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The independent calculation of local position and orientation of 
the Lambertian surface of an opaque object is proposed using the 
photometric stereo method. A number of shaded video images are 
taken using different positions of an ideal point light source which 
is placed close to the object. Normally, three images are required 
for a uniform and four for a textured Lambertian surface. By 
restricting three light sources to lie in a straight line, the depth 
calculations for an arbitrary surface with textured Lambertian 
reflection characteristics can be also determined; however, in this 
case the orientation of the surface cannot be calculated indepen- 
dently. It is shown that for both uniform and textured Lambertian 
surfaces the equations which are functions of three independent 
variables, namely, depth (0) and surface normal direction vector 
(n = (p, q, - l]), can be reduced to a single nonlinear equation of 
depth, i.e., the distance between the camera and the point on the 
surface. Both convergence and a unique solution are ensured be- 
cause of the simple behavior of the nonlinear equation within a 
practical range of depth and gradient values. The robustness of 
the algorithm is demonstrated by synthetic as well as experimental 
data. The calculation of the approximate positions and orienta- 
tions of discontinuous surfaces is demonstrated when random 
noise is added to the synthetically calculated image intensities. 
Two parallel planes with a gap, two sloped planes, and a spherical 
surface are used to demonstrate that the algorithms work well. An 
important feature of calculating both depth and orientation inde- 
pendently is that for smooth surfaces they must obey the partial 
differential expressions p = 6Dl6x and q = 6Dl6y. If we are 
certain that the experimental errors are within a known limit then 
the numerical approximation to these partial derivative expres- 
sions can be used to determine discontinuities within the image. 
On the other hand, if we know that the surfaces are smooth then 
errors in the numerical evaluation of these differential expressions 
allow the estimation of experimental errors. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

According to our common everyday experience, the 
intensity of light reaching our retinas when we view a 
small area of an illuminated object depends on the abso- 
lute position of the object, its surface orientation, the 
illumination sources, the reflectivity properties of the 
viewed portion of the surface, and the transmission me- 

dia between the object and our eyes. In other words, 
shape and depth of the object influence the intensity we 
perceive. Depth cuing in computer graphics is one appli- 
cation of this common dependency between perceived 
intensity (shade) and depth when successively darker 
portions of a computer generated scene seem to recede 
away from the viewer. 

The inverse procedure of recovering shape (or depth) 
from shading is by now a classical topic of computer 
vision research which is still waiting for a large scale 
practical application. Since the pioneering work of Horn 
on shape from shading [I] a whole research area has 
grown and over the last 15 or so years a large number of 
researchers have investigated the feasibility of determin- 
ing the shape of objects from their video image [see refer- 
ences I-101. We will refer to the shape (or depth) from 
shading problem as the calculation of the gradient vector 
componentsp = aDlax and y = aDlay (and depth D) at a 
given three dimensional position in space [x, y, D] from 
the measured intensity function Z(x*, y*), where x* and 
y* specify positions in the image plane which are related 
to the three-dimensional coordinates [x, y, D] through an 
appropriate geometrical projection function. Our earlier 
reports [ 1 l-131 already demonstrated the feasibility of 
determining depth as well as shape from image intensities 
when point light sources were used. 

The shape from shading problem applied to real images 
faces many complications. In general, the distribution of 
incident illumination is nonuniform and is often un- 
known. The reflection properties of real surfaces are 
equally difficult to determine precisely. Furthermore, the 
resulting equations are highly nonlinear. In order to be 
able to arrive at a solvable problem, several strong as- 
sumptions have to be made. We have also shown that 
surface shape and depth could be determined from a sin- 
gle image; however, in this case known illumination and 
known reflection coefficient (albedo) must be assumed 
since any variation in reflected intensity can be due to the 
surface gradient, the incident illumination, and the reflec- 
tion coefficient. If the latter two are not known, the sur- 
face gradient cannot be determined. (In other words, a 
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darker spot in the image may be equally due to less inci- 
dent illumination, to a darker colored spot on the surface, 
or to change in the direction of the gradient vector). 

