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A theory is proposed to explain the transport behaviour of organic penetrants in glassy polymers in terms 
of two basic parameters: the diffusivity of the penetrant, D, and the viscous flow rate of the glassy 
polymer, 1/170. The rate controlling process for transport in these systems is considered to be diffusion 
of solvent down an activity gradient coupled with time-dependent mechanical deformation of the 
polymer glass in response to the swelling stress. The theory combines these two factors and is able to 
predict a wide range of observed transport phenomena from Fickian diffusion kinetics at one extreme to 
so-called Case II and Super-Case II behaviour at the other. The existence of a sharp front separating 
swollen and unpenetrated polymer is shown to result from the concentration dependence of the viscous 
flow rate. 
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I N T R O D U C T I O N  

An important milestone in the study of anomalous 
diffusion phenomena (i.e. those which do not obey Fick's 
equations) was the recognition by Alfrey, Gurnee and 
Lloyd x of a second limiting type of behaviour. They called 
it Case II diffusion. It is characterized by linear kinetics 
and a sharp diffusion front, and it occurs in polymer- 
penetrant systems in which the penetrant substantially 
swells the polymer. 

One of the earlier explanations of Case II behaviour is 
that due to Frisch et  al. 2 in which an additional 
'corrective' term, which is linear with time, is introduced 
into the Fickian-type relation for penetration depth. Their 
equation describes the time dependence of sorption for 
some systems. It does not, however, appear to be based on 
any clear physical principles a, although the authors do 
point to the significance of the stress gradient which exists 
across the moving boundary. The interrelation of Fickian 
and Case II types of diffusion is taken a stage further by 
Peterlin 4'5. He suggests that the sharp diffusion front, 
characteristic of the Case II process, is preceded by a 
region of penetrant at low concentration which forms a 
precursor to the front, and results from essentially Fickian 
controlled diffusion into the glassy material ahead of the 
front. In later papers 6"7 Peterlin develops his description 
further. He proposes that the sharp front is a consequence 
of a strong dependence of solubility parameter and 
diffusion coefficient on concentration; but he recognizes 
that the velocity of the front must be controlled by some 
independent material property, and suggests time 
dependent rupture and disentanglement of molecular 
chains as possible processes. Peterlin's formal 
mathematics are based on the assumption of a sharp 
penetrant front which moves at constant velocity. Given 
such a situation he is able to predict profiles both for 
concentration, which show a discontinuity (the sharp 
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front), and for chemical potential, which do not. However, 
this treatment, because it pays no attention to the control 
of front velocity cannot handle situations in which the 
front either decelerates with time 8 or accelerates 9. It is 
thus limited in scope in that it cannot predict what is 
probably the central aspect of Case II diffusion, that is the 
linear kinetics. 

Similarly, Astarita and Sarti TM demonstrate that if 
arbitrary assumptions are made concerning the front 
velocity, namely that it is zero until a critical 
concentration is reached and then increases according to 
some power of the additional concentration, then it is 
indeed possible to model Case II behaviour. 

The fact that some process of molecular relaxation is 
responsible for control of the front velocity has met with 
growing acceptance for some time. Recent work by 
Sarti 11 is based on the premise that the rate controlling 
step at the advancing penetrant front is the formation of 
crazes in response to the solvent osmotic stress. Such an 
approach is obviously only appropriate to those systems, 
such as polystyrene-alkane, in which the Case II 
penetration of a 'solvent' is accompanied by crazing. 
However it is significant in that values for craze 
propagation rates are independently available as a 
function of stress for polystyrene, and that the osmotic 
swelling stress can be calculated for the system. Hence it is 
possible, albeit in terms of another equally complicated 
phenomenon, to understand and predict the constant rate 
of Case II front propagation. 

The proposal that the rate controlling step at the 
penetrant front is the time dependent mechanical 
deformation of the polymer in response to the 
thermodynamic swelling (osmotic) stress has been made 
by Thomas and Windle 12, who noted the significance of 
the shape change imposed on the material at the front. 
Experimental evidence specifically supporting this 
deformation model has been presented more recently 13. 

The work reported below, which follows from these 
ideas, is developed in three stages. Initially the 
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relationship between pressure, concentration and activity 
for a liquid swelling a polymer is considered on a 
thermodynamic basis alone. Next, the kinetics of swelling 
are calculated for an element which is thin enough to 
render diffusional resistance (in Fickian terms) 
insignificant. The rate controlling step is seen as the 
mechanical viscous resistance of the polymer to increase 
in volume and change of shape. Calculation of the kinetics 
demands a knowledge of the viscous response of the 
polymer glass which is gleaned from creep data, and also 
an assumption as to how this response changes as the 
polymer is plasticized by the penetrant. In the final state 
the complete diffusion process for a bulk specimen is 
determined by calculating change in concentration profile 
due to creep at constant activity, and the change in 
activity profile at constant activity-concentration ratio, in 
alternate time increments. The results are presented both 
as total sorption-time curves and as families of 
concentration profiles for a range of times. 

T H E RELATIONSHIP  BETWEEN 
CONCENTRATION,  PRESSURE AND ACTIVITY 
IN A SWOLLEN POLYMER 

The thermodynamics introduced in this section are 
generally established and straightforward. One purpose 
of laying the equations out, as below, is to clarify, not only 
the definitions of particular terms, but also the 
approximations we have introduced prior to the 
application of the relationships in subsequent stages of the 
analysis. 

