
Review 

Mathematical modelling of fungal growth, and the ability to 

predict whether a particular fungus will grow in a food, and if 

so at what rate, has not received a similar degree of interest as 

modelling of bacterial growth. One of the main problems is 

the difficulty of acquiring sufficient, reproducible data that are 

suitable for modelling. In this review, we aim to introduce 

the principles of modelling of fungal growth and summarize 

some of the recent literature that describes the application of 

modelling and predictive techniques to yeasts and moulds. 

Particular attention has been paid to the use of automated 

methods for assessing growth. 

There is a need for improved understanding of the fac- 
tors controlling the growth of fungi in foods, particu- 
larly those factors that are associated with new manu- 
facturing processes and packaging techniques. Customer 
demand for 'more natural' and 'fresher' foods has also 
led to the reduction or removal of preservatives and 
reduced levels of salt and sugar; this has resulted in 
increased concern about the microbiological safety of 
foods, and changes in the types of spoilage patterns en- 
countered - particularly an increase in mould spoilage 
problemsL Some moulds are capable of producing toxic 
metabolites that may be carcinogenic and therefore 
constitute a public health risk, whereas the growth 
of spoilage fungi results in poor appearance and off- 
flavour development, leading to customer rejection. 
Economic losses can be considerable, especially in the 
stored grains industry. 

Assuming sufficient nutrients are available (as is usu- 
ally the case with foods), microbial growth is controlled 
primarily by temperature, water activity (aw) and pH; 
additional factors such as the presence of preservatives, 
heat treatment or modified-atmosphere packaging also 
contribute. In principle, provided sufficient information 
is known about the factors controlling microbial growth, 
the growth responses of microorganisms of concern can 
be predicted. 

Predictive food microbiology and the principles of mod- 
elling bacterial growth have already been thoroughly 
reviewed in this joumal by Buchanan 2. Many models 
describing the growth of a variety of bacteria, particu- 
larly food pathogens, have been produced, and a com- 
mercially available software package, Food Micromodel 
(Food Micromodel Ltd, Randalls Road, Leatherhead, 
UK KT22 7RY), derived from a huge database on mi- 
crobial growth relevant to foods, is now available. To 
date, this software package contains models that are 
mainly restricted to bacterial food pathogens and some 
spoilage bacteria, although it also includes a model for the 
growth of the spoilage yeast Zygosaccharomyces  bailii. 
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Predictive modelling of filamentous fungal growth 
has not received the same level of attention as that of 
bacterial growth. This may well be because of the in- 
herent complexities associated with the quantification 
of fungal growth. Measurement of hyphal extension 
rate, usually reported as radial growth rate in ixm/h, is 
probably the simplest and most direct measure, but 
it does not necessarily represent the true nature of 
fungal growth. Whereas bacteria reproduce by fission, 
and growth normally takes place only at surfaces or 
homogeneously through a liquid medium, fungal hyphae 
can penetrate the physical three-dimensional matrix of 
foods. A prerequisite for producing a useful and reliable 
model must be a database containing large amounts ef 
relevant data, preferably in the form of growth or sm- 
vivor curves. The problems associated with the ac- 
quisition of good growth curves for bacteria have been 
discussed by Bratchell et al. 3, but the difficulties c,f 
obtaining reproducible and similar quality growth 
curves :for fungi are much more complicated. 

Types of models 
The two most widely used models for describing 

bacterial growth in foods are the 'square-root' or 
'Belehradek-type' model, as used by Ratkowsky et al. ~, 
and the polynomial model, as used by Gibson et al¢ A 
square-root model 6, for suboptimal levels of temperature 
(T), aw and pH combined, was described as: 

k = C x (T-Tm~n) 2 x (pH-pHm~) x (a,,.-awmin) 

where k is the specific growth rate, C is a constant 
and Tmio, pHm~n ;and awmm are theoretical growth minima 
below which the predicted growth rate is zero. 