The strongest assumptions for the general shape from 
shading problem provide the simplest problem. These are 
parallel and uniform incident light illumination (such as 
from a very distant point light source) and uniform Lam- 
bertian surface (perceived intensity is independent of the 
viewer’s position and is proportional to the cosine of the 
angle between the incident light direction and the surface 
normal). A further simplification is to use orthographic 
projection (x* = X, y* = y) which indicates a very distant 
camera position. Under these assumptions the measured 
light intensity can be expressed by 

I(x, Y) = ZOPO(S . n)/lnl, (1.1) 

where IO and p. are constants, the unit direction vector 
s = [&, sy, s,] is parallel to the incident light direction 
and points towards the light source, and the outside nor- 
mal vector to the surface is n which can be also expressed 
by the gradient components as [p, 4, - 11. Therefore 

Z(x, y) = Zl-JprJ(ps, + qs, - s,)l[p2 + q2 + 1Y2. (1.2) 

Under these assumptions the perceived illumination is 
invariant to depth (since both the light source and the 
camera are far away). 

It is not possible to use one image and Eq. 1.1 for the 
determination of shape locally since there are two un- 
knowns (p and q) and only one equation. In order to 
arrive at a solution from a single image, smoothness con- 
ditions of the surface and the consideration of a continu- 
ous uniform region must be considered. Hence, we may 
call methods of solution for a single image global. Vari- 
ous research workers have shown that such global tech- 
niques are feasible when strong smoothness constraints 
are assumed [see Refs. l-51. Since we are interested in 
the photometric stereo technique which uses multiple im- 
ages, we will not discuss these global methods in detail 
here. 

2. PHOTOMETRIC STEREO METHOD 

Woodham was the first to formulate the photometric 
stereo method [3]. In order to solve the illumination 
equation at any given surface point [x, y, z] we must have 
at least as many equations as unknowns. We may gener- 
ate multiple intensity maps by using different illumination 
conditions. Let us first relax one of the strong assump- 
tions and allow the albedo to be a function of position 
p(x, y) (variable albedo means textured surface), al- 
though the surface is still assumed to be purely Lamber- 
tian. Then, using far away light sources producing incom- 

ing light from different directions, we get 

Z;(X, Y) = Zo;p(X, Y)(Si * nYlnl, (2.1) 

where the index “i” indicates different light source direc- 
tions and Zoj is a brightness constant for each source. 

If three light sources are used (say, i = 0, 1,2) then we 
can form two ratios 

Rl0C-G Y) = ZJZO 

= (KlO)(P& + sq - ~,1)4Pxr0 + wyo - G.oh 
(2.2) 

R20(% Y) = MZO 

= (~2oeJ&2 + Py2 - &2MP&o + qsyo - SIO) 

which form a linear system of equations in two unknowns 
(p and q). The constants Klo and Kzo express the relative 
strengths of the two light sources Ii and 12 with respect to 
the light source IO. The two equations can be solved for 
the two unknowns p and q as long as the determinant is 
not zero. Depending on the directions of the incoming 
light rays, the determinant may become zero at isolated 
points but will have a finite value for the other points on 
the surface. It has been assumed so far that the illumina- 
tions are from faraway point sources and the ratios of the 
incident light intensity constants are known. These ratios 
may be considered a calibration problem in a practical 
system where the constants Klo and K20 can be measured 
for a known surface orientation (say p = q = 0) and then 
kept constant for all other measurements. 

Even the uniformity of the light sources may be re- 
laxed if the assumption on the parallel nature of the in- 
coming light rays is retained. In this case, with a known 
calibration surface (say, a plane with p = q = 0) the light 
intensity variations as a function of position can be ex- 
perimentally determined and look-up tables constructed 
[8, 91. The practical applicability of this technique de- 
pends only on the following strong assumptions: parallel 
light rays, measured light intensity not a function of 
depth, purely Lambertian surface, and constant light 
sources. 

3. NEAR PO&T LIGHT SOURCES 

Our main interest is to find solutions to the shape (and 
depth) from shading problem when the light sources are 
brought near to the viewed surface. Since the actual 
three-dimensional positioning of the light sources can be 
significant and the possibilities are limitless, we restrict 
ourselves for this study to the physical arrangement 
shown in Fig. 1. The camera is placed at the origin of our 
coordinate system and its axis is aligned with the z axis. 
Thus, depth (D) is equal to the z ordinate value. Since we 
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FIG. 1. Physical arrangement of object, light sources, and video 
camera. 

use orthographic projection, the actual z position of the 
camera is unimportant as long as we know its position 
with respect to the plane of the light sources. To find the 
correct depth, the z ordinate of the camera has to be 
added to the calculated depth values. 

