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Abstract—Dimensional analysis is a tool to quickly and reliably elaborate a dimensionless
frame in which the experiments are favourably presented, because it is condensed as compared
with the dimensional one. Further advantage lies in the ‘scale-invariance’ of the dimensionless
frame, thus enabling the only reliable scale-up. There are only two real problems in dealing with
dimensional analysis. The first is the construction of a complete list of relevant parameters
which describe the process (‘relevance list’). The second is the determination of the process
characteristics and the establishment of the real operational number(s) particularly in case of
large scale factors. This paper discusses possible pitfalls and their avoidance in the field of
mixing. ( 1998 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION TO DIMENSIONAL ANALYSIS

Mixing technology is a branch of mechanical chem-
ical engineering where the dimensional analysis and
the scale-up based on it have been in use from its very
beginning. Therefore, this field offers prime examples
of how to proceed, but also where and how to omit
mistakes in order to gain universal rules for scale-up
by minimizing experimental work.

1.1. ¹he nature of dimensional analysis
Dimensional analysis is based upon the recognition

that a mathematical formulation of a physical techno-
logical problem can be of general validity only when
the process equation is dimensionally homogenous.

The aim of the dimensional analysis is to check
whether the physical content in the examination can
be formulated in a dimensionally homogeneous man-
ner or not. The procedure necessary to accomplish
this consists of two parts:

(a) First, all physical parameters necessary to de-
scribe the problem are listed. This so-called ‘relevance
list’ of the problem consists of the quantity in question
and of all parameters which influence it. In each case
only one target quantity must be considered; it is the
only dependent variable. On the other hand, all the
influencing parameters must be primarily indepen-
dent of one another.

(b) In the second step the dimensional homogen-
eity of the physical content is checked by transforming
it to a dimensionless form. (Each physical content
which can be transformed into dimensionless expres-
sions is obviously dimensionally homogeneous!)

By performing this operation one obtains two es-
sential advantages inherently tied to the dimensional
analysis:

(1) The amount of the dimensionless numbers is
smaller than the amount of the quantities contained in
them. Nevertheless, the problem gets described
equally comprehensively. The pi-theorem states: Every
physical relationship between n physical quantities
can be reduced to a relationship between m"n!r
mutually independent dimensionless groups, whereby
r stands for the rank of the dimensional matrix, made
up of the physical quantities in question and generally
equal to the number of the basic quantities contained
in them.

(2) According to the ¹heory of models two pro-
cesses may be considered completely similar if they
take place in similar geometrical space and if all the
dimensionless numbers necessary to describe them
have the same numerical value. Clearly, the scale-up
of a desired process condition from model to indus-
trial scale can be accomplished reliably only if the
problem was formulated and dealt with according to
the dimensional analysis, because only its dimension-
less representation is independent of scale (‘scale-in-
variant’) and thus presents the basis for a reliable
scale-up.
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2. HOW TO OBTAIN A RELIABLE DIMENSIONLESS

PRESENTATION (PI SPACE)

2.1. Dimensional analysis
The intuitive trials of Froude (1870) and Reynolds

(1883) were followed by the dimensional analytical
procedure of Lord Reyleigh (1915) which was later
taken up and popularized by Buckingham (1914),
Bridgman (1922) und Langhaar (1951). For problems
whose physical laws are accessible only by experi-
ments, the dimensional analysis represents the only
possible aproach to a reliable pi space.

2.2. ¹he Navier—Stokes’ differential equations
These equations enabled many researchers (Nus-

selt, Prandtl, Schmidt, etc.) at the beginning of this
century to obtain dimensionless numbers in order to
describe processes in the field of momentum (hydro-
dynamics), heat and mass transfer. They were gained
by setting up differential equations for chosen bound-
ary conditions and converting them to a dimension-
less formulation without solving them analytically.
This approach also enabled Damköhler (1936) to ob-
tain a set of dimensionless numbers for an adiabatic
chemical reaction taking place in a catalytic furnace.
They were able to describe the process far better than
those obtained by the dimensional analysis (Zlokar-
nik, 1991).

2.3. Making physical laws dimensionless
This produces dimensionless numbers which are best

fitted to describe them, for example, the Euler number
Eu,*p/(ov2) and the Newton number Ne,F/(ov2l2)
result from corresponding physical laws in which they
serve as coefficients. Where such a possibility exists it
should of course be taken advantage of.