The chemical potential per mole of diluent sorbed into a 
swollen polymer, with reference to a standard state is 
given by: 14 

o R T f G V 1  Pl--Pl = ~ - i  [ ( 1 - v O 1 / s - ( 1 - V l ) ] +  

In v 1 + (1 - vl) + Z(1 - p1)2~ (1) 
3 

The first term in the square brackets accounts for the 
entropic constraint of the molecular network and the final 
three terms are derived from solution considerations 
when one component is macromolecular ~5. 

The symbols in equation (1) are as follows: 
G=molecular  network parameter (number of network 
elements in the polymer); P~ =molecular volume of 
diluent; Vi = volume of unswollen polymer; v~ = volume 
fraction of diluent in the swollen polymer; • = polymer-  
solvent interaction parameter. 

If the swelling of the polymer is opposed by an external 
hydrostatic pressure P which acts on the polymer but not 
on the surrounding liquid, then the sorption of one mole 
of diluent of volume ~'1N A will cause external work P P'I NA 
to be done (N A is Avogadro's number), so that equation (1) 
becomes: 

o - (GF'I 
# 1  - Pl = P V1N ~ + R T~ -~-i [(1 - vO i/3 - (1 - vii  + 

In v 1 + (1 - vl) + X(1 - vl) 2 } (2) 

The same equation is applicable if the opposition to 
swelling, additional to that accounted for in entropic 

terms, comes, not from external pressure but from kinetic 
immobility of the molecular network. It can thus be 
applied to the swelling of a glass. The pressure P can be 
considered as an additional pressure in the imbibed liquid 
which affects the chemical potential and points to the 
relevance of the osmotic analogy. 

In introducing activity, a~, we take its more traditional 
definition as: 

lq  - Pl°  = R T ln al (3) 

where /~o is the chemical potential at standard 
temperature and pressure. This means that the activity 
will depend on pressure as well as concentration. In some 
situations this is seen as a disadvantage, where activity is 
needed as a measure of departure from ideality alone, and 
the pressure sensitivity is removed by redefining the 
standard chemical potential p + o, as: 

#+° = p l °  + V/(P+ - P o )  

In the analysis which follows non-ideality is not of 
significant importance; whereas activity, as a measure of 
thermodynamic potential in conditions of varying 
concentration and pressure, is preferable to chemical 
potential which becomes negative without bound as 
concentration is reduced. (This is in fact the reason why G. 
N. Lewis introduced activity in the first place.) We thus 
use activity in its pressure dependent form as defined by 
equation (3). Combination of equations (2) and (3) gives 
the relationship between activity of the penetrant, its 
volume fraction and the additional pressure P: 

lnal  PV1NA GV1 
- R T  + ~ V 7  [ ( 1 - v l ) l / a - ( 1 - v l ) ] +  

In v 1 + (1 - vx) + g(1 - v02 (4) 

For equilibrium conditions where the swollen polymer is 
immersed in pure penetrant liquid of unit activity, then 
al = 1 and the right-hand side of equation (4) will be zero. 

The behaviour of this equation has been explored by 
substituting values for 1"1 and X for the system 
PMMA-methanol ,  i.e. F'I =6.72 x 10 - 2 9  m 3 and X= 1.0 
at 24°C where the equilibrium swelling gives v~ -0.2758. 
Hence for al = 1 and P = 0  it is possible to calculate 
Gr/1/V~. It is 0.233. 

Figure la  is a plot showing the relationship between 
pressure and concentration for a range of activities. 

At this point we introduce the volume ratio ~ which is 
the ratio of volume fraction of penetrant, v~, to the 
equilibrium volume fraction under conditions of zero 
extra pressure and unit activity. It is useful, because on 
imposing the approximation that the chemical behaviour 
is 'ideal' we can write: 

Hence from equation (4) 

In ~ = -v7-, [(1 - vl) 1/3 - (1 - v 0] + In v 1 + (1 - v 1) + 
vl 

Z ( 1 - v 0  2 
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Figure la Relationship between pressure, P, and volume fraction 
of  solvent in the swollen po lymer,  u 1 for  a range of  activities, as 
determined f rom equat ion (4) 
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Comparison of the pressure--volume f ract ion (P - u 1 Figure lb 
and P' -- Pl) relationships at un i t  activity as calculated from 
equations (4) and (5), where equation (5) is a simplified form of 
equat ion (4), and is applicable to  ideal situations. The ratio PIP' 
lies between 0.8 and 0.5, and represents the uncertainty associated 
wi th  the use of the simplified equation as used in the development 
below 

and thus: 

RT (a l )  
P = ~ l n l ~  ~ (5) 

which is one simple form of the osmotic pressure equation, 
and is identically true for ideal solutions. 

The effect of the assumption of chemical ideality on the 
pressure~oncentration-activity relationship for the 
PMMA-methanol  system is shown in Figure lb for an 
activity of unity. P is the pressure calculated according to 
equation (4) and P' that using the approximate equation 
(5). 

RESPONSE OF GLASSY NETWORKS TO 
SWELLING PRESSURE 

The fact that a glassy network offers resistance to 
expansion at finite strain rates which is over and above its 
entropic resistance, means that additional pressure 
develops in the swelling liquid. The swelling kinetics will 
depend on the viscous response of the network to this 
internal pressure. It is necessary to know this, but as 
hydrostatic creep tests on glassy polymers are difficult, 
particularly in tension, direct data are not available. 
Substantial volume expansion of a glass will involve both 
the pulling out of loops of molecular segments and the 
reorientation of these segments, in fact the same 
mechanisms as those involved in simple elongation. We 
therefore make the assumption that the viscosity 
component controlling the retarded elasticity of the 
network is the same for volume expansion as it is for 
elongation. Additionally the fact that the volumetric 
expansion in Case II diffusion is, per se, associated with a 
change in shape, would appear further to validate the 
assumption. 