Regression analysis and the subsequent formation of a 
polynomial model is the main alternative to the above 
approach, and a wide range of computer programs is 
available to perform such analyses. When sufficient data 
are available and relatively small numbers of variables 
are being studied, significant factors and interactions 
can be determined simultaneously with step-wise re- 
gression analysis, as used by Gibson et aL s When a 
wider range of factors at several levels is studied, an 
analysis of variance can be used initially to determine 
the relative effects of individual factors and their inter- 
actions. A step-wise regression analysis that includes 
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only significant factors and interactions is then used to 
produce a first- or second-order polynomial design (:see 
Smith et aL7). Once produced, and validated, the model 
can be used to predict the effect of changing several fac- 
tors simultaneously. The choice of model is partly sub- 
jective but also depends on the number and type of wiri- 
ables (environmental conditions) that are to be analysed 
and what is actually being measured (growth rate, or 
time to a particular event such as growth or spoilage). 

Models can be categorized into probability or kinetic 
models (measuring growth rate or generation time) ac- 
cording to the mathematical approach used. Models are 
also described as mechanistic or empirical, although the 
difference between the two is not always clear cut s . 
Some empirical models include an aspect of mechanis- 
tic modelling (e.g. the square-root model, because, it 
originates in part from a more fundamental base) and 
vice versa. Mechanistic or semi-mechanistic models 
usually include parameters from differential equations 
of applicable known theories (growth kinetics, substrate 
utilization and depletion rates, substrate or end-product 
diffusion rates, etc.) and attempt to describe what is ac- 
tually occurring during growth. Such models can give 
more insight into the behaviour of a biological system 9 
than empirical models can. Mechanistic models have 
long been used in the areas of biotechnology and chemi- 
cal engineering where there is a :need to optimize 
growth rather than control it. Experience from moclel- 
ling bacterial growth in foods has shown that the necess- 
ary mathematical models cannot simply be copied from 
those that have been long established in biotechnology 
and chemical engineering 8'1°. Additionally, in the case 
of filamentous fungi, estimation of growth is more com- 
plicated owing to the formation of surface colonies and 
also of hyphae throughout the food; a cell count is not 
appropriate. 

Empirical models simply describe the conditions 
under which an experiment was performed, that is, the 
effect on microbial growth of the physical and chemical 
components of the food. Such models are usually poly- 
nomials. Although many other factors in foods affect 
microbial growth (as defined by mechanistic models), 
these account for a small proportion of the total vari- 
ation in growth when compared with the main faclors 
such as temperature, aw, pH and presence of preser- 
vatives. Because empirical models are descriptions of 
the experimental conditions, they should not be used 
to make predictions outside the limits of the original 
experiments. 

Probability models 
Probability models allow the prediction of whether a 

particular event, such as growth or toxin production, 
might occur under various conditions, but provide no 
information about the rate at which that growth occurs. 

Such a model was used to predict the probability of 
the growth of Z. bailii in a model fruit drink system as 
affected by pH, °Brix and three preservatives, sorbate (S), 
benzoate (B) and sulphite (SO2), all at three levels u. 
The end point was growth or no growth after 3weeks 

at 23°C. The probability (P) of growth 0/) was related 
to a logistic regression model: 

1 

1 + e ( -~)  

The value of 7/was modelled by a polynomial equation 
involving the various factors and their levels plus signifi- 
cant interactions: 

77 = a + b(°Brix) + c[SO2] + d[H ÷] + e[S] +f [B]  + 
g[S]-[B] + h[S]'[SO2] ... etc. 

where a, b, c, etc., are constants generated during the 
regression analysis. 

The model can be used to predict the probability of 
growth for any combination of factors, at any level, 
within the limits of the original experimentation. 

