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Abstract-A ‘Group’ model has been developed for impacting sprays. This model uses droplet groups to 
represent the spray, employs the Lagrangian approach to trace the motion of groups, and considers the 
turbulent dispersion of droplets within each group. Each group has a dimension and grows during its 
motion. Droplet dispersion within a group is described by a probability density function. Application to 
impacting water sprays shows that this ‘Group’ model is very efficient and realistic. The computation time 
is about a factor of 20 times less than the corresponding calculation using the Stochastic Separated Flow 
(SSF) approach. The calculated results provide the important information of droplet diameter effects, 

droplet trajectories, impact velocities, and the impact angles of spray impaction dynamics. 

1. INTRODUCTION 

IMPACTING sprays are widely applied in many indus- 

trial processes, such as spray painting, spray coating, 
spray cooling and spray combustion, etc. The impact 
mechanism is very important in these processes. The 
impact angle and velocity of different size droplets 
affect strongly the uniformity of the deposition, the 
air bubble entrainment in the liquid film, and the heat 
transfer of sprays. In spray combustion, the impinge- 
ment of fuel sprays on engine walls affects fuel evap- 
oration, heat transfer, and coke deposition on the 
walls. 

Although some fundamental research has been con- 
ducted for the dropwall interaction, turbulent spray 
deposition modeling is still inadequate for general 
applications. The existing models of impacting sprays 
are either over-simplified or too tedious for implemen- 
tation. For example, modeling of spray-wall impinge- 
ment was studied by Naber and Reitz [l], and Reitz 

[2] by tracing single droplets in sprays. However, these 
computations require techniques involving tedious 
work and long computation times since a large number 

of computation droplets are needed for a realistic 
simulation; and therefore, are not easily acceptable 
for industrial use. Effective and accurate models are 
very much desired to provide predictions of processes 

and further improvement of products. 
There are numerous difficulties in the development 

of efficient and realistic spray models. One of the 
major difficulties is the treatment of the turbulent 

interaction between gas phase and dispersed phase. 
Several approaches have been employed to model the 
turbulent droplet dispersion in sprays. A thorough 

review of these approaches was given by Faeth [3, 41. 
Basically, two main methods have been employed to 
compute droplet dispersion in sprays. One is the Con- 
tinuum approach, which considers the droplet dis- 
persion as a diffusion process with an appropriate 
droplet diffusion coefficient. However, no general 

method exists for predicting droplet diffusion 
coefficients, and it is inconvenient to incorporate the 
model into the Lagrangian formulation of droplet 

tracing. The other is the Lagrangian approach where 
the droplet dispersion is modeled directly by con- 

sidering the interaction between turbulent eddies and 
droplets in trajectory calculations. 

Among the Lagrangian models, a rather advanced 
one is the Stochastic Separated Flow (SSF) model 
which has been widely accepted for the modeling of 
turbulent sprays, and also applied to the modeling of 
impacting sprays [ 1, 21. The SSF model uses droplet 
clusters to represent a spray. Each cluster contains a 
large number of droplets which have the same prop- 
erties. The trajectory of each cluster is calculated in 
Lagrangian coordinates as a series of interactions with 
pseudo-random turbulent eddies. In a sense, this 
approach is an exact simulation of dispersed-phase 
properties. The computation results showed good 

agreements with measurements [3, 51. In the SSF 
approach, however, all the droplets within the cluster 
are assumed to be concentrated at one point during 
the flight, behaving like a single droplet at all times. 
A droplet cluster is essentially a computational drop- 

let. It does not consider the turbulent dispersion of 
droplets which belong to the same cluster. Therefore, 
in order to obtain a statistically meaningful deposition 
distribution, a large number of characteristic droplet 
trajectories and, consequently, very long computation 
times are needed. 

This paper presents a new ‘Group’ model for 

impacting sprays. The model uses droplet groups to 
represent a spray and takes into account the turbulent 
droplet dispersion within each group in the flow field. 
In the SSF model, however, all the droplets in a cluster 
are assumed to stay at the center of the cluster and a 
Dirac delta function is essentially used for the prob- 

ability density function of droplet position within each 
cluster. The present ‘Group’ modeling considers that 
each group has a dimension which grows during the 
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NOMENCLATURE 

C droplet concentration u gas velocity vector 

c, drag coefficient X axial coordinate 

C, turbulence model constant z2, 9’ mean square distances 
d nozzle diameter Y vertical distance. 