THE SWELLING KINETICS OF A VERY THIN 
ELEMEN T OF THE GLASSY POLYMER 

In considering a very thin element of polymer we 
dismiss any diffusionai resistance from the kinetic 
treatment. We assume therefore that the instant the thin 
element is immersed in the penetrant liquid the penetrant 
achieves unit activity throughout the element. 
Furthermore, in order to relate the process as closely as 
possible to Case II transport the element is envisaged as 
being bonded to a rigid inert substrate so that it cannot 
increase in volume without at the same time changing in 
shape (Figure 2). 

Before the swelling response of the element can be 
calculated it is helpful to make two further assumptions: 

(i) The increase in volume on swelling is taken as being 
proportional to the volume of penetrant absorbed. This 
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~Substrot¢ 
Figure 2 Schematic diagram i l lustrating the concept o f  a very th in  
element of polymer which is prevented from increasing in area on 
swelling by its attachment to a rigid inert substrate 
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assumption has been used by other authors 3'16 and 
shown to be reasonable for the PMMA-methanol  
system s, 17. 

(ji) The viscosity of the polymer decreases exponentially 
with increasing penetrant concentration according to: 

= qo exp[ - M~] (6) 

where M is a constant, r/o the viscosity of the unswollen 
polymer. We use the simplified equation for swelling 
pressure (equation (5)) which for the condition of unit 
activity (reasonable when considering a very thin sheet 
element), becomes: 

R T  f l ' l  
P = ~ l n ~  (7) 

The response of the element to the pressure is expressed as 
a strain rate, and in view of the uncertainties discussed in 
the previous section as to whether the resistance either to 
volumetric expansion or to shape change is the rate 
controlling step, we choose the simple viscosity 
relationship that: 

de P 
(8) 

d t - r /  

Because of the unidirectional nature of Case II swelling 
the deviatoric strain is directly related to the increase in 
volume, and if we define k as e/~ then: 

d~ P 
(9) 

dt -~/k 

Substitution of equation (7) for P and equation (6) for r/ 
into equation (9) gives: 

d~' - R T  
= . ,  ln(~)exp[M~] (10) 

N Ak~/ vl o 

Numerical integration of this equation will give the 
fractional swelling of the very thin sheet element as a 
function of time. However, before this exercise is carried 
out it is of course necessary to give values to the various 
parameters. 

ESTIMATION OF PARAMETERS OF EQUAT IO N  
(10) FOR THE SYSTEM P M M A - M E T H A N O L  

Working in terms of the system PMMA-methanol  at 
24°C, the value of the product k'INA can be readily found. 
It is taken as 40.5 x 10 -6 m 3. From experimental data 12, 
k, the ratio e/~, is measured as 0.23. Values for the viscosity 
of PMMA glass at 24°C, r/o, and the exponential factor M 
are not as readily accessible. The value of ~/o, as 
determined from creep tests, depends on applied stress as 
well as temperature. For example creep data at 20°C is 
apparently yield viscosities of 1017, 3 x 1015 and 3 x 1014 
N s m - 2 at stresses of 10, 20 and 30 MN m -  2 respectively. 
In an attempt to obtain further values of viscosity for 
comparison we have used various 20°C data 19 and 
substituted the strains at different times into the equation 
for creep strain derived from a standard linear solid. 
Taking the elastic .moduli to be 1 GN m -  2 for the glass 
component and 10 MN m -2 for the rubber, the viscosity 

of the dashpot element of the model was 3 x 1014 N s m -2 
for a stress of 15 M N m  -2, and 8x1013 N s m  at 45 
MN m -  2. On an order of magnitude scale the agreement 
is reasonable with the data of Turner as and we have 
chosen a value of r/o=2 x 1014 N s m  -2 to represent the 
viscosity of PMMA glass under conditions of Case II 
diffusion at 24°C. 

The value of M is the coefficient of the exponent in 
equation (6) which describes the effect of concentration of 
the sorbed species on viscosity. It is not easy to determine 
independently of a diffusion experiment. We have 
attempted to estimate a reasonable value on the basis of 
observations of the shape relaxation behaviour of swollen 
specimens at the point at which the sharp (Case II) fronts 
meet in the centre of the specimen. The effect has been fully 
documented in a previous paper 17, but the information 
relevant to this issue is that at 24°C the initial shape 
relaxation rate of equilibrium swollen PMMA at a 
distortion strain of around 10~o is about 4~o/hour or 
1.2 x 10- 5 s-  1. Again on the basis of a rubber modulus of 
10 M N m  -2 the internal distortion stress acting on the 
polymer in the initial stages of shape recovery is of the 
order of 1 MN m -  2. Creep data on unswollen polymer at 
such low stresses do not seem to be available; however, the 
data of ref 19 cover a wide range of stresses from 3.5 
MN m - 2  upwards, and extrapolation indicates an initial 
strain rate of 3 x 10-11 s-  i for a stress of 1 MN m -  2. Thus 
for r~ = 1.0 (i.e. equilibrium swelling at 24°C), and using 
equation (6) we have: 

'~ . . . . .  .~ 3x10-11  r/ 

es.o.¢.  - -  1.2 x 10- 5 =~oo = e x p r -  M] 

Thus M ~ 13. 
These choices for the fixable parameters lead to a value 

of 1.35 x 10- 6 m a s - 1 for the pre-ln factor in equation (10), 
and although they are physically the most reasonable, the 
sensitivity of the model predictions to changes in ~/o, M 
and the diffusivity D is examined below. 