Mechanistic or semi-mechanistic models 
A relatively simple mechanistic model t2 was used to 

study the effects of sorbic acid and pH on the growth 
of Penicillium chrysogenum, Cladosporium clado- 
sporioides and Ulocladium atrum. Minimum inhibitory 
concentrations (MICs) were modelled as a function of 
pH, which was determined by the ratio of undissociated 
and total sorbic acid. Nonlinear regression analysis 
produced a formula to predict the MIC by substituting 
values for the amount (moles) of total and undissociated 
acid and calculating a constant derived from testing the 
MIC at only two pH levels, one low and one high. 

MIC1 = 
[(1-  a)/kl] + (a/k2) 

where M I C  1 is the MIC determined for total acid, a is 
the ratio between undissociated and total acid, kl is the 
MIC for dissociated acid and k2 is the MIC for undisso- 
ciated acid. Although this model is useful for explaining 
the preservative effect of sorbic acid at varying pH 
levels, it does not take into account the effects of other 
factors that are present in foods that may also have an 
effect on mould growth. 

A semi-mechanistic model was used to describe the 
effects of temperature, pH, aw and colony size on mould 
growth and aflatoxin development 9. The model took into 
account growth rate changes (affected by aw, pH and tem- 
perature, including temperature cycling), mould mass 
(which imposes a growth limit owing to substrate depletion 
or diffusion limitations), aflatoxin production (assumed 
to be proportional to growth rate, cell mass and a yield co- 
efficient), toxin degradation, and the decline in growth 
rate with respect to increase in mould concentration. The 
resultant model comprised a series of 20 differential equa- 
tions and was validated using data from the literature, 
although each data set usually related only to one or two 
portions of the model. The author stated that the model 
correctly predicted the decrease in the optimum tempera- 
ture for aflatoxin production with increasing time, but 
did not accurately represent the effects; of spore load on 
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the maximum toxin concentration, and proposed that an 
additional factor needed to be taken into account. Good 
qualitative agreement, with literature data, for the effects 
of temperature cycling was also claimed for model pre- 
dictions. This type of semi-mechanistic model may be con- 
sidered superior to an empirical model because it describes 
rates of growth that are governed by assumptions about 
mould biology and physical laws of diffusion. 

The model was further modified 13 to study the impli- 
cations of storage conditions (O 2 and CO2 levels) on the 
risk of aflatoxin development in seeds, forage and foods. 
Toxigenesis was more sensitive than growth to de- 
creased 02 and increased CO 2 levels. Higher rates of O2 
depletion therefore lowered the rates of aflatoxin pro- 
duction in the initial phase of storage, but also resulted 
in higher aflatoxin levels once 02 was again present 
after opening the containers at the end of storage. 

Empirical models 
An empirical approach to modelling the effects of aw on 

the surface growth of four closely related species of Asper- 
gillus was used by Gibson et al? They investigated the 
appropriateness of models that were previously used to 
predict bacterial growth for the interpretation of mould 
growth data 14 comprising growth curves (colony diameter 
versus time) of Aspergillus flavus, Aspergillus oryzae, 
Aspergillus parasiticus and Aspergillus nomius. Growth at 
30°C and ten different aw levels (0.810-0.995) was mod- 
elled. The modelling was carried out in two stages: first, a 
flexible model 15 describing the change in colony diameter 
(mm) with respect to time was fitted to the growth curve 
data. Following curve-fitting, the maximum colony growth 
rate (g), expressed as the increase in diameter/h, was esti- 
mated for each aw level. These values were then fitted 
with respect to aw using a linear regression model. A full 
description of the modelling is given in Gibson et al. 5 

A natural logarithm transformation was introduced to 
stabilize the variance of the fitted values for growth 
rate; additionally, a novel transformation of aw (to a 
term designated bw) was carried out to fit the data to a 
simpler curve shape. Transformation of aw to bw was 
according to the formula: 

bw = ~/'(1 - aw) 

The use of In g versus b w curves was more suitable for 
parabolic fitting and the following model was fitted 
separately for each isolate: 

In g = Co + Cab~ + C2bw 2 

where the coefficients Co, C1 and C2 were calculated by 
regression. Optimum aw values and colony growth rate 
at optimum aw were also calculated for each isolate. 