As shown, all the light sources are assumed to be point 
sources and are placed in the z = D = 0 plane. Keeping 
the assumption of orthographic projection, the intensity 
map equation similar to Eq. 2.1 can now be derived as 

l;(X, Y) = Zo;p(X, Y>(Si ’ nY{lnl lSi13>7 (3.1) 

where Si is now not a unit vector but is the difference 
vector between the source position and the surface point 
with components 

Si = [Sxj - Xy Syi - y, - D] 

The terms in the denominator of Eq. 3.1 arise because 
the incident intensity at the surface drops off as the 
square of the distance between the point light source and 
the object. Since orthographic projection is used, the sur- 
face coordinates (x, y) are equal to the image coordinates 
(xx, y*). For perspective projection (x”, y*> becomes a 
function of surface coordinates (x, y, z) and camera focal 
lengthf. In the case of a simple pinhole camera, (x, y) can 
be replaced by [(DflX*, @fly*]. 

Substituting the terms AXi = Sxi - x and Ayi = Syi - y 
and expanding Eq. 3.1 we get 

Zi(X, Y) = ZcdX, YNP Axi + 9 AYi + D)/ 

((1 + p2 + q2)“2(Ax; + Ay: + D2)3’2}. 

(3.2) 

We have now four unknowns (D, p, q, and p), hence four 
different illuminations must be chosen. If we assign indi- 

ces 0 to 3 for the different measurements and take ratios 
as before, we get 

RiO(x, Y) = li(X7 Y)lzO(x~ Y) 

Zoi (p Axi + q Ayi + D)(Axi + Ayi + D2)3’2 =- 
Zoo(p Ax0 + q Aye + D)(Axj! + Ayf + D2)3’2’ 

(3.3) 

where the index i has values 1, 2, and 3. From the three 
equations we can derive one nonlinear equation for D 
which is of the form 

(A3 B2 - A2 B3) C, + (AI 83 - A3 BI) C2 

+ (A2 B, - A, B2) C3 = 0, (3.4) 

where Ai, Bi and Ci are all functions of D and are given by 

Ai = [Ax, - A,oF’i(D)] 

Bi = [Ayi - ~YoFi(D)l 
Ci = D[Fi(D) - I] 

for i = 1, 2, 3, and 

Fi(D) = Kio(X, y)[(AXy + Ay; + D2)l 

(Ax; + Ay; + D2)]3’2, (3.5) 

where Kio(X, y) = Rio(X, y)(Z~/Zio). Here values for 
Rio(X, y) are derived from the measured image intensities 
and constants ZOO and Zio are determined by calibration. 
Assuming that the system of equations is not singular, 
Eq. 3.4 will yield one or more solutions for D after which 
the gradient components p and q can be determined. 

Thus, with the assumptions of constant point light 
sources, orthographic projection, and Lambertian sur- 
faces, we have reduced the local solution to the shape 
and depth from shading problem to the solution of one 
nonlinear equation in D. It is worthwhile to compare our 
method to that used for faraway light sources and camera 
positions. Since we have one more variable (depth), we 
need one more light source. Also, our equations become 
nonlinear. These are the disadvantages. The advantage is 
that since we calculate D, p, and q independently, in the 
case of a smooth surface we have redundancy. For a 
smooth surface p = aDlax and q = 8Dldy and since these 
equations may be checked numerically, we can form a 
measure of the errors inherent in our solution. Further- 
more, if the absolute value of the errors are within some 
limit for most parts of the image but are much larger 
along selected contours, then discontinuities such as 
edges may be detected at these positions. As far as the 
numerical (iterative) solution of nonlinear equations is 
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concerned, it is particularly convenient that a system of 
nonlinear equations in three unknowns can be reduced to 
one nonlinear equation of a single variable. 

The other advantage is practical. Obviously, the photo- 
metric stereo method relies on the illumination of objects 
by controlled and, for simplicity, uniform light sources. 
In practice one may have ambient lighting conditions 
which would be impossible to control. However, by add- 
ing a bright light illumination to the scene it may be possi- 
ble to use two images, one with and one without the light 
source, in which case the illumination due to the point 
light source can be recovered. It seems that this method 
could succeed more easily if the additional light source 
was a point light source brought close to the object. 

Obviously, the success of this method depends on 
whether the nonlinear equation in D is solvable and 
whether it has only one solution. This will be influenced 
by the positioning of the light sources as well as other 
experimental conditions. First we investigate the posi- 
tioning of the light sources; then we show that the equa- 
tions are solvable using standard numerical techniques. 