4 droplet diameter 
h heat transfer coefficient Greek symbols 
k turbulent kinetic energy & dissipation rate of turbulence kinetic 

L, eddy characteristic size, C:14 k3’*/& energy 
ti mass flux of gas /J viscosity 
N number of droplets in a group I4 turbulent viscosity, C,,pk*/~ 

r radial coordinate P density 

4 droplet group size r, droplet relaxation time 

Re Reynolds number, p(u-u,)d,/p Q@ turbulent Prandtl/Schmidt 

S source term in governing equations for numbers 
gas phase 0 general variable. 

t, eddy lifetime 

tR droplet transit time Subscripts 

t, interaction time between droplet and d droplet property 
eddy 0 initial condition. 

flight. This growth is due to the turbulent dispersion 
of droplets as the group travels in the Lagrangian 
coordinates. The droplet dispersion within a group is 
described by a probability density function which is a 
Gaussian distribution. Due to the growth of the 
group, only a small number of groups must be traced 
to provide statistically reasonable results. 

The ‘Group’ approach closely simulates a real flow, 
because in a real flow the droplets within a group 
are dispersed by turbulence instead of staying at one 
point. This is consistent with the conceptual situation 
that if the droplets in a small region of a spray are 
dyed a red color, this dyed group of droplets will 
disperse in time within the spray. The present ‘Group’ 
approach essentially traces this dyed group of droplets 
in the spray. The concept of group modeling has 
already been presented by the authors [6]. In the 
present paper, the modeling is greatly refined with 

applications to impacting sprays also provided. 

ics of sprays. It is assumed that the droplet stays on 
the surface when contact occurs. This is one of three 
impingement models classified by Reitz [2]. Such an 
assumption is true for many practical situations, for 
example, the spray painting and the impacting spray 
heat transfer when wall temperature and mass flux are 
low. With the prediction of impacting spray dynamics, 
other subsequent phenomena such as heat transfer 
and evaporation processes on the surface can be 
modeled. For example, the droplets’ impaction heat 
transfer results based upon the experimental study of 

ref. [A, and the analytical study of ref. [8] can be readily 
included to predict the spray cooling of high tem- 
perature materials. 

The concept of this ‘Group’ approach can be incor- 
porated into any computational program which pre- 

sently employs the Lagrangian approach to trace the 
dispersed phase. As will be discussed in later sections, 
the major assumption used in the ‘Group’ approach 
is that the turbulence should be isotropic in the field. 
This assumption is reasonable for most axisymmetric 
turbulent sprays which contain strong shear layers. In 
the shear layers of a spray, although the turbulent 
flow is not isotropic in the tangential direction, it is 
isotropic in the axial and radial directions. The present 
group model can be used directly on the calculations 
of two-dimensional axisymmetric sprays which are 
not dependent upon the tangential coordinate. 

The attention of this paper is to focus on the concept 

of the ‘Group’ approach for the modeling of sprays, 
and to take the impacting spray as an example of 
applications. It is not intended to elaborate on many 
details and possible further improvements of the 
model for other applications. This new modeling con- 
cept is expected to have more advantages when the 

geometrical scale is large, where its higher com- 
putational efficiency becomes indispensible. 

2. BASIC EULERIAN/LAGRANGlAN 

FORMULATION 

In the present study, a standard Eulerian approach 
is applied to the gas phase transport. The Lagrangian 
formulation is used to trace the motion of the center 
of each group. The modeling of the turbulent droplet 
dispersion in a group is a new approach. 