The time (t3) for a mould colony to reach a 3 mm di- 
ameter colony was also calculated, because a colony of 
that size would be visible and the product considered 
spoiled. The model for t3 is: 

In t 3 = D O + D~bw + D2bw 2 

where the coefficients Do, D1 and D 2 were  also calcu- 
lated by regression. 

The models were validated, where possible, by com- 
parisons with literature data, although such comparisons 
were often difficult because different authors used a 
range of storage', temperatures and humectants. When 
comparable data were available, for example for A. 
flavus and A. parasiticus, model predictions generally 
agreed well with literature information. Predicted 
growth rates (converted to radial growth rates) fell well 
within the range of published radial growth rates except 
at extremes of the model, that is, at high aw (0.99) an,] 
low aw (0.85). Model predictions close to the limits of a 
model are always subject to greater errors than those 
within the range of the model, and those at high a~, 
values will be particularly so because of the inherent 
problems in accurately measuring aw at such level,;. 
Furthermore, model predictions can be related only to 
the growth of moulds on the food surface and cannot 
take inlo account hyphal development within a product. 
Most of the mould spoilage of foods occurs at the sur- 
face, for a variety of reasons, including 02 restriction 
within the product; the complex structure of foods 
makes the measurement and therefore prediction of 
hyphal growth within a product impossible. 

The original data of Pitt and Miscamble TM mentioned 
above comprised three isolates of four species, resulting 
in 12 different models, one for each isolate. In a sep- 
arate study 16, data from the three isolates of each spe- 
cies were merged and remodelled, thus reducing the 
12 isolate-dependent models to four species-dependent 
models. 

The combined effects of chitosan and sugar concen- 
tration (°Brix) on the growth of Aspergillus niger and 
A. parasiticus on low-sugar candied kumquat were 
modelled by Fang et al.17 The number of 'days to visible 
growth' was monitored turbidometrically and signifi- 
cant factors and their interactions were identified. A 
second-order polynomial model predicting shelf life, y 
(days to visible growth), was generated: 

y = a + b[chitosan] + c(°Brix) + d[chitosan] z + 
e[chitosan](°Brix) + f(°Brix) 2 

where a, b...f are constants generated by regression. 
An interesting application of modelling techniques 

was used to study the spoilage of feta cheese 18. The 
effects of temperature, pH, aw and NaC1 and sorbitol 
concentrations on the growth of spoilage yeasts were 
modelled. Growth was monitored using optical density 
measurements and growth rates calculated using linear 
regression. Two different models were fitted to their 
data: a nonlinear equation derived from the Arrhenius 
equation, as used by Schoolfield e t  a/.19; and a 
Belehradek-type model, as used by Ratkowsky et al? ,2° 
The Arrhenius equation was found to fit the data better, 
and plots of growth rate against temperature were com- 
pared for the two models. Their results showed that the 
pH (range 3.5--4.5) had no significant effect on growth 
rate. The NaC1 concentration of the whey was the most 
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important controlling factor and growth rate decreased 
linearly with increasing NaC1 concentration (0-16%, 
w/w). However, fairly large changes in NaC1 concen- 
tration were required to affect the growth rate signifi- 
cantly; for example, at 5.5% NaC1 (aw 0.966), growth 
rate was reduced to approximately half that at 0% NaC1. 
Increasing the sorbitol concentration (from 0% to 50%) 
caused a linear decrease in the growth rate until an a,v of 
approximately 0.94, when the growth rate decreased 
dramatically. Minimum aw for growth was unaffected 
by humectants (NaC1 or sorbitol). The overall conclu- 
sion was that control of spoilage yeasts in feta cheese 
could not be achieved by manipulating pH, temperalure 
or NaCI concentration/aw; instead the authors suggested 
removal of fermentable substrate from whey by a 'suit- 
able yeast', before packaging. Although the effect of 
these physicochemical parameters on the growth of 
spoilage yeasts will be of interest to the feta cheese in- 
dustry, the usefulness of the models per se was not 
discussed. 