4. POSITIONIN& OF LIGHT SOURCES AND 
UNIQUENESS OF SOLUTIONS 

We now investigate different arrangements of the point 
light sources and the feasibility and uniqueness of the 
solutions. The uniqueness of the solutions will be deter- 
mined within a range of parameter values. In order to 
extend these results for practical cases, a normalization 
will be carried out which results in dimensionless quanti- 
ties. The average distance between the camera and the 
light sources will be used as the normalizing length and 
for other distances (depth, for example) the practical 
range of 0.1 to 10 will be used. 

4.1. Constant Albedo 

First, we make the additional assumption of constant 
albedo, in which case only three light sources are needed. 
The three equations are now 

Z;(X, y) = Ki(p AX; + 4 Ayi + D)/{(I -f p2 + q2)1’2 

(Ax; + Ay? + D2)3’2}, (4.1) 

where the constant K; contains both the strength of the 
light source and the constant albedo and is determined 
by calibrating the experimental system. Assigning one of 
the equations index 0 and the other two indices 1 and 2, 
two ratios can be formed: 

Ro(x, Y) = li(X, YYlo(X, Y) 

Ki (p Axi + 4 Ay; + D)(A.x~ + Ayi + D2)3’2 =- 
Ko (p Ax0 + q Aye + D)(Ax? + Ay; + D2)3’z’ 

(4.2) 

From Eq. 4.2 both p and q can be expressed as nonlinear 
equations of D, i.e., 

PAi+qBi=Ciy (4.3) 

where Ai, Bi , and Ci are all functions of D and for i = I, 2 
they are given by 

Ai = Rio(X, y) Ax0 (AX! + Ay’ + D2)3’2 

-KioAxi (AX; + Ayi + D2)3’2 

Bi = Rio(Xy y) Aye (AX,’ + Ay’ + D2)3” 

-KioAyi (AX; + A$ + D2)3” (4.4) 

Ci = D(Kio(Axi + Ayi + D2)3’2 

-Rio(X, y)Axi (AX! + Ay? + D2)3’2} 

The ratio Rio(x, y) = Zi(x, y)lZo(x, y) which is measured 
experimentally for each position (x, y) and Kio is the cali- 
bration constant (KilKo). The terms Axi and Ayi are the 
differences between the source positions Si and the co- 
ordinates [x, y]. From Eq. 4.3 we get 

p = (C, B2 - CZBI)I(AI B2 - A2 BJ and 

q = (C, A, - C, AMA, B2 - A2 BI), (4.5) 

which can be substituted into Equation 4.1 with i = 0 to 
get a single nonlinear equation for distance D: 

Zo(x, y)(l + p2 + q2)“*(Ax:, + Ay; + D2)3’2 

- Ko(p Ax0 + q Aye + D) = 0. (4.6) 

Before the nonlinear equation for D is solved, a nor- 
malization by the average distance between the light 
sources and the camera is useful. Without loss of general- 
ity, we can consider ail distances normalized to this aver- 
age length S. For example, if we select three symmetri- 
cally placed light sources around a circle with radius S, 
the source coordinates become 

Sxo = 1; A’,, = 0; S,, = - l/2; S,,, = d/3/2; 

Sx2 = -112; Sv2 = -d/3/2. 

For this nonlinear equation it would be difficult if not 
impossible to analytically prove the uniqueness of the 
solution. By using normalized quantities we can search 
for solutions within a reasonable practical range, say 

0.1 < D < 10 and (PI + q2)“2 < 10. 

The search starts by assigning values to p, q, and D. 
Then, for a selected number of positions [x, y], the val- 
ues for IO, I, , and Z2 are calculated and the left hand side 
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FIG. 3. Symmetric placement of the four light sources in the 
source plane. 

should expect numerical difficulties at large values of D, 
p, and q. Otherwise, the simple behavior of the F(D) 
function indicates that it will be straightforward to solve 
numerically the F(D) = 0 equation. 

I’= 1 ; q=-1 ; D=4 

Another aspect of these curves which is not immedi- 
ately apparent is that only a limited range of parameter 
values can be tested since, depending on the values of p, 
q, and D, one or more surfaces may be in shadow. 