2.1. Gas phase 

In the present study, droplet deposition on cold The gas phase is represented by Eulerian con- 
walls is also monitored to reveal the impaction dynam- servation equations and the k--E two-equation tur- 
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bulence model. The governing equations for a steady, 
axisymmetric turbulent flow are 

where the designation 4 = 1 yields the continuity 
equation. The symbol 4 also represents the mean axial 
and radial velocity components U and 6, turbulent 
kinetic energy k, dissipation rate of turbulent kinetic 
energy E, and total energy E. The turbulent Prandtl 
number is represented by o$ and S, is a general source 
term, while S,, represents the particular sources due 
to the presence of droplets. The expressions for S, 
and S,, pertaining to each variable are standard forms 
and given in ref. [9]. The constants used in the k-e two- 
equation turbulence model are C,, = 0.09, C, = 1.44, 
and C, = 1.92. 

2.2. Dispersed phase 
The dispersed phase is represented by characteristic 

droplet groups, which are described with a Lagrang- 

ian view point. The center of a group is traced as a 
single computational droplet with its droplet motion 
equation, after neglecting the virtual mass, Bassett 
forces, and Magnus forces, given as 

du, _ (u-&i) 
dt z, 

where u and ud are the local gas and droplet velocity 
vectors, and r, the droplet relaxation time. 

The droplet relaxation time is calculated by [S] 

where C, is the drag coefficient which is obtained 
from the following expressions : 

C,, = 0.44 for Re > 1000 (4) 

CD = 24(1+ Re213/6)/Re for Re < 1000. (5) 

The position of a computational droplet which rep- 
resents a group center can be found by integrating 

dx, 
dt=Ud. 

3. TURBULENT EFFECTS 

3.1. Center of a group 
The turbulent effect on the trajectory of a com- 

putational droplet which represents the center of a 
group is considered in a fashion similar to the SSF 
method. The motion of the center of a droplet group 
is assumed to behave like a single droplet interacting 
with a succession of turbulent eddies [3,4]. Properties 
within a particular eddy are uniform and determined 
from the gas phase analysis. The instantaneous vel- 

ocity field that this computational droplet experiences 
consists of the mean and fluctuating gas velocities. 
The magnitude of the fluctuating velocity component 
is proportional to (2k/3) ‘I* (where k is the turbulent 

kinetic energy) by assuming that the turbulence is 
isotropic. The instantaneous gas flow velocities are 
randomly sampled when a computational droplet 
interacts with eddies. The interaction time between 

the droplet and the eddy is taken as the minimum of 
the eddy lifetime and the transit time required for the 

droplet to cross the eddy 

t, = min (t,, tR) (7) 

where t, is the eddy lifetime, and tR the droplet transit 

time. 
The eddy lifetime is calculated by [S] 

t, = L,/(2k/3) ‘I2 (8) 

where L, is the eddy characteristic size, and k the 
turbulent kinetic energy. 

The droplet transit time is given by [5] 

tR = -r,ln l.O- 
L 

> zr~~“-ud~~ . 
(9) 

3.2. Droplets in a group 
In an actual turbulent two-phase flow, the droplets 

belonging to a group are dispersed by turbulence 
rather than staying concentrated at one point during 
the flight. Conceptually, a group of droplets in a spray 
is viewed as if the droplets in this group are dyed a 
red color. These red droplets disperse in the spray ; 
however, we are only tracing these red drops with the 
assumption that there are no collisions and coales- 
cence. According to the present model, all the droplets 
in a group move together in an absolute coordinate 
and the droplet dispersion is a relative motion to 
the center of the group. Therefore, the droplet group 
grows from its center, and the dispersion of droplets 
is observed from the center of the group. 

This paper presents a new model which will treat 
the turbulent dispersion of droplets within a group 
under the following assumptions : 

(1) Drop-to-drop collisions are neglected. 
(2) The turbulent flow is ‘locally’ isotropic and 

homogeneous. 
(3) The dispersion of droplets in a group is 

assumed to originate from a point source located at 
its center when this group leaves the nozzle. 