Thermal death models 
Linear regression analysis has also been used to esti- 

mate the parameters of kinetic models (first-order poly- 
nomials) in the study of the combined effects of envi- 
ronmental factors - temperature, pH, a w and Eh (redox 
potential) - on the heat resistance of seven foodborne 
microorganisms 21. Lactobacillus plantarum, Lacto- 
bacillus brevis, Saccharomyces cerevisiae, Z. bailii, 
Yarrowia lipolytica, Paecilomyces varioti and Neo- 
sartorya fischeri were heated in a synthetic medium, pH 
range of 3.0-4.5, aw range of 0.850-0.98 and Er, of 
110/150, 240 and 460 at three temperatures within a 
range of 48-90°C. The best-fitting model for defining 
the thermal death rate coefficient (k) took the form: 

logl0k = a + (b x pH) + (c x Eh) + (d x aw) + (e x T) 

where the coefficients of the model parameters (a, b, c, 
etc.) were calculated by linear regression. Correlation 
coefficients for the models were best for the lactobacilli 
(R 2 of 0.96-0.99) and worst for the yeasts (R 2 of 
0.81-0.88). 

For all microorganisms, the heat destruction rate in- 
creased with decreasing pH and increasing aw. In- 
creasing the Eh of the heating medium increased the heat 
destruction rate of lactobacilli, whereas the heat resist- 
ance of yeasts and moulds increased with increasing Eh. 

Automated methods 
Automated methods, where available, allow the accu- 

mulation of large amounts of data quickly and are po- 
tentially an ideal source of data for modelling. Two such 
techniques that have been used include indirect con- 
ductimetry and flow cytometry, although they have 
been applied only to yeast growth. There is also potential 
for the metabolic activity of moulds to be detected 
impedimetrically 22. 

Indirect conductimetry (monitoring CO 2 evolution) 
was investigated as a novel means of achieving a large 

database suitable for modelling 23. The effects of pH, aw, 
temperature (T) and potassium sorbate concentration 
[KS] on the growth responses of Z. bailii were studied. 
Technical difficulties prevent the direct measurement of 
yeast growth by conductance, so CO 2 evolution was 
used as an indirect method of growth assessment. Both 
detection times and maximum rate of change (MR) in 
CO2 evolution were measured and modelled using a 
second-order polynomial. Significant variables were se- 
lected using step-wise regression analysis. All single 
factors, T 2, and pH x [KS], pH x T and [KS] x T interac- 
tions were significant. The model for MR took the form: 

MR = a + b(aw) + c(pH) + d[KS] + e(T) + f (T 2) + 
g(pH)[KS] + h(pH-T) + i[KS](T) 

where a, b, c, etc., are constants calculated by regression. 
The use of indirect conductimetry (in this case to 

monitor the evolution of CO2) avoids the problems of 
interference experienced with conductivity measurements 
from food components, although growing the micro- 
organism directly in one product may not allow infor- 
mation to be related to other products, even if they 
have a similar pH, aw and storage temperature, because 
of their many differing structures and properties (e.g. 
grains, fruit, cakes, sauces). Without large numbers of 
comparative studies between detection times or MRs 
and traditional counting procedures, it would be diffi- 
cult to predict how much a yeast would grow in a food 
of a given composition; however, the ability to collect 
such large amounts of information quickly would allow 
a relative assessment of the effects of varying the levels 
of the factors being investigated, and thus aid product 
formulation. 

Another automated technique, namely flow cytometry, 
was investigated by Serenson and Jakobsen z4 to study 
the, combined effects of temperature., (10-30°C), pH 
(4.7-6.0) and NaCI (1-12%, w/v) on the growth of the 
yeast Debaryomyces hansenii. Flow cytometric determi- 
nations correlated well with viable yeast populations de- 
termined as colony-forming units by traditional plating 
techniques. Growth curves were fitted using the modi- 
fied Gompertz equation s. Lag phase and maximum 
specific growth rate were then derived. A second-order 
polynomial model was used to describe the effects of 
the environmental conditions on the growth parameters. 
The model was validated by repeating the experiment 
using different laboratory media. Good agreement was 
claimed between observed results from the second experi- 
ment and the predicted values based on the first ex- 
periment. Ideally, independent data should have been 
sought, but were unavailable. 