D 4.2. Textured Surfaces 
0.00 2.00 4.00 6.00 8.00 10.00 

1 
F(D) 

We have shown earlier that for textured surfaces four 
light sources are required. Our first choice for the posi- 
tion of the sources was in a symmetrical arrangement 
(see Fig. 3): 

s,o = 1; s,o = 0; s,, = 0; s,r = 1; SX2 = -1; 

s,,, = 0; sx3 = 0; sy3 = - 1. 

p= 2 ; q=-2 ; D=5 

D I I I I 
0.00 2.00 4.00 6.00 8.00 10.00 

FIG. 2. 

Unfortunately, we found that this symmetrical ar- 
rangement provides a singular point in the center (x = 0, 
y = 0). Since the center is where our solution should be 
the most robust, obviously, the symmetrical arrangement 
of the four light sources is unsatisfactory. Thus, we have 
returned to the original symmetrical arrangement for 
three light sources and moved the fourth light source 2 
normalized distances away from the origin. The positions 
of the sources are shown in Fig. 4 and are given by of Eq. 4.6 is plotted for a range of D values between 0 and 

10. Three such plots are shown in Fig. 2 with different 
values for p and q. At a point near to the origin (X = 0, 
y = 0) we have found a unique solution for all values of p 
and q which we tested. For larger p and q values and 
points outside the circle with radius 1 a second solution 
seems to emerge for very small values of D. However, 
we have also found that for these conditions the determi- 
nant connecting p and q to D (Eq. 4.3) is near singular. 
Since we can detect the near singularity of the determi- 
nant, we can discard this solution and end up with a 
unique solution for the practical ranges we have consid- 
ered. The third diagram in Fig. 2 demonstrates the in- 
creasing ambiguity of the solution as the derivative of the 
F(D) curve approaches zero near the solution. Hence, we 
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FIG. 4. Nonsymmetric placement of the four light sources in the 
source plane. 
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S,,, = 1; A’,, = 0; S,, = -l/2; S,, = d3/2; 

S,, = -112; S,, = -d3/2; S,, = -2; 

s,, = 0. 

Three representative curves for F(D) (Eq. 3.5) are shown 
in Fig. 5. For all of the values we have tested, when none 
of the four illuminations produced self-shadow, only one 
solution could be found. 

4.3. Three Light Sources on a Straight Line 

An interesting anomaly of these nonlinear equations 
was discovered when different light arrangements were 

tried. When only three light sources are used for the tex- 
tured (variable albedo) case and are placed in a straight 
line, the depth may be determined. In this case we 
have 

s,, = s,, + 6x; s,, = s,, + sy; s,* = s,o - 6x; 

s,2 = $2 - SY. 

Using Eq. 3.2 and taking differences we get 

(Zl(x, y)lZOt)(Ax: + Ay: + D2)3’2 

- (Zo(x, y)lZ,,,,) (Ax; + Ay; + D2)3’2 

= p(x, y)(-p 6x - q 6y)/(l + p2 + q2p 

= f-lb, 4, D) (4.7) 

and 

(12(x, y)lZ,,2>(Ax: + Ay: + Z12)3’2 

- (Zo(x, y)lZ& (AX; + Ay; + D2)3’2 

= p(x, y)(I, 6x + q fsy)/(l + p* + q2p 

= - Fl(P, 4, m. (4.8) 

Hence, the left hand sides of Eqs. 4.7 and 4.8 can be used 
to arrive at a single nonlinear equation for D, 

F(D) = (Zdx, y)lZ,,,)(Ax: + Ay: + D2)3’2 

- 2 (Z,,(x, y)lZ~>(Ax; + Ay: + D2)3’2 

+ V2(x, y)IZ02)(Ax; + Ay: + D2)3’2 = 0, (4.9) 

which can be solved numerically. We can again investi- 
gate the behavior of F(D) as a function of D for various 
values of a self-consistent solution for p, q, and D. Three 
sets are shown in Fig. 6 which indicate again unique solu- 
tions for moderate values of p and q but they do warn us 
about numerical difficulties for large p and q. 

It is odd that in general four images are required for a 
textured case but for these special lighting conditions 
three suffices. We find the anomaly when we try to deter- 
mine values forp and q. Once the depth (D) is known, the 
three equations are reduced to two linear equations in p 
and q. However, for this case the determinant of the 
system of two equations is singular. Thus, by eliminating 
one light source we must give up the independent deter- 
mination of values for p and q. This fact suggests an 
effective way for arranging four light sources. If three 
light sources are placed in a straight line then there are 
two ways to calculate the depth at each point-an addi- 
tional redundancy which could help in the estimation of 
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the experimental errors. We hope to explore this feature 
in the future. 

