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Abstract—An exact method of Folution of the flood-routing equation, when the storage is a
linear function of weighted inflow and outflow, is developed. This operation ia shown to he
equivalent to routing a multiple of the inflow through reservoir storage and subtracting the
excess inflow. Modified coefficients for the Muskingum equation are developed which do not
depend on the routing interval being small relative to K.

Introduction—1The Muskingum method, which
is a finite difference method of solution of the
flood routing equation, under the assumption
that storage is a linear function of a weighted
mean of inflow and outflow, S = K[xl + (1 —
x)Q], is widely used, both in its original form
[McCarthy, 1938] and as the basis of a number
of graphical or semi-graphical methods. In the
use of these methods, however, it is sometimes
overlooked that an essential requirement, to
insure accuracy in such finite difference calcu-
lations, is that the finite interval T must be small
relative to the other time elements involved.
This fact was emphasized by Clark [1945] in
discussing the Muskingum flood-routing method.
Nevertheless, it still happens that values of T
sensibly equal to K are recommended for use
in actual calculation.

Whereas it is possible that in practice the
inaccuracies so introduced are generally not
significant relative to the inaccuracies intro-
duced by the basic storage assumption, and the
usual inaccuracies of the data, it may happen,
particularly in theoretical work, that a high
relative accuracy is required. The failure of the
Muskingum method when T/K is not small is
demonstrated by the widely accepted belief that
routing through linear storage with x = 0.5
operates as a pure delay. This conclusion is
based on the fact that the substitution of T = K
and x = 0.5 in the Muskingum equation yields
Q\ = h, the other coefficients being zero. That
this conclusion is erroneous is demonstrated in
this note. An exact method of solution under
the storage assumption is developed, and modi-

fied equations for the Muskingum coefficients
are derived. These equations are true even when
T is not small relative to K.

Notation—

7(0 = inflow, ft'/sec
Q{t) = outflow, ft'/sec
x = a numerical parameter
S(t) = storage, ft3 hrs/sec
K = a time parameter, hours
* = K{\ - x)
D = the differential operator d/dt
Ci C2 C3 the Muskingum coefficients
c = exp - T/K(\ - x)
Q = the outflow from routing / through

S = K(l - x)q
T = the routing interval, hours
m = slope of inflow curve

The exact solution—The fundamental equations
are

S = K(xl + (1 - X)Q)

(1)

(2)

from which

When x = zero we have the corresponding
reservoir case
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Fia. 1—Routing through storage with x = 0.5

Q(D =
i

1 + KI)

which has the solution

O - —p-"K
1 - K e / •

t/K I (It

(4)

(5)

Now (3) may be looked upon as the result of
operating on 7(i) successively with 1 — xKD
and 1/[1 + (L — x)KD]. The operation 1 - xKD
merely involves differentiation of the inflow and
1/[1 + (1 — x)KD] represents reservoir routing
with S = (1 — x)KQ. Therefore (3) is equivalent
to subtracting xK times the first derivative, of
7 from 7 and routing the remainder through
reservoir storage with S = (1 — x)KQ. These
operations generally can be carried out graphi-
cally, and mathematically as well, when 7 is a
simple function of time. We can learn more
from (3). Let us define

I'{t) = (1 - xKD)I(t) (6)

This meaos that I' is the result of routing 7
backwards (that is, calculation of inflow from
outflow) through linear reservoir storage S =
—xKI. The effect of the negative xK is achieved
by taking the routing procedure from right to
left; that is, in the negative direction of time
(Fig. 1).

When we come to U at which 7' becomes zero,
7 would fall off logarithmically and never actu-
ally reach zero unless 7' took negative values.
This means that when I starts from zero and
rises at a finite rate, I' must always take
negative values initially.

It is clear, too, that the interval between the
centers of area of l'(f) and 7(0 is xK. We must
now route V forwards through S — (1 — x)KQ

to obtain Q (Fig. 1). Clearly this involves a
further shift of the center of area (1 — x)K so
that the total shift is K. However I and Q are
not otherwise identical even when x = 0.5 as
shown in Figure 1. It should be noted that the
negative initial values of I' result in negative
initial values of Q.