CALCULATED SWELLING KINETICS FOR A 
TH IN  E L E M E N T  OF PMMA IN E T H A N O L  

Figure 3 shows the results of numerical integration of 
equation (10) for a number of values of the exponential 
factor, M, which span the suggested value of 13. The 
autocatalytic nature of the process is apparent, the 
element taking up solvent only slowly at first but this rate 
rapidly accelerating towards equilibrium sorption. 

I 0  

 2o/ls )o / 
+10 

O 5 IO 
// 

Time(hours) 

Figure 3 Curves calculated using equation (10), showing the sorp- 
tion kinetics for the penetration of methanol into a thin constrained 
element of PMMA at 24°C. Curves are drawn for different values 
of M,  which is most likely to lie between 10 and 15 
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Figure 4 The variation in pressure in the PMMA element with 
t ime for  M values of 10 and 15. The pressure remains high until 
rapid swelling commences at the end of the induction period 

Figure 4 is a pressure-time relationship for two values of 
M, obtained by combining equation (7) with the data from 
Figure 3. The absolute values are surprisingly high, and 
approach and indeed exceed the accepted yield stress of 
PMMA at low solvent concentrations. 

THE APPROACH TO CALCULATING CASE II 
KINETICS 

The rate of swelling for a surface element in which the 
penetrant activity is constant and unity is given by 
equation (10) and numerical integration generates the 
concentration-time curves of Figure 3. In the case of a 
bulk specimen however, thin elements parallel to, but 
remote from, the surface will be swelling under conditions 
of reduced penetrant activity. The activity will gradually 
increase with time as determined by the diffusional 
resistance of the material separating the element from the 
surface. We are therefore faced with three operations: the 
modification of equation (10) to handle an element remote 
from the surface by including an activity term which 
increases with time, the calculation of the activity in the 
sample as a function of time and position, and the 
combination of these varying parameters so as to give the 
concentration of penetrant as a function of both time and 
position. 

The first operation is simple, equation (10) becomes for 
element i experiencing penetrant activity a: 

(dtj~d7~ ._ - R T  1 (T~'l - ~ n~a~iexp[-  M~] (11) 

(a is equivalent to a~ of equations (3)-(5). The subscript 1 
has been dropped to make way for i indicating the element 
under consideration.) The rate of change of the activity in 
an element i is obtained from the restatement of Fick's first 
equation in terms of chemical potential as suggested by 
Gibbs 2° and subsequently used by Park21; it is: 

J = - D  *~.da (12) 
a dx 

where J is the flux and D* the thermodynamic diffusion 
coefficient. 

Hence the change of concentration in a thin element of 
unit thickness in time interval At is given by the difference 
between the fluxes in and out across the planar 
boundaries; thus 

(13) 

and 

A[Ji= (A~Ji [At j ,  

As the integration of equation (13) will be carried out over 
finite elements ofx and t, it is best expressed in terms of the 
values of a, ~ and D* at three successive elements i -  1, i, 
i+  1, as follows: 

{~ttti=~Aa'~[~D*i+l+D*!'~'~vi+vi+l} 2 J (ai + ai+, 

2 J (ai+a,_l} "(ai-a` O] (14) 

The combination of equations (11) and (14) is based on 
the fact that for each time increment the change 

is calculated by equation (11) at constant activity, and 
thus directly related to 

At Ji 

and the change 

At Ji 

i~', calculated at constant if~a) ratios. 
The constancy of if~a) during a given 'diffusion' 

movement means that the first item of the RHS of 
equation (14) is in effect (a/9)i. The calculation thus 
proceeds by first determining the change in activity profile 
in a small time interval for a fixed profile of ~/a, and then, 
using the modified activity profile, determining the change 
in the ~,/a profile. The new ~,/a profile is then used to 
calculate another activity profile, and so on. The logic of 
the method can perhaps be better seen by looking at it in a 
slightly different way. For a given element and time 
increment, the creep process controls A~ according to 
equation (11). The activity is then adjusted so that A~ 
which will result from diffusion and is given by equation 
(13), converges to the value 'permitted' by equation (l 1). 
The next creep controlled increment, Ag, is then 
determined using the updated values of ~ and a. The 
concentration profiles are not significantly affected if for 
each cycle, the Aa/A~ term of equation is set using the 
increment values of the preceding cycle rather than the 
prevailing a/f value. On average, the complete transport 
sequence is completed in about 20 000 time steps, where 
the full thickness of the specimen is divided into 50 
elements. Trial runs using shorter time intervals produced 
identical results. The procedure was initialized by setting 
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Figure 5a Diagram showing the concentration profiles calculated 
at 10 h intervals for  a 1 mm thick specimen showing typical Case II 
behaviour. The parameters used for  this calculation are appropriate 
to the system PMMA--methanol at 24°C. The diffusivity, D, is 
10 -14  m 2 s -1 .  The viscous f low (creep) rate of the unpenetrated 
polymer (l/r/0) is 5 x 10 -15 s -1  (MN m--2) -1  and the factor M is 15 
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Figure 5b Total sorption plot  corresponding to the profiles 
of Figure 5a 

(a),=l = 1, (a),~l = 10 -5 and (~),=10 -5. The choice of 
10 -5 instead of zero being made to facilitate the 
computing. 