5. INITIAL CONDITIONS 

We have reduced now the determination of local posi- 
tion and orientation from a number of intensity maps to 
the solution of a single nonlinear equation for D for both 
constant and variable albedo. The use of an iterative non- 
linear equation requires initial conditions, i.e., an initial 
guess for D in order to start the iteration. The plots for 
F(D) in all cases we have investigated seem to be well 

behaved; however, a good initial guess for D speeds up 
convergence. It seems reasonable to assume that in a 
small neighborhood the surface may be approximated by 
a plane. Let us choose small increments in the x and the y 
directions as 6x and 6y around an arbitrary point on the 
surface [x, y, D], then using the equation of a plane we 
get 

X’ = x + 6x; y’ = y + 6~; D’ = D + p 6x + q 6~; 

p’ = p; 9’ = q; p’ = p(x’, y’), and I’ = 1(x’, y’), 

(5.1) 

where the prime (‘) indicates the neighborhood point. 
The ratios of the measured intensities for these two 
neighboring points and one light source produce a greatly 
simplified expression, 

{I’/Z}2’3 

(P’)*‘~(Ax* + Ay* + D*) 
= P*‘~{(Ax - 6~)~ + (Ay - 6y*) + (D + p&c + q6y)*}’ 

(5.2) 

where I and I’ are measured data, p and p’ are the values 
of albedo at (x, y, D) and at (x’, y’, D’), Ax = S, - x, 
Ay = S, - y, and the light source has Cartesian coordi- 
nates [S, , S, , 01. Equation 5.2 holds for any light source. 
For the i’th light source we can write 

Ri(X, Y)*‘~(Ax~ + Ay’ + D*)(p’l~}*‘~ - (AX; - 6X)* 

- (Ayi - 6y)* = (D + PSX + qSy)‘, 

(5.3) 

where, as before, the point source positions are at coordi- 
nates [Sxi, Syi, 0] and the ratio 

Ri(X, y) = {Ii/Z;} 

is determined from the measured data. The right hand 
side of Eq. 5.3 does not depend on the position of the 
light source; thus, subtracting the left hand sides of Equa- 
tion 5.3 for two different light sources, we get 

R;‘3(Ahx: + Ay: + D*) - @“(Ax; + Ay; + D*) 

= (p/~‘}*‘~{(Ax~ - 6~)~ + (Ay2 - Sy)* - (Ax0 - 6x)* 

- (AYO - a~)*) 

R:‘3(Ax: + Ay: + D*) - R;‘3(Ax; + Ay:, + D*) 

= @l~‘}~~{(Ax, - 6~)~ + (Ay, - Sy)* - (AXO - 6x)* 

- (AYO - 8~)~). (5.4) 



DEPTH AND SHAPE BY PHOTOMETRIC STEREO 423 

From Eq. 5.4 we get an expression for D2: 

{Rf3(Ax; + Ay: + II*) - Rf3(Ax; + Ay: + D*>} 

{(Ax, - 6x)* + (Ay2 - 6~)~ - (Axg - 6x)* - (Ay,, - Sy)*> 

= R:‘3(A~: + Ay; + II*) - R;‘3(A~; + Ay; + D*)} 

((Ax2 - 6~)~ + (by, - 8y)* - (Aq - 6x)* - (Aye - Sy)*}. 

(5.5) 

Equation 5.5 is left in terms of arbitrary distance parame- 
ters 6x and 6~. Incidentally, these equations show that 
only three light sources are needed for the determination 
of the three parameters p, 9, and D for a plane. This is a 
result that may be used for practical shape from shading 
determination in the future. 

Returning to our original aim of finding initial condi- 
tions for D, only three of the four light sources and two 
points are needed for an initial estimate. If we take a 
small three-by-three area and keep the center point con- 
stant, we may use eight different neighboring points and a 
number of combinations of light sources. For four light 
sources we have 3 x 8 or 24 ways of estimating the initial 
D value. For a general scene we also have the choice of 
the center point. Thus, we can search for a point where 
the 8 or 24 calculations produce similar results. This is an 
indication that the measured intensities are consistent 
with the assumed reflected light intensity function. The 
average of the 8 or 24 estimates then should produce an 
unbiased initial estimate for D and the iteration can start. 