The process of model building used above is directly 
comparable with that of Gibson et ak 5 and Baranyi et 
aL 16 A two-stage process was used: first, growth cur~e 
data were modelled; then, the curve parameters were 
modelled as a function of the environmental conditions. 
The methodologies vary only in the choice of curve- 
fitting procedure, either the modified Gompertz curve 
or the Baranyi model being used. The Baranyi model 
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might be considered superior because it is able to cope 
with data with and without an upper asymptote and, pro- 
viding the initial inoculum level is always in the same 
state at time zero, the lag phase does not need to be 
modelled separately. 

Current situation and future trends 
The ability to predict mould growth ideally requires 

some measure of growth with respect to time. In the 
case of bacterial growth, this is a relatively simple, if 
time-consuming, process, but in the case of moulds, this 
is more difficult because moulds are not unicellular. 
Theoretically, yeasts can be enumerated using methods 
that are similar to those used for bacteria and it is inter- 
esting to note that the majority of fungal modelling ap- 
plications described to date have been for yeasts. In 
such cases, some kind of automated technique has been 
applied to speed up data gathering. Methods involving 
optical density and conductimetry avoid the need to 
carry out plate counts; however, the optical density 
change over time may not always be directly related to 
viable counts, and predictions may not therefore be di- 
rectly related to the rate or amount of growth that might 
occur in a product. A simple relationship between opti- 
cal density 'growth rates' and growth rates derived from 
viable counts has been determined for bacteria 6 but has 
yet to be established for yeasts. However, the techniques 
are simple and provide rapid means of assessing the 
relative effects of different levels of inhibitors, or of 
adding or removing inhibitors from a food product. 
Indirect conductimetry has the added advantage that the 
yeast can be grown directly in the food product of con- 
cern, although this would result in a 'product-specific' 
model. 

In the case of moulds, there is no rapid or simple 
method of gaining estimates of growth with respect to 
time. Indirect methods of measuring fungal growth, 
such as chitin and ergosterol analyses, cannot be related 
directly to fungal mass. The ergosterol content of hy- 
phae can vary with substrate, growth conditions, and the 
age of the mycelium; in addition, there are interspecies 
differences. Mould spoilage is often visible in the form 
of surface colonies; consequently, mould growth has 
been studied by measuring colony diameters, on agar 
plates, over time. A growth rate function (usually ex- 
pressed as radial growth rate in txm/h) can be derived by 
plotting colony diameter (or radius) against time, and 
measuring the slope of the straight part of the line. The 
colony or radial growth rate obtained under various con- 
ditions can then be modelled. 

The study of Gibson et  al. 5 was the first application of 
empirical modelling to mould growth and the authors con- 
sidered their model an 'initial model '  and acknowledged 
its limitations. The modelling was seen as a numerical 
exercise because the data used had not been acquired spe- 
cifically for the purpose of modelling, and because ad- 
ditional factors such as pH should have been taken into 
account. In the studies of Pitt and Miscamble ~4, aw was 
adjusted using sugars, thus these models should be inter- 
preted only for foods incorporating sugars as a humectant. 

Models for aw using other humectants need to be pro-- 
duced. Although data at 25°C, 30°C and 37°C were 
available TM, the model was derived from data at one tem-- 
perature, 30°C. Models that incorporate temperature are 
currently under investigation, but ideally a broader range 
of temperatures is required to produce a reliable model 
incorporating temperature. This initial modelling pro- 
cess provided valuable guidance on experimental design 
for future work that could further improve the models, 
but also highlighted the technical problems associated 
with the large amount of tedious and labour-intensiwe 
work necessary to provide the raw data. 