CHOICE OF A VALUE FOR THE D I F F U S I O N  
COEFFICIENT,  D 

The literature on diffusion in glassy polymer-penetrant 
systems quotes a considerable range of values for D (for 
example, ref 22) which in any case are dependent on the 
thermal history of the glass. For the purposes of 
calculating the transport kinetics we have selected a value 
of 10-14 for D at 24°C, and have assumed that it increases 
exponentially with methanol concentration to reach a 
value of 5x  10 -12 for equilibrium sorption where the 
polymer has become, all but, a rubber. These values are 
chosen as being both typical and reasonable; however, 
considerable uncertainty must remain. In fact, the level of 
uncertainty which we are accepting means that it is not 
worth while to correct for increasing thickness of the 
specimen as the swelling proceeds, which would amount 
to a modification in D of around 25~ only. 

CALCULATION OF TRANSPORT KINETICS AT 
24°C 

By combination of equations (11) and (14) as already 
described, activity and concentration have been 
calculated as a function of both time and position for a 
sheet sample. Successive time cycles generated developing 
concentration profiles, from which additional parameters 
such as total sorption as a function of time have been 
derived. The constants used were those already discussed 
with the exception of the exponential factor M which has 
been 'rounded up' from 13 to 15. 

Figure 5a shows the calculated developing 
concentration fronts for a 1 mm thick PMMA specimen at 
24°C. The profiles are drawn at time intervals of 10 h. The 
first significant fact is that the advancing fronts are sharp 
to within the resolution of the calculation, that is (20 pm). 
They move at a constant rate and there is a small 
concentration gradient behind them. There is also 
evidence for a small 'Fickian' precursor ahead of the 
fronts. The apparent fluctuation in the concentration 
gradients behind the fronts does not represent any 
instability in the calculation, but is due to the finite 
distance increments used. Using smaller distance 
increments reduces the scatter at the expense of increased 
computer time. 

Figure 5b is a plot of the total sorption against time. The 
uniform penetration of the step profiles apparent in 
Figure 5a produces the linear increase in sorption (usually 
measured as weight increases) with time. The penetration 
is completed after 78 h.. 

Considering the difficulty in the exact assessment of 
parameters such as D, ~/o and M, the fact that calculated 
kinetics are those typical of Case II is encouraging. 
However, the level of agreement of total sorption time 
with that measured at 24°C (91 h, Figure 6b) for a 1.18 mm 
thick sample must be fortuitous. The experimental profile 
at 60 hours determined using the iodine tracer method s 
drawn in Figure 6a does not show a clear diffusion 
gradient behind the fronts (although this becomes 
much more apparent in 3 mm thick specimensS). It also 
gives no indication of precursors ahead of the fronts but 
this may be because the tracer method is unreliable at low 
penetrant concentrations. The realism of the calculated 
kinetics appears to suggest that the theory is meaningful; 
furthermore, closer examination of the calculated 
sorption curve suggests that a small induction period of 
about five hours is predicted. Such an induction period 
has been noted before on several occasions TM23 -25 (and is 
indeed just apparent in the experimental data of Figure 
6b). It has hitherto, if anything, been explained in terms of 
a non-typical surface effect. The small induction period in 
the calculated sorption curve seems to imply that such a 
period is a fundamental characteristic of Case II sorption. 

PROFILES FOR ACTIVITY AND PRESSURE 

As a direct consequence of the method of calculation of 
the concentration profiles developed above, the activity 
profiles are also available, and the pressure profile may be 
readily worked out using equation (5). Figure 7 is a plot of 
activity, concentration and pressure profiles in the region 
of the front, corresponding to Figure 5a at a time of 40 h. 
The activity profile does not show a sharp step, although 
because of the influence of the concentration profile 
through D(f), it is not typically 'Fickian'. The region 
immediately ahead of the sharp concentration front, in 

534 POLYMER, 1982, Vol 23, Apri l  



A theory of Case II diffusion." N. L. Thomas and A. H. Windle 

I> 

a 

O 

Thickness of P M M A  sheet ( I  18 mm before swelling) 

Figure 6a Experimental profile of methanol in a 1 mm thick 
P M M A  sheet after 60 h at 24°C 
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Figure 6b Experimental sorption plot for methanol in 1 mm thick 
P M M A  at 24°C 

which the activity is much greater than the concentration, 
is the region in which the small amount of sorbed liquid is 
under comparatively high pressure. The values of pressure 
are those which are being resisted by the molecular 
network, and which relax as the polymer glass deforms. At 
the front itself, rapid transport of the sorbed species down 
the concentration step is opposed by an equally steep 
pressure gradient in the opposite direction. Just as the 
iodine doping does not reveal the concentration 
precursor, there has, as yet, been no reported observation 
of phenomena which can be linked directly to this 
pressure profile. The constraint effect of the glass, 
however, might be expected to lead to some measure of 
deviatoric elastic strain which should be observable as 
birefringence. 