Although the center of a group follows the tra- 
jectory of a single droplet, the relative droplet position 
within a group in respect to the group center at any 
time is random because of the turbulent gas velocity 
field. Therefore, the movement of droplets relative to 
the center of the group is almost like a random walk. 
Theoretical considerations and experimental data 
suggest that the probability of a droplet transport by 
turbulent diffusion is similar to Brownian diffusion 
[lo]. This kind of droplet dispersion can be closely 
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represented by a normal Gaussian distribution. The 
typical probability density function for this dis- 
tribution can be given for a two-dimensional field as 

fb,Y, 0 = J(2nR’y&zP’) exp ( - $ - $2 > 
(10) 

where N is the total droplet number in this group, and 
8* and P* are the overall mean square distances in 

the x- and y-directions. The 8* and F2 are functions 
of time and are affected by the droplet size and the 
gas flow field. All the measurements of x and y are 
made from the center of the group. The total droplet 
group size is estimated to be 6J(8*). and 6J(9*) 
based on the probability theory. 

It is interesting to note that equation (10) is also a 

solution to a diffusion equation. One can prove that 
this distribution preserves its Gaussian form when 
droplets encounter different eddies in the flight (see 
Appendix). The overall mean square distances of 
equation (10) can be calculated from 

JP = S,,+S,‘*+~~~+S,‘,+~~~ (11) 

92 = s;,+S,ZZ+...+S,2,+... (12) 

where Jz, and 6:. are the mean square displacements 
in each time interval 6t, which can be calculated from 
the turbulent diffusion theory [ 111 

6:; = l&*&,2; s,; = v;*&,Z. (13) 

In equation (13), U& and a& are droplet fluctuating 
velocities. They can be calculated by the following 
equation, which is obtained by subtracting the mean 
flow equation (2) with the instantaneous equation of 

motion for a droplet : 

du:, 
- = l(“~-“;) 
dt rr 

(14) 

where II’ and II: are the gas and droplet fluctuating 
velocity vectors, and t, the droplet relaxation time. 

4. NUMERICAL ANALYSIS 

To illustrate this ‘Group’ approach, the gas phase 
elliptic partial differential equations together with the 
boundary conditions are solved using an existing finite 

difference computer program, TEACH-code [ 121, 
which is widely applied for the computation of tur- 
bulent flows. The droplet-gas coupling is incor- 
porated in the numerical procedure. In a highly dilute 
two-phase flow, using a one-way coupling, which 
neglects the droplet effects on the gas phase, will 
eventually give the same results as that using a two- 
way coupling, which uses special source terms to con- 
sider the presence of droplets. The ordinary differ- 
ential equations governing the behavior of each com- 
putational droplet are solved by a second-order 
accurate implicit method for each computational 
droplet. For the droplet dispersion within a group, 

the distribution function is calculated in every time 
step. The integration ofequation (10) gives the droplet 
numbers in the computational cells covered by a 

group 

Nc,,, = N 

x L, ,i(2hP2)exp -$ dv (15) 
s 

.b’ z 

( ) 

NC,,, = T[erf(&)-err(&)] 

x [erf ($&j) -erf (&)] (16) 

where x, , x2, y,, and y2 are the boundary positions 
of the computational cell. 

5. RESULTS AND DISCUSSION 

5.1. General nature 
Hinze [ 111 developed an analytical expression for 

the turbulent dispersion of ‘marked’ fluid droplets. 
The droplets were introduced into a uniform turbulent 
flow field at a constant rate from a point source. The 
concentration distribution C(x, r) at position (x, r) 
for homogeneous and isotropic turbulence with long 
diffusion times is as follows [ 111: 

S” Ur* 
C(x, r) = ~- 

4x/r,]x] exp ( > 4P, 1x1 
(17) 

where U is the flow velocity, pc, the turbulent diffu- 
sivity, and S, the volumetric source strength. 

Equation (17) is essentially of a Gaussian form. As 
shown in Fig. 1, the distribution follows Gaussian 
form after normalization, where C = C/(SV/4npt]x]) 
and r= r/(J(2p,Ixl/U)). This is consistent with the 
present assumption of Gaussian dispersion of droplets 
within each group. 

x Hinze’s solution 
-Gaussion distribution 

FIG. 1. Normalized radial particle concentration dis- 
tributions. 
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PortlcaL- laden jet 

FIG. 2. Schematic of the computational flow field. 