Although all mould growth does not occur at the sin- 
face and the models of Gibson et  al. 5 cannot take into 
account proliferation of hyphae within a product, the 
relevance of more mechanistic models that describe h}- 
phal extension rate 9 to foods is questionable both from 
the mathematical point of view 8a° and because of the 
physical problems of measuring hyphal growth in a food 
matrix. The usefulness to food processors of models de- 
scribing colony formation on a product needs to be 
evaluated, and collaborative efforts by several groups of 
workers, using standardized methodology, need to be 
established to produce sufficiently large databases that 
are suitable for modelling. The relevance of approaches 
measuring the ':number of days to visible growth' tur- 
bidometrically in microtitre plates ~7 needs to be further 
investigated. Is the growth of moulds in liquid culture 
comparable to that in a structured food product? In the 
case of yeasts, automated techniques such as indirect con- 
ductimetry and flow cytometry provide large amourtts 
of data extremely quickly, and flow cytometry has tae 
added advantage of providing viable counts over time, 
allowing the modelling of rate and amount of growth 
over time. 

Studying mould colony growth over time is a labour- 
intensive task and the luxury of producing the type of data 
of Pitt and Miscamble TM is rarely feasible. Computer- 
linked automated laser colony counters are already awLil- 
able. Further modifications to this technology could 
possibly provide an automated method for measuring 
large numbers of colony diameters and perhaps provJLde 
sufficient data for modelling. The possibility of using 
impedence 22 to monitor mould growth also needs further 
investigation. Modelling of mould growth has not de~el- 
oped as rapidly as bacterial modelling because of the 
difficulties of acquiring sufficient suitable data and the 
lack of support from food manufacturers and processors. 
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Functional foods 

for athletes 

F. Brouns 

There is an increasing awareness of the fact that nutritional 
factors can influence the physical and mental performance 
capacity of individuals who are involved in intense exercise. 
In addition, specific nutritional substances are thought to in- 
fluence physiological functions or metabolism in the body in 
such a way that performance enhancement may be achieved 
and recovery from exhaustive exercise may be improved. In 
this review, I discuss some of these interactions and empha- 
size the need for health- and performance-related claims on 
sports foods to be supported by scientific evidence. 

F. Brouns is at Novartis Nutrition Research Unit and Maastricht University, 
Nutrition Research Center, Department of Human Biology, PO Box 1350, 
NL-6201 B} Maastricht, The Netherlands (fax: +31-43-3670676; e-mail: 
f.brouns@hb.unimaas.nl). 

Review 

One of the most important nutritional concerns for ath- 
letes is the increased need for energy. Training or com- 
petition will increase the daily energy expenditure by 
2090 to >4180 10 (500 to >1000 kcal) per h of exercise, 
depending on body weight and exercise intensity. 
Athletes must therefore adapt their food consumption to 
meet their energy needs. This incre, ased food intake 
should be well balanced with respect to macro- and 
micronutrients. However, this is not always as simple as 
it is thought to be by many nutritionists. 

Many specific athletic events may be character- 
ized by extremely high exercise intensities. Running 
a marathon, for example, expends -10450-1254010 
(2500-3000 kcal). Depending on the time needed to fin- 
ish, this may induce an energy expenditure of -3135 kJ 
(750kcal) per h in a recreational athlete and 627010 
(1500kcal) per h in the elite athlete who finishes the 
race in -2-2 .5  h. A professional cycling race, such as 
the 'Tour de France', costs -2717010 (6500kcal) per d, 
a figure that will increase to -37620 kJ (9000 kcal) per d 
when the athletes are cycling over a mountain passL 
Compensating for such high energy expenditures by in- 
gesting normal, solid meals will be difficult for any ath- 
lete who is involved in such competitions, because their 
capacity to digest and absorb will be impaired during 
intensive physical activity, largely as a result of de- 
creased splanchnic blood flow and changes in peri- 
staltic activity 2a. 
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