PROFILES FOR CONCENTRATION 
I N D E P E N D E N T  DIFFUSIVITY 

One argument against deformation control as the basic 
process of Case II diffusion, is that step-like profiles can 
result from a discontinuity in the diffusivity- 
concentration relationship such as might occur at T O . 
Sharp profiles can indeed be generated where there is a D-  
C discontinuity26; however, not only is there doubt 

whether such a discontinuity occurs at To, for both D and 
C increase very rapidly in this temperature range, but it 
has been shown recently 13, that Case II diffusion can 
occur at low temperatures where the swollen phase is still 
a glass. 

Notwithstanding this debate, it is important to check 
that the sharp fronts predicted in our calculations are not 
in any way dependent on the concentration dependence of 
D. Accordingly, we calculated profiles where the 
diffusivity was held constant at a value of roughly midway 
between the unswollen and fully swollen limits. Figure 8 is 
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Figure 7 Calculated fractional concentration (~), activity (a) and 
pressure (P) profiles in the region of the penetrant front after 40 h, 
for methanol in PMMA at 24°C. The horizontal scale is expanded 
in comparison with the previous profile plots and the left hand 
limit of the diagram does not correspond to the specimen surface 

IO 

I> 

1 h 

i 
O O I O~2 OL3 

Dis tance  (mm) 

Figure 8 Penetrant concentration profiles at 15 h and 25 h cal- 
culated under the same conditions as those in Figure 5a except 
that the diffusivity is held independent of penetrant concentration 
at a value of O = 8 x 10 - 1 3  m 2 s - !  
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a plot of two profiles for a constant D of 8 x 10-1 s m z s-  1. 
The sharp front is evident, although not surprisingly there 
is a steep concentration gradient behind it and a 
pronounced precursor in front. These latter effects will 
also cause the front to decelerate with time and thus 
preclude linear sorption kinetics. It appears therefore that 
although a straightforward model of deformation control 
can account for the existence of sharp penetrant fronts, a 
diffusivity which increases markedly with concentration, 
albeit without discontinuity, is a necessary additional 
criterion for pure Case II behaviour in which sorption 
kinetics are linear. 

THE EFFECT OF C H A N G I N G  THE 
EXPONENTIAL FACTOR M 

Figure 9 shows the effect on the calculated profiles of 
changing M, the factor which controls the 'steepness' of 
the exponential dependence of viscosity on methanol 
content of the PMMA. The arguments detailed above 
indicate that M is unlikely to be less than 10 or more than 
20. As M is decreased the profiles become more closely 
spaced, indicating that the sorption rate is dropping off; 
also the concentration in the precursor increases. When 
M =  5 the front is no longer sharp. It is in fact hardly 
recognizable and nothing like what is observed. Figure 10 
is a corresponding series of total sorption plots. The effect 
of M on rate is again apparent, but also the induction time 
increases with decreasing M. Especially for M = 5 but also 
in general, the induction period appears as an interval in 
which the sorption rate is slowly increasing rather than 
remaining at zero. It is also closely correlated with the 
time taken for the first element to swell to equilibrium as 
calculated for Figure 3 and this time is marked on the 
plots of Figure 10 as t 1. 

EFFECT OF DIF FERENT VALUES FOR 
DIFFUSIVITY, D, AND VISCOSITY, t/o 

(As diffusivity is a measure of rate and viscosity a 
measure of reciprocal rate, discussion of the effects of these 
two parameters is made clearer if viscosity is referred to as 
its reciprocal which we call viscous flow rate (1/t/o).) 

The initial choice of what appeared sensible values for 
D and l/t~ o, has given a calculated set of transport kinetics 
very much in line with what is observed experimentally. It 
is known that the activation energy of diffusion is around 
10 kcal mol - 1, whereas that for the propagation of Case II 
fronts in the system PMMA-methanol  is more like 25 
kcal mol 1.s Hence a change in temperature should be 
expected to affect the diffusion profiles in a more profound 
way than a simple time scaling. Figures l la  and l lb  show 
a selection of calculated profiles for different values of D 
and l/t/o. The central plots use the same values as in 
Figures 5a and 5b, whereas the plots in the four corners 
represent the effect of positive or negative changes of 
around 1/3 of an order of magnitude in the values of D 
and 1/t/o. The positioning of the plots indicates the values 
of these parameters on a log co-ordinate system. 

Taking the bottom-left to top-right diagonal first where 
D and 1/t/o are changed by equivalent amounts in the 
same sense, it is apparent that the effect is simply one of 
scaling in time. The corresponding total sorption plots of 
Figure l lb again demonstrate simple time scaling. 

Look now at top-left to bottom-right diagonals where a 
positive change in D is accompanied by a similar but 
negative change in 1/t/o. It is apparent that the time scale 

of the process remains roughly constant. There is however 
a more distinct induction time for the lower right example 
in Figure llb, which is difficult to detect at all in the top- 
left plot. The profiles (back to Figure lla) of the top-left 
plot, where the diffusion rate is lower but the viscous flow 
rate higher, show some signs of slowing down as they 
approach each other, and there is a well developed 
diffusional gradient behind the fronts. Both these 
contribute to the corresponding curved sorption plot in 
Figure 1 lb. 

The effect of larger changes in D and l/t~ o in the 
opposite sense (i.e. along the top-left to bottom-right 
diagonal of Figure 11) are shown in Figures 12a and 12b, 
where the range covers two decades of rate. It is 
interesting to compare the profiles in the top figure 
(Figure 12a) with those obtained experimentally for 
diffusion of methanol in PMMA at 5ZC which are 
reproduced in Figure 1327 . 