6. RESULTS 

First we show results from synthetic data for our pro- 
posed algorithms. The synthetic data are derived from 
planar and spherical surfaces with and without pseudo 
random noise. In order to demonstrate that our method is 
a truly local one, we have chosen two discontinuous sur- 
faces; one has a jump in value, the other a discontinuity 
in its derivative. Figure 7 is for exact data (no noise) 
where the results show perfect reconstruction of all the 
surfaces. In addition to the perspective view of the recon- 
structed surfaces, the spread of surface points with re- 
spect to one of the normalized distances (x/S) is also 
shown. The points on the spherical surface he on a small 
band of circular arcs; the planes show up as straight lines. 
These should be compared to Fig. 8 where the same algo- 
rithm is used but 10% pseudo random noise is added to 
the “recorded” intensity values. 

As described in Section 5, the initial D value is esti- 
mated at the center of the 32 x 32 grid and we use the 
hybrid method [ 141 for solving our nonlinear equation for 
D. Once the actual D value is known at one point, instead 
of recalculating the initial estimate, it is used as an initial 

estimate for the eight neighbouring points. In this way, 
solutions start in the middle and continue out to the 
boundaries. Of course, at every point a self-consistent 
solution is found. It takes approximately one second to 
find the solution for one pixel using an IBM AT with an 
80386 processor running at 16 MHz. 

In addition to these synthetic surfaces which demon- 
strate that reconstruction from a shaded image is feasi- 
ble, we have conducted experiments with prepared sur- 
faces that approximated Lambertian reflectors well. The 
illuminations we used were close to ideal point sources 
and the experimental results were similar to the synthetic 
ones. These experiments are described elsewhere [ 131. A 
set of results of two sloped planes and uniform Lamber- 
tian surfaces is shown in Fig. 9. Experimentally we have 
demonstrated that the two other algorithms for textured 
surfaces, one using four light sources and the other using 
three sources in a straight line, also produce similar 
results. Overall, even for our experimental measure- 
ments, relative errors were less than 15%. 

7. CONCLUSIONS 

It has been demonstrated that illumination by nearby 
point light sources produces shaded video images from 
which the three-dimensional position and orientation of 
the reflecting surface can be reconstructed. In order to 
recover the three independent quantities, namely depth 
(D) and the two components of the surface normal vec- 
tor: n = [p, 4, - I] when the surface is uniform Lamber- 
tian, three images resulting from three different illumina- 
tion conditions are required. If the positions of the light 
sources are chosen symmetrically in a plane perpendicu- 
lar to the camera optical axis, uniqueness of the solutions 
within a practical range of depth and gradient values is 
ensured. The three-dimensional position and orientation 
of the surface are independently evaluated for each image 
point. If the surface is textured, in general, four images 
are required. But if only the depth value is required then 
three light sources in a straight line can be used. 

The robustness of the algorithms is demonstrated by 
both synthetic and experimental data. It is shown that 
since this is a local technique, discontinuous surfaces can 
be handled and the errors in the calculated depth values 
are proportional to the noise added to the recorded image 
intensity values. This is a new way of obtaining dense 
range data since no special equipment is necessary. How- 
ever, the accuracy of the method does rely on controlled 
sources which approximate the characteristics of an ideal 
point light source well, on a controlled calibration tech- 
nique, and on near-Lambertian surfaces. 

One immediate extension of this technique is to include 
perspective projection which, looking at the equations, 
should not be very difficult. Another way of extending 
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FIG. 7. Shapes generated by the algorithm from three synthetic images. 
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this technique to more practical situations is to allow light 
sources to have more general illumination characteris- 
tics. This will result in the numerical mapping (calibra- 
tion) of the source characteristics. Then, when the non- 
linear equation for the depth value is solved, the actual 
illumination received by the point on the surface may be 
taken into account. 

The extension of this local method to specular surfaces 
seems much more difficult than the mentioned two exten- 
sions. However, Kim has found [ 131 that a global method 
for the determination of position and orientation for 
smooth surfaces can be combined with the photometric 
stereo method, and specular highlights can be handled 
correctly. Thus, if local and global techniques are com- 
bined and described extensions for the better approxima- 
tion of practical situations are introduced, it seems rea- 
sonable to expect that the determination of dense range 
data from shaded video images will become practical in 
the future. 
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