5.2. Data comparisons on particle laden jets 
In order to validate the new approach, the ‘Group’ 

modeling was applied to the analysis of a particle- 
laden jet containing fly ash particles. The preliminary 
results of this study were compared with the results 
of the SSF method and the experimental data. 

The experimental results were reported by Yuu et 
al. [13]. Their experimental set-up contained a jet 
nozzle which could provide uniform exit properties. 
This flow uniformity allowed a plug flow assumption 
to be imposed as an initial condition for the numerical 
calculations. The nozzle geometry and the properties 
of the two-phase particulate flow were taken from 
ref. [13] and included in the computations to enable 
comparisons with the experimental results. The nozzle 
diameter is 8 mm. The particles are nearly mono- 
disperse having a mass mean diameter of 20 pm. The 
flow is dilute with particle mass loadings of O.lM.4%. 
These loadings are sufficiently small, so that the par- 
ticles have a negligible effect on the mean and tur- 
bulent gas phase properties. The grid of the flow field 
is axial system with 32 x 29 meshes. The com- 
putational flow field is shown schematically in Fig. 2. 

The distributions of particle concentrations along 
the center line of the jet are shown in Fig. 3 for the 

1.2 0 Experimental data 
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FIG. 3. Axial particle concentration distributions. 

present method, the SSF approach, and the exper- 
imental results. The SSF results are presented for two 
different particle cluster numbers (20 and 500). For 
the smaller particle cluster number, the particle con- 
centration distribution is not smooth due to stat- 
istically insufficient data. In order to obtain a reason- 
able agreement with the experimental results, 500 
particle clusters were required as shown in Fig. 3. 
Unlike the results of the SSF method, the results of 

the present approach are in sound agreement with the 
experimental results with only 15 groups. At x/d > 15, 
slightly larger deviation is observed. 

The difficulty with the predictions downstream can 
be attributed to the fact that the assumption of locally 
homogeneous turbulence within the group becomes 
incorrect when a group grows to a very large size. This 
problem can be solved with group splitting where the 
group number can be less than 15 when leaving the 
nozzle ; however, the group number increases after 
splitting occurs downstream. The concept of group 
splitting is straightforward but its implication con- 
tains some arbitrary criteria which are case dependent. 
Since the present paper is emphasizing the group con- 
cept and its application to impacting sprays where the 
droplet dispersion is not very severe, the details of 
group splitting will be discussed in a different paper 
in the future. 

5.3. Impacting sprays 
Impacting sprays were selected as an example to 

illustrate the capability of the ‘Group’ model. This 
selection was chosen because impacting sprays con- 
tain droplets of various sizes under severe flow con- 
ditions, and there are not many detailed investigations 
reported in the literature despite its wide applications. 
Impingement of axisymmetric water sprays from a 9.5 
mm diameter nozzle normally on a flat plate was 
studied using a computer program employing the 
‘Group’ approach. The distance between the plate and 
the exit of the injector is 30.5 cm. The gas phase is 
assumed to have a plug flow velocity profile at the nozzle 
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x km) 

FIG. 4. Gas flow streamlines. 

exit with 3 m SK’ velocity. The droplets are assumed 
to be monodisperse. The effect of droplet size on the 
impingement characteristics was investigated for the 
droplet diameters 20, 50, 100, and 150 pm, respectively. 
The spray flow is considered to be dilute with an initial 
liquid volume flow rate fraction of lO_‘. 

The gas phase mean flow field is shown in Fig. 4. 
The mean flow streamlines demonstrated three flow 
regimes which were defined in ref. [14]. The free jet 
regime is upstream of jet impingement. The strong 
interaction of the jet with the impingement surface 
produces a change in flow direction in the impinge- 
ment regime. The wall jet regime consists of radial 
flow along the surface beyond the point at which the 
strong impingement to the wall occurs. 

Figures 5-7 show the trajectories of droplet group 
centers for the droplet diameters 150, 50, and 20 pm, 
respectively. The momenta of droplets increase with 
their diameters. Larger diameter droplets, such as 
those with a 150 pm diameter, tend to continue in 
their initial direction with less influence by the gas 
flow field in comparison to smaller diameter droplets. 
The resulting trajectories stay closer to the symmetry 
axis with little droplet dispersion as shown in Fig. 5. 
The smoothness of the trajectories implies that the 
flow turbulence also has a minimum influence for 
these conditions. 