If we divide out the operator in (3) we obtain

Q = \ -
— X

Q =

(1 - x) {1 + (1 - x)KD\

1 xl

1 + ( 1 - x)KD{\ —x) 1 - x

(7)

(8)

We see, therefore, that the outflow consists of
the sum of two parts, the first of which we shall
call q, being the result of routing 7/(1 — x)
through S = K(l — x)q, and the second
part being simply the inflow multiplied by
- i / ( l - x).

There are various ways of routing through
reservoir storage. Equation (5) may always be
integrated graphically, or mathematically if 7
is in a suitable form. A simple graphical solution
not involving integration has been demonstrated
by Nash and Farrell [1955]. It frequently hap-
pens, however, that a coefficient solution is
desired. Formulas for the coefficients are calcu-
lated in the next section.

Modification oj the Muskingum coefficients—

= CJ0 + C27, + C3Q0 (9)

We shall use (8) to obtain the expression for
the C's. In expressing Q as a function of la Ii and
Qo only, we must neglect second and higher
derivatives of 7; that is, we must assume 7 to
consist of straight-line segments. If the second
or higher derivatives are required, we must use
three or more values of 7 in (9). However, by
choosing time intervals which are sufficiently
short, the calculation using only 70, I\, and Qo
can be made as precise as is desired. The only
difference between the present calculation and
the usual development of the Muskingum co-
efficient equation is that we are not limited to
values of the time interval which are small
compared with K.

The solution of (8) when 7 is a series of straight
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segments is obtained as follows. Let m = (li —
ID)/T be the slope of a segment.

Let

then

1
+ (1 - x)KD

Q = i / ( l - x) - x / / ( l - x) (10)

Let k = (1 - z)7v and c = exp[-r/.K(l - z)]
to simplify the notation. From (5)

q = 1/fcf "* j * (/«, + m0e"* di

5 = ï/ke-'/k[kIDe'/k

+ mkV/k(t/k - 1) + A]

q= Io+ mk(t/k - 1) + A/ke"/k (11)

We solve for the arbitrary constant A by letting
q = 5o at t = 0 and obtain q<> = 7 o — mk +
Substituting in (11) we obtain

ç = 70 +

Substituting (Zi — 70)/T for m and letting
t=T, we obtain

?. = h + */W* - \){h - h)

+ [7o - 7o + k/T{h - In)]c

Î, = Jn[*/Ï'(l - c) - c]

+ / , [—*/r(l - c) + 1] + <z„c (12)

whence by (10)

+ 1 -

But (/o/(l — x) — Qt, — a-/o/(l — x) which when
substituted in (12), bearing in mind that k =
K(l — x), gives

Q, = IO[K/T(1 - c) -c]

+ h[-K/T{\ - c) + 1] + Qoc (13)

This is the modified form of the Muskingum
equation when T is not small relative to K. If
T/K is taken very small the coefficients in (13)
and in the Muskingum equation converge.

Conclusions—We have seen that the Musk-
ingum method is equivalent to either routing
the inflow backwards (that is, calculating /
from Q) through storage S = —xKI and subse-
quently forwards through S = (1 — x)KQ,
or routing a multiple of the inflow 7/(1 — x)
through 5 = K(l — x)q and subtracting
z7/(l — x). We have also developed the values
of the coefficients to be used when T/K is not
small. The negative outflow, which may occur
when the inflow rises steeply, has been explained
as being essentially associated with the storage
assumption, and not with any particular method
of solution. This rather unrealistic consequence
of the storage assumption suggests that some
modification is desirable. As it is necessary in
practice to determine x and K by experiment,
it would seem more reasonable to abandon the
storage assumption and consider the linear
operation to consist of two parts, a pure delay
and a single reservoir routing [Hopkins, 1956],
the two parameters to be determined by experi-
ment. The pure delay plus the storage factor K
would be equal to the lag between the centers
of area of inflow and outflow, and the ratio of
the storage factor to the lag would form a dimen-
sionless parameter which might be constant as
a first approximation or reflect some character-
istics, at present unknown, of the channel. It
might be possible to determine this relation by
means of a statistical correlation.
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