In the bottom diagrams where the viscous flow rate is 
very much less than the diffusivity, not only is the 
induction time very apparent but also there is an 
indication of acceleration of the fronts just before they 
meet. This is the direct result of the overlapping 
precursors and has been observed experimentally in 
polystyrene-alkane systems 9. 

The calculated results in Figures 11 and 12 lead to two 
interim conclusions. Firstly that the induction time is real 
and is affected by l/t/o but not by D. Secondly that both 
1/t/o and D influence the rate of front traverse even where 
the diffusion gradient behind the front is too small.to be 
apparent. 

THE IN D U CTIO N  TIME 

Induction times have been measured experimentally for 
Case II transport in the range 0°-42°C 2v by extrapolation 
of the linear (or near linear) portion of the sorption curve 
to the time axis, and these values are listed in Table 1 and 
displayed on an Arrhenius plot in Figure 14. 

The apparent activation energy is 28.3 kcal mol 1. It 
compares well with the value of 27.0 kcal mol - 1 obtained 
from measurements of the influence of temperature on 
front velocity at constant penetrant concentration 13 and 
is reasonable for that for viscous creep in a glassy polymer. 
It follows therefore that measurement of an induction 
time can give a straightforward indication of the viscosity, 
or creep behaviour, of a glassy polymer. However it 
should be emphasized that any such calculation depends 
on the exact value chosen for M, the measured value of k, 
the temperature and the molar volume of penetrant. The 
calculated induction time for 24°C is 4.5 h (measured from 
Figure 5b) and this point is also plotted on Figure 14. 

TH E D E P E N D E N C E  OF TRANSPORT 
PARAMETERS ON DIFFUSIVITY AND 
VISCOSITY AND THEIR RELATIONSHIP  TO 
TEMPERATURE 

In the subsection before last we explored the effect of 
relatively small changes in the diffusivity D and viscous 
flow rate 1/t/o on the penetrant profiles and total sorption 
plots. Instead of reproducing a large number of plots to 
cover a greater range of these parameters we have plotted 
in Figure 15 two characteristic parameters as contours on 
log l/t~ o log D co-ordinates. They are the induction time, 
trod, and the total time taken for the sharp front to traverse 
from the surface to the central plane ofa  1 mm thick sheet 
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the viscous flow rate 1/r~0 of about one third of an order of magnitude 
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Calculated profile plots showing the effect of changing the diffusivity, and the viscous flow rate, 1#10. The profiles are at 10 h 
correspond to positive or negative changes in the diffusivity, D, and 

specimen, ttr. For pure Case II behaviour /tr will be less 
than the total time to equilibrium absorption by an 
amount equal to trod. Under conditions where D is smaller 
and 1/% larger and significant concentration gradients 
have built up behind the fronts, then (t,r + rind) is less than 
the total absorption time which is only reached when the 
concentration gradients behind the fronts (which have 
reached the central plane) have 'filled in'. 

The horizontal (broken) contours on Figure 15 
represent the calculated induction time, q,d, in hours. 
They demonstrate that this parameter (for the element 
model) depends only on 1/% and not on D. The calculated 
contours for ttr are particularly revealing, for it appears 
that in the centre of the plot and towards the lower right, 
the front traverse time depends equally on viscous flow 
rate (1/%) and diffusivity (D). This region of the viscous 
flow rate-diffusivity domain corresponds to pure Case II 
transport behaviour with linear kinetics. There is however 
a boundary towards the top-left marking the stage at 
which the contours turn towards the vertical. Once 

established as vertical we are in a regime where the rates 
depend only on D, the rate 1/% apparently being too large 
to exert any rate controlling influence on the transport 
process. In this region the transport behaviour becomes 
more or less Fickian with t 1/2 kinetics as the 
concentration gradients behind the fronts assume a 
dominant role. 

We have measured experimentally values of q,d and ttr 
over the temperature range 0°-42°C for 
PMMA-methanol .  These data together with the 
experimental values of k are listed in Table 1. Where the 
sheets were slightly thicker than 1 mm the values of ttr 
have been corrected accordingly. 

Before the experimental values of t~n a and ttr a r e  plotted, 
however, the fact that Figure 15 is based on calculations in 
which k is 0.23 and T = 297K should strictly be taken into 
account. In effect the position of the experimental points 
on the vertical scale has been modified by the factor 
(k/TX297/0.23) before plotting, but as this factor varies 
only from 0.9 to 1.2 it has not been incorporated, the 
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uncertainties in the experimental values and questions as 
to the variations of M with temperature being dominant. 
The experimental data, as values of ti, d and ttr at different 
temperatures, are plottable on Figure 15 with reference to 
the two sets of intersecting contours. However, for the 
sake of clarity they are instead plotted in Figure 16 on a 
simplified version of Figure 15 from which the contours 
have been omitted. The slope of the experimental line 
indicates that the viscosity changes about twice as rapidly 
with temperature as does the diffusivity, which taking the 
value of 28.3 kcal tool-  1 for the activation energy for the 
viscosity controlled process would indicate a value of 
around 14 kcal tool -1 for the activation energy for 
diffusivity. It has thus proved possible, on the basis of this 
model, to relate two readily measureable experimental 
quantities, t~. d and ttr, which characterize the Case II 

process, to the fundamental parameters of diffusivity of 
the penetrant (D) and the viscous flow rate of the glass 
(1/r/o). 