As the droplet diameter decreases, the 50 pm diam- 
eter droplets follow the mean gas flow more closely, 
as indicated in Fig. 6. This is evidenced by the nearly 

0 5 IO 15 20 25 30 

x (cm1 

FIG. 5. The trajectories of group centers, D = 150 pm. 

16, 7 

0 5 IO 15 20 25 30 

x (cm) 

FIG. 6. The trajectories of group centers, D = 50 pm. 

parallel direction of the trajectories close to the plate 
surface. The trajectories are also affected by the flow 
turbulence. The wider spread of 50 pm diameter drop- 
lets compared to that of 150 pm diameter droplets 
shows the results of the interaction between the fine 
droplets and the turbulent eddies. Figure 7 displays 
the trajectories of 20 pm diameter droplets. Because 
of their small momenta, these droplets follow the gas 
flow field very closely and the spread of the trajectories 
is similar to that of the gas flow streamlines. The 
irregularity of trajectories and the significant dis- 
persion of droplets reveal that the interaction between 

the turbulent eddies and the droplets is the most effec- 
tive for the 20 pm diameter droplets. In the cal- 
culations of trajectories, when droplets intersect the 
symmetric axis, they are treated as ‘reflection’ accord- 

ing to the mass conservation. This can be observed 
from Figs. 6 and 7. 

The radial distributions of the droplet deposition 
flux on the wall are shown in Fig. 8 for the droplet 
diameters 20, 50, 100, and 150 pm, respectively. This 
droplet deposition flux is defined as the volume of 
total droplet deposition per unit wall area per unit 
time. A deposition is assumed to occur when a droplet 
approaches the wall surface within a distance of 0.01 
cm. For all the cases compared in Fig. 8, the droplet 
volume flow rate at the nozzle and the droplet group 
numbers (21 groups) in computations are all the same, 

14 - 

12 D=ZOpm 

. a- 

6- 

4- 

x(cm) 

FIG. 7. The trajectories of group centers, D = 20 pm. 
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FIG. 8. Radial distributions of droplet deposition flux. FIG. 10. Impact velocity distributions on the wall. 
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FIG. 9. Radial distributions of droplet deposition flux. 

but the droplet numbers contained in each group vary 
with droplet size. The distribution of droplet depo- 
sition flux for the different diameters is consistent with 
the implication of the trajectories in Figs. 5-7. The 

smaller diameter droplets spread wider and impinge 
over all the wall surface. With increasing droplet 
diameters, the deposition flux distribution increases 
at the central locations, and the radial extent of 
impingements decreases. The maximum deposition 
flux at the center is observed for 150 pm diameter 
droplets. 

In the calculations, it’appears that above N = 21 
(where N is the group number), the distributions do 
not change significantly and further increases in the 
group number does not provide additional improve- 
ment. A comparison of the group approach with the 
SSF approach was also made in the present study. 
Figure 9 shows that the SSF approach with 980 clus- 
ters yields results similar to the present group cal- 
culations ; however, the SSF distribution is not as 
smooth. Therefore, more realistic results can be 
obtained with only 21 groups in the ‘Group’ 
approach, as compared to 980 clusters of the SSF 
method for impacting sprays. 

Figure 10 displays the radial distributions of overall 
droplet impingement velocities for the four different 
droplet diameters together with the overall gas vel- 
ocity distribution near the wall. The distribution for 

0, 2 4 6 8 IO I2 14 16 

rkm) 

FIG. Il. Impact angle distributions on the wall. 

20 pm droplets shows a shape similar to that of the 
gas velocity near the wall. For 50 and 100 pm droplets, 
the velocity increases with radius and then remains 
almost constant in the wall jet regime (after about a 
6 cm distance from the symmetry axis). The impact 
velocity distribution for 150 pm diameter droplets 
does not seem to be influenced by the gas velocity 
distribution. 