In this context, we mention the important relation-
ship between the applicability of the dimensional
analysis and the available knowledge of the problem.
Pawlowski (in: Zlokarnik, 1991) outlined the follow-
ing five steps:

1. The physics of the basic phenomenon is un-
known.
PDimensional analysis cannot be applied.

2. Enough is known about the physics of the basic
phenomenon to compile a first, tentative rel-
evance list.
PThe resultant pi set is unreliable.

3. All the relevant physical variables describing the
problem are known.
PThe application of dimensional analysis is
unproblematic.

4. The problem can be expressed in terms of
a mathematical equation.
PA closer insight into the % relationship is
feasible and may facilitate a reduction of the set
of dimensionless numbers.

5. A mathematical solution of the problem exists.
PThe application of dimensional analysis is
superfluous.

3. SETTING UP A RELEVANCE LIST

An actual problem in applying dimensional analy-
sis is setting up a relevance list. The process under
consideration can be described by a complete set of
dimensionless numbers only if the dimensional para-
meters influencing it are also completely listed. In
doing so one has to be aware of the linear indepen-
dency of these parameters. One quantity is linearly
dependent on the others if it can be replaced by them,
e.g. owing to the equation l,g/o, only two of these
three material properties may be listed; the third one
is linearly dependent of the other two.

The relevance list may be formed only of relevant
quantities. Consider the relevance list for the stirrer
power in liquid aeration: The stirrer power P

0
in

a non-aerated liquid has no business being there. The
quotient P/P

0
,Ne/Ne

0
is not helpful because Ne

0
is

a constant. Similar is the case in the often encountered
expression l/l

8!5%3
, which contains the (constant) kin-

ematic viscosity of water. Though a dimensionless
expression, it has no significance whatsoever.

The relevance list must also include the universal
physical constants (such as universal gas constant,
R or the acceleration due to gravity, g) if these con-
stants influence the process concerned. Some of the
relevant parameters may be dimensionless by origin:
angles a, volume fraction u, etc. If relevant for the
process, they have to be listed.

Each relevance list may contain only one target
quantity. It is the only dependent variable.
For the overall view the parameters influencing it will
be subdivided into geometric, physical and opera-
tional ones.

In some operations the target parameter must be
chosen with care. Let us recall the often made blunder
of choosing k

L
a as the target parameter in surface

aeration. Surely, the mass transfer through the liquid
surface can be pursued solely by measuring the con-
centration of the dissolving gas in the liquid volume
and by calculating k

L
a from the reading c(t). Never-

theless, the target parameter in this operation is k
L
A

and it can only be obtained by multiplying the meas-
ured k

L
a by the liquid volume » :k

L
A"k

L
a ».

In mass and heat transfer operations, the definition
quantities k

L
a,G/(»*c) and h,Q/(A*0 ) exclude

the constituting parameters from being introduced
into the relevance list. The only justification for the
introduction of e.g. temperature difference *0 into the
relevance list for the heat transfer coefficient h is given
by additional introduction of the temperature coeffi-
cients of density b and viscosity c, resp. In these cases
the temperature difference *0 is an additional para-
meter from which the Grashof number Gr, etc. is
formed.

Furthermore, it has to be considered whether the
target quantity is an intensive or extensive one, be-
cause this also has an influence on the operational
parameters. For example, k

L
a is volume-related and

as such an intensive parameter. Thus, it affects the
relevance list.
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The application of an intensive quantity such as k
L
a

is advantageous also if the material system cannot be
regarded as completely homogeneous. Then a certain
dependency on geometric parameters D, H, etc. must
be expected.

There is no point in overloading the relevance list
by listing all geometric parameters. Each relevance list
is valid only for a specific geometrical configuration
(type of stirrer, form of the vessel, installation condi-
tions), therefore only the so-called characteristic geo-
metric parameter is to be introduced, and with its help
all the other geometric parameters are transformed to
dimensionless numbers. In mixing technology, this
parameter is obviously the diameter of the stirrer, as
the diameter influences the stirrer power by d5.