CONCLUSIONS 

A theory is introduced that accounts for the phenomenon 
of Case II diffusion which is observed when glassy 
polymers are swollen in organic penetrants. The theory 
explains the process in terms of two basic parameters: the 
diffusion coefficient D and the flow viscosity of the glassy 
polymer, q0. The mathematical development is general in 
that it can describe the complete range of anomalous 
behaviour between the Fickian and Case II extremes. 

Case II and related diffusion processes have 
characteristic features which have been well documented 
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Figure 13 Experimental concentration profiles measured for the 
system PMMA--methanol at 52°C. The times are marked on the 
profiles 

Table 1 Experimental values of induction time, front traverse time 
and k for PMMA--methanol 1 mm sheets at the temperatures 
indicated 

Temperature rind ttr 
(°C) (h) (h) k 

0 192 3600 0.20 
10 38 654 0.20 
15 16 333 0.20 
24 2.5 70 0.23 
42 0.08 60 0.29 

(i) Sharp concentration fronts to within the 
resolution of the finite element calculation. 

(ii) Small concentration gradient behind the fronts. 
(iii) Constant front penetration velocity. 
(iv) Linear sorption kinetics as a consequence of (ii) 

and (iii). 
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Figure 14 Graph of In (1/tin d) vs. l /T,  where the induction times 
have been determined experimentally. Also plotted is the calculated 
induction time for the specimen at 24°C 

in the literature over a number of years. Of these the 
existence of a sharp penetrant front and its linear 
propagation with time are central to the Case II process 
itself, as are the associated linear sorption kinetics. In 
addition there have been observations of an induction 
period at the start of the process, and an acceleration in 
front traverse rate at the end, the latter phenomenon 
having previously been termed Super Case 1I 9 . It has also 
been established that an increase in viscous flow rate 
which is not matched by a corresponding increase in 
diffusivity, results in a more prominent concentration 
gradient behind the fronts, which in the extreme leads to 
the re-establishment of Fickian kinetics. Such behaviour is 
often associated with absorption at higher temperatures. 
The theory predicts this complete spectrum of behaviour 
in terms of simple physical principles. 

The specific conclusions of the work can be summarized 
as follows: 

(1) The theory predicts that a surface element of 
polymer glass which is thin enough so that diffusional 
resistance can be neglected, will initially imbibe penetrant 
at a very slow rate, but that this rate will increase sharply 
in an autocatalytic manner at longer times. 

(2) Calculations, over time increments, which 
alternately determine changes to the concentration profile 
at constant activity and changes to the activity profile at 
constant concentration/activity ratio, effectively model 
the diffusion process. When realistic values for the 
diffusivity of methanol in PMMA, the creep rate of 
PMMA and its variation with penetrant concentration 
are used, Case II type behaviour is predicted. 

(3) The calculated diffusion process for PMMA-  
methanol at room temperature has the following features: 
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Figure 15 Two sets of contours representing the calculated values 
of the parameters tin d (broken lines) and ttr (solid lines) plotted 
with log diffusivity, D, and log viscous flow-rate (l/r/0) as co- 
ordinates 
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Figure 16 A schematic representation of Figure 15 showing three 
regions: Case II diffusing with linear kinetics where the ttr contours 
are at 45°; Fickian (t 1/2) where the ttr contours are vertical; and a 
transition region of anomalous diffusion. Superimposed on this 
diagram are experimental data pairs of tin d and ttr plotted by 
reference to the appropriate contours (Figure 15). The experimen- 
tal plots are annotated with the temperature at which they are 
measured, and their co-ordinates give the values of D and 1/rio 
which, on the basis of this theory, would account for the observed 
behaviour 

(v) A small precursor ahead of the front. 
(vi) An induction period before front penetration 

begins, which is an inherent feature of the process. 
With the exception of the small precursor all of these 
predicted features are acknowledged as experimental 
features of the Case II process. 

(4) The calculated Case II process has characteristic 
time constants, such as the induction time and time for 
fronts to meet in a 1 mm specimen, which are in 
remarkable agreement with experimental values. It is 
concluded that the closeness of quantitative agreement, to 
within better than 20~o, must be to some extent fortuitous 
because of the uncertainties in the estimation of 
diffusivity, viscous flow (creep) rate and the way in which 
these parameters vary with penetrant concentration. 

(5) Reduction of the diffusivity parameter in relation to 
the viscous flow rate leads to an increase in the diffusion 
gradient behind the fronts. This destroys the linear quality 
of the kinetics which tend towards square root 
dependence on time. This behaviour corresponds to that 
observed in the system PMMA-methanol  at 
temperatures above 40°C, this correspondence being a 
consequence of the fact that the activation energy for 
viscous flow is greater than that for diffusion. 

(6) The induction time depends linearly on the 
reciprocal of the viscous flow rate (i.e. it is proportional to 
the viscosity, r/o). It is independent of diffusivity (D). 

(7) The constant rate at which the front traverses the 
specimen in the Case II process depends equally and 
linearly on both the log of the viscous flow rate (1/r/o) and 
the log of the diffusivity (D). 

(8) Comparison between the predicted and measured 
values of induction time, tind, and front traverse time, ttr , 
indicates that for PMMA-methanol,  the activation 
energy for diffusion is 14 kcal mol-~ and the activation 
energy for viscous flow is twice this value at 28.3 kcal 
mol-  1. 

(9) In situations where the viscous flow rate is very 
much less than the diffusivity, the induction period is a 
marked feature of the calculated sorption curve. 
Additionally, under these conditions there is a distinct 
acceleration in sorption rate just before the fronts meet. 
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