The radial distributions of locally averaged impact 

angles for the four different droplet diameters are 
shown in Fig. 11. The impact angle, LY, is defined as the 
angle between the drop trajectory and the direction 
normal to the wall. A zero degree impact angle means 
the impact is normal to the wall. For 150, 100, and 20 
pm droplets, the impact angle increases with distance 
from the symmetry axis due to the bending of the 
gas flow along the wall surface. In the area near the 
symmetry axis, the impact angle increases as the drop- 
let diameter decreases because the smaller droplets 
follow the gas flow more closely. The 150 pm diameter 
droplets have the smallest impact angles due to their 
high momentum. The distributions of 20 and 50 pm 
droplets are different from the other distributions. 
Their impact angle is smaller than expected in the area 
between 2 and 10 cm wall radii. It is noted that much 
of these small diameter droplets do not impact the 
surface of the plate and go out following the gas flow. 
For the droplets impacting the surface, they may 
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impact at small angles due to the effect of gas flow 

turbulence. The average impact angles obtained from 
these few impacts, therefore, gives lower impacting 
angles within the 2-10 cm wall radius range as shown 
in Fig. Il. 

sprays, the developed ‘Group’ approach is useful for 
other turbulent spray applications. 
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(a) Much fewer droplet group numbers are 
required to obtain reasonable statistical results than 

with the classical SSF approach. As a result, a sig- 
nificant reduction in computational time is achieved. 

APPENDIX 

It has been proven that equation (IO) preserves its form 
during the process. This proof is given as follows. 

(b) A probability density function is used to 
describe the droplet distribution within the group, 

giving a more realistic description of the two-phase 
flow field. 

The computational results using the ‘Group’ model 
on impacting sprays show that the droplet size has 
a strong effect on droplet dispersion and dropwall 
impaction dynamics. Smaller droplets are affected and 
dispersed more by the turbulent gas field. The infor- 
mation on spray trajectories, droplet deposition flux, 

impact velocity, and impact angle, etc. can be obtained 
easily. This understanding allows for advances on 

various impacting spray applications. 

There is a well-known central limit theorem of the prob- 
ability theory [15]. The theory states that if X, and Xz are 
independent stochastic variables, having Gaussian dis- 
tributions N(0, a:) and N(0, us), respectively (where their 
averages are zero and their variances are uf and u:, respec- 
tively), then their sum X = X,+X2 is also Gaussian 
N(0, (r: + cri). The average and variance of X arc the sums of 
the averages and the variances of X, and X,. Mathematically, 
this theory claims that if ,fy,(x,) and fyI(xz) are Gaussian 
probability densities of X, and X2, respectively, the prob- 
ability density of the sum. f;(x), will be 

Although the present paper emphasizes impacting 
which is also Gaussian distribution. 

For the droplet dispersions within a group, the probability 

(A2) 
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function of droplet positions is essentially a solution of a 
diffusion equation. It is assumed that the diffusion coefficient 
is constant during each time interval at, but varies with 
different time intervals when droplets encounter different 
eddies in the flight. The solution to the diffusion equation 
with an initial condition of a Dirac function will develop into 
a Gaussian distribution during a time interval at, from time 
t,, to t,. Now, consider a time interval 6t, from time t, to f,. 
The final probability density will be 

where D, and D, are diffusion coefficients. The first term in 

the integral is the initial condition of the diffusion equation 
from time I, to tZ, which is a Gaussian distribution after 
experiencing at, time of diffusion. The second term in the 
integral is the Green’s function of the diffusion equation. 
These two terms are similar and can be rewritten as 

fxkfz) = N s fx,(x,)fx,(x-x,)dx,. (A4) 

Equations (A4) and (Al) have the same form. Since the 
successive droplet displacements are uncorrelated, equation 
(A2) can be applied to the present situation. This means the 
final distribution is Gaussian and can generally be written as 

2 ( > - -- 
28’ 

(A5) 

where 

P = cF:,+s:z+*.. +s:L+ ... 

= 2D,&, +2D,&:+ *** +2D&,+ . . . . 