Those physical properties which are unknown and
cannot be measured are problematic. One has to be
reminded that liquid properties governing the coales-
cence behaviour and foaming in gas/liquid contacting
are still not known. At present, the only satisfactory
method is to specify the material system precisely (e.g.,
as a 5% NaCl solution) and to keep it unchanged
when measuring differently scaled models.

It can be assumed that in most mixing operations the
physical properties of the gas phase (l

G
and o

G
) can be

neglected as compared to the liquid ones. Nevertheless,
if their influence is to be examined, these quantities will
enter material numbers (l

G
/l

L
, o

G
/o

L
) and not process

related (Re, Fr, etc.) ones: The latter have to be formed
by the physical properties of the liquid.

In listing the operational quantities the acceleration
due to gravity g is often forgotten. This is all the more
surprising in view of the fact that the relevance of this
quantity is easily enough recognized if one asks the
following question:

¼ould the process function differently if the process
took place on the moon instead of on Earth?

If the answer to this question is affirmative, g is
a relevant variable.

The gravitational acceleration g can be effective
solely in connection with the density, i.e., in the form
of gravity go. When inertial forces play a role, the
density o has to be listed additionally. Thus it follows
that:

(a) In cases involving the ballistic (Galilean) move-
ment of bodies, the formation of vortices in stirring,
the bow wave of a ship, the movement of a pendulum
and other oscillation processes affected by the Earth’s
gravity, the relevance list comprises go and o. (In
forming e.g. the Froude number, they reduce to
g alone: Fr,n2d o/go"n2d/g)

(b) Creeping flow in a gravitational field is govern-
ed by the gravity go alone.

(c) In heterogeneous material systems with differ-
ences in density (sedimentation or buoyancy move-
ments), both the difference in gravity g*o and o are
crucially important.

It is often overseen that in mixing operations taking
place in material systems with density differences the
compound g*o is indispensable. Without *o the

gravitation exerts no influence and in a gravitation-
free space *o loses any significance. Therefore, both
quantities belong inseparably together and form the
same number Fr@ or Ar.

An intermediate quantity is one whose introduction
into the relevance list replaces two or more para-
meters thus simplifying it. One of the best known
intermediate quantities is the superficial velocity used
in bubble columns and fluidized beds, where it re-
places the volumetric throughput q as well as the
column diameter D, because of vJ q/D2.

In mixing operations, a prime example for inter-
mediate quantities is given in the homogenization of
liquid mixtures with different densities and viscosities;
Zlokarnik (1970). A pursuit of the mixing process by
Schlieren optics shows that the quick coarse equaliza-
tion is succeeded by a very slow molecular homogen-
ization, taking place in a material system already
exerting the physical properties of the uniform mix-
ture.

The original relevance list

Mh; d, u; o
1
, o

2
, l

1
, l

2
; n, g*oN

contains nine parameters and results in a pi space of
six numbers. Due to the above observation it can be
restricted via introduction of two intermediate phys-
ical properties (density o@ and viscosity l@ of a homo-
geneous mixture)

l@"f (l
1
, l

2
, u) and o@"f (o

1
, o

2
, u)

to a six parametric relevance list

Mh; d; o@, l@, g*o, nN.

Now, the process can be described by a mere three
parametric space

Mnh, Re, ArN

Re,nd2/l@, Ar,d3 g*o/(o@l@2).

4. GENERATION OF DIMENSIONLESS NUMBERS

Generating dimensionless numbers and possibly
their transformation represents an extremely easy
undertaking compared to the drawing up of a reliable
and as accurate as possible relevance list. This has
been made possible by matrix calculations proposed
by Pawlowski (in: Zlokarnik, 1991), which replaced
the ardous handling of linear equation systems. The
cited literature offers detailed examples of how to
handle this technique in order to quickly obtain the
complete set of dimensionless numbers.

To put it precisely: There are no problems nor
limits in the application of dimensional analysis and
in scale-up techniques associated with it. However,
there may be problems concerning the generation of
a complete relevance list and limitations with regard
to procurring the model material systems or with
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Fig. 1. Mixing time characteristics of a leaf stirrer in a vessel with and without baffles. Taken from
Zlokarnik (1967). Upper plot: usual presentation nh"f (Re), plot bellow: the proposed presentation

nh/Re"f (Re).

aquiring reliable measurement data. This will be dis-
cussed in the following.

