAP and estimation variances d (k )  have been used for prediction of a 
runoff hydrograph with an associated uncertainty band. This was simulated by use 
of the state-space version of the rainfall-runoff model NAM incorporated in a 
Kalman-filter algorithm. The study shows a clear filtering effect of the MAP and a 
reduction in estimation errors on the runoff compared to the estimation errors on 
the MAP. 
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