MODELISATION DE GROUPE DE LA DYNAMIQUE DUN AEROSOL IMPACTANT 

R&sum&On developpe un modele de “groupe” pour des aerosols impactants. Ce modele utilise des 
groupes de gouttelettes pour rep&enter I’aerosol, il emploie I’approche Lagrangienne pour tracer le 
mouvement des groupes et considere la dispersion turbulente de gouttelettes dans chaque groupe. Celui-ci 
a une dimension et une croissance pendant son mouvement. La dispersion de la gouttelette dans un groupe 
est d&rite par une fonction de distribution de densite de probabilitt. L’application des aerosols d’eau 
impactants montre que ce modtle de groupe est trts efficace et realiste. Le temps de calcul est environ 
20 fois plus faible que pour les calculs correspondants qui utilisent l’approche de l’tcoulement s&pare 
stochastique @SF). Le calcul fournit une information importante sur les effets du diametre de gouttelette, 
les trajectoires de gouttelette, les vitesses d’impaction et la dynamique d’impaction tenant compte des 

angles d’impact. 

EIN GRUPPENMODELL FUR DAS DYNAMISCHE VERHALTEN AUFTREFFENDER 
SPRUHNEBEL 

Zusammenfassung-Fiir auftreffende Spriihnebel wird ein “Gruppenmodell” entwickelt. 7ur Darstellung 
des Spriihnebels benutzt es Tropfchengruppen, deren Bewegung durch eine Betrachtung nach Lagrange 
beschrieben wird. Es beriicksichtigt die turbulente Dispersion der Tropfchen innerhalb jeder Gruppe. Jede 
Gruppe hat eine GriiBe und wlchst wahrend ihrer Bewegung. Die Tropfchenverteilung innerhalb der 
Gruppe wird mit einer Verteilungsfunktion fur die Wahrscheinlichkeitsdichte beschrieben. In der Anwen- 
dung auf auftreffende Wassersprtihnebel erweist sich das “Gruppenmodell” als sehr leistungsfahig und 
realistisch. Die Rechenzeit ist urn ungefahr einen Faktor 20 geringer als bei einer entsprechenden 
Berechnung mit der stochastischen Nlherung fiir abgeliiste Stromungen. Die berechneten Ergebnisse 
hefern wichtige Angaben tiber die Dynamik auftreffender Spriihnebel : EinfluB des Tropfchendurchmessers, 

Trajektorien der Triipfchen, Auftreffgeschwindigkeit und Auftreffwinkel. 

I-PYI-II-IOBOE MO~EJIWPOBAHME HHHAMHKM COYflAP~IOIIIMXCJI CTPYti 

AmIoTamIs-Pa3pa6oTana “~pyl'lnOBan" MOAeJIb COyAapREOolUuXCff CTpyii. B MOAenH c’rpya npeACTaan- 
aerca rpynnahnr Kanenb, a arrr npocnemrinamin 38 rix AmixcemieM ncnonbsyercn nonxon JIarpasxcta, a 
TaKxe y%iTbrnaercn Typ6yneiiTHan nncnepcnn Kanenb B rcaxcaofi rpynne. Kamar rpynna nMeeT pas- 
MepHOCTb H yBeAHWiBaeTCK n0 Mepe ABEEKeHWR. &ICnepCIlK Kanenb B I-pynne OnHCMBaeTCIl @yHKAHeii 

nnoTHocTB BepowHocreiLnpHhseHeHne MoAenH K coyAapm0rUIlMcn CT~~HM ~0Abl noKa3bInaeT,-i~o 0Ha 

IlBJIlIeTCR ~@~KTI~BHO~~ H peanncrmmoii. Bpe~a abmncnenmt nprihtepno B 20 pa3 bfenbme, seM B cnpae 
UCnOJIb30BaHUU CTOXaCTPK!CKOTO MeTOAa pa3AeAeHHbIX nOTOKOB.Pe3yJlbTaTbl paCrieTOB AalOT Ba,KHylo 

EiH~OpMaUHEO 06 3+$eKTaXASiaMelpOB KaneJIb,TpaeKTOpWIXHXABH~eHHK,aTaK~eCKOpOCTKXH yrJIaX 

coynaperian. 