5. MEASURING TECHNIQUES AND SOURCES OF ERROR

Some of us surely still recall the problems en-
countered in measuring the mixing power with labor-
atory appliances, whose friction losses were of the
same magnitude as the power consumption of the
stirrer.

At present, some target quantities of little sensitivity
still exist. In the following two important ones will be
discussed.

5.1. Mixing time h
Measuring this target quantity on a laboratory

scale and in the turbulent region (Re'104) amounts
to some seconds and the concurring result is

nh"const. This is not in agreement with the physics
of the process, because the equalization must finally
be limited by the molecular diffusivity and then the
consequence is h"const.

From this point of view, it would surely be more
sensible to formulate the target number as a combina-
tion nh/Re,hl/d2 or hl/D2 resp., because this num-
ber turns out to be a constant at RePR, and signals,
that h enhances with D2, (see Fig. 1). Without doubt,
macromixing is an extremely scale-dependent process,
but this does not corresponds to nh"const. [It was
Kipke (1982), who has first drawn the attention to this
problem.] This interrelation is proven by measure-
ments at different liquid height/vessel diameter ratios
(H/D), Fig. 2.

From Fig. 2 it can be determined that for the
cross-beam stirrer the correlation

nh J (H/D)2.6, Re"103—105
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Fig. 2. Mixing time characteristics of a cross beam stirrer
(upper plot) and a propeller stirrer (underneath) in a vessel
with baffles and different H/D ratios. Taken from Zlokarnik

(1967).

Table 1. Correlation between 1 s criterion and the corres-
ponding time number t*,t (g/D)1@2 when D is changed by

the scale factor of k"1 :10

D (m) t (s) t* t* t (s)

0.2 1 7.07 7.07 1.00
0.5 1 4.47 7.07 1.58
1.0 1 3.16 7.07 2.23
2.0 1 2.23 7.07 3.17

holds, whereas for the propeller stirrer the correlation
nh"f (H/D) depends strongly on the Re value:

nh J(H/D)0.85, Re"103

nh J(H/D)1.5, Re"104—105.

Certainly, these are aspects by which the scale-up of
homogenization processes appears in a different light.
These problems deserve more attention payed by the
industrial R&D.

In this context, it has to be remembered that the
otherwise excellent visual determination of the mixing
time by a chemical decolorisation method cannot be
precise in larger vessels. Thick water layers glow blue
and white painted inner walls of large steel vessels
distort the perception of the colour change. This be-
haviour has been found in the evaluation of the hom-
ogenisation characterisics obtained by mixing with
rising up gas bubbles; Zlokarnik (1968). Whereas it
was possible to obtain the same correlation in trans-
parent vessels of laboratory size (D"0,44—1.0 m), the
industrial vessel of D"1.8 m with white painted in-
ner wall gave 1/3 lower values.

In this process the final correlation can be com-
pressed to the expression

h/D"4.75(H/q)1@2 (d/g)1@4,

which testifies that here the dependency hJD exists.
Consequently, one solution to this problem certain-

ly consists in conducting mixing time measurements
in transparent vessels of constant diameter and to
change the liquid height instead.

5.2. Complete suspension of solid particles according to
the 1-s-criterion

According to a proposition (Zwietering, 1958),
a complete suspension of solid particles in a liquid is
accomplished when none of the particles remain lon-
ger than 1 s on the vessel floor. Although easily
measured, this is a very inaccurate criterion displaying
a low sensitivity. Who is really able to determine
visually whether it was 0.7 or 1.3 s? In addition,
this quantity is a dimensional one and therefore not
convenient for scale-up; Einenkel (1980) has drawn
attention to this circumstance. In any case, this cri-
terion is of hardly any relevance because of its low
sensitivity.

Fom Table 1 it is obvious that replacing t by a di-
mensionless time t*,t (g/D)1@2 would result in no
advantage. The left side of this table indicates how t*
changes when t"1 s is kept constant. By strongly
changing the diameter from D"0.2.P2.0 m the
value of t* alters by only a factor of 7.07/2.23"3.17.
The right-hand side of the table views this situation
from an opposite point of view. It shows how the time
t would have to change to satisfy a given t*"idem.

A sensible way out of this dilemma was found by
replacing the 1 s criterion by the relative suspension
layer criterion h*,h

s
/H"0.9 (the layer h

s
of sus-

pended particles reaches 90% of the liquid height H,
Einenkel (1980)).

6. ACCURACY OF MEASUREMENT AND SCALE-UP

FACTOR

A frequently posed question is how accurately the
measurements have to be to safeguard the scale-up.
This question is quickly answered; Zlokarnik (1991):
The larger the scale-up factor k,l

T
/ l

M
, the more

precise the measurements on the laboratory scale
have to be. If this cannot be achieved, then the
measurements have to be performed on a bigger pilot
plant scale to diminish the scale-up factor.

In this context, too, the author has to refer to his
own measurements of mass transfer by surface aer-
ators (Zlokarnik, 1979). They were performed on
three different scales (aerator diameter d"90, 180,
270 mm) and resulted in the finding that sorption
number ½ depends solely on the Froude number Fr:

½,f (Fr)P
k
L
A

d3 A
l
gB

1@3
"f A

n2d

g B .
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Fig. 3. Sorption characteristics of a Rushton turbine as
a surface areator. Incorrect presentation in the space

½,f (Fr). Taken from Zlokarnik (1984).

Fig. 4. Sorption characteristics of a Rushton turbine as
a surface areator. Improved presentation in the space

½ Ga~0.115"f (Fr). Taken from Zlokarnik (1984).

This finding (Fig. 3) led to the devastating result that
the efficiency E (kg O

2
/kWh) of surface aerators di-

minishes proportionally to the square root of the
scale-up factor:

E
T
"E

M
k~1@2.

In case of a (absolutely realistic) scale-up factor of
k"10—typical surface aerators have diameters of
d*3m—the technical design would have only 32%
of the model efficiency.

A comparative evaluation (Zlokarnik, 1984) of pre-
cise measurements performed by Schmidtke und Hor-
vath (1977) revealed that the sorption characteristics
are not given by ½(Fr) but by ½Ga~0.115 (Fr), Fig. 4.
This results in a completely different scale-up rule for
the efficiency of the mass transfer

E
T
"E

M
k~0.155.

It implies that at k "10 the industrial design retains
70% of the efficiency of the model.

7. MEASUREMENTS IN EQUIPMENT OF DIFFERENT

SIZES

It should be pointed out that for clarification of
some scale-up problems, it is indispensable to perform
measurements on differently sized equipment.

7.1. Mass transfer G/L
Because of the intensity character of the target

quantity k
L
a (see Section 3), the process variables have

to be formulated as intensive parameters as well. Now
the question arises, whether the operational para-
meters should be P/» and q/» (q —gas throughput)
or whether it is accurate to formulate the latter para-
meter as superficial velocity v

G
"q/S as commonly

done in bubble columns. The decision in favor of
either representation is impossible if one holds on to
a single laboratory equipment. In this case, a change
in equipment size is indispensable.

Judat (1982) has made a comparative evaluation of
nine publications on mass transfer in the coalescent
material system water/air in mixing vessels equipped
with turbine stirrers, where the liquid volume changed
from 2.5 l to 906 m3 (k"1 :71). His study verified that
the process characteristics are given in the pi space

M(k
L
a)*, P/»)*, v

G*N

(k
L
a)*,k

L
a (l/g2)1@3, (P/»)*,(P/»)/[o(lg4)1@3];

v
G*,v

G
(lg)~1@3.

7.2. Flooding point in gas dispersion by stirrers
Without change in scale it would be impossible to

prove that the flooding point characteristics are given
by Q(Fr, Ga) and not by Q(Fr). One could, of course,
obtain this information also by changing the liquid
viscosity in a vessel of given size, but then the flow
behaviour would correspond to lower Reynolds num-
bers, which is not advantageous for scaling up.

7.3. Mass transfer experiments
The experiments for mass transfer in surface aer-

ation had to be performed in differently scaled equip-
ment (see Section 6) due to the fact, that decoupling
the numbers Re and Fr or Fr and Ga, resp. would
otherwise only be possible by changing the viscosity,
because the gravitational force cannot be changed in
mixing technology. (Froude, too, had to change scales
in his studies of drag resistance of ships; see Zlokar-
nik, 1991).

7.4. Physical properties
When physical properties are unknown and cannot

be measured, then the experiments have to be per-
formed with the same (exactly specified) material sys-
tem using differently scaled models. (Examples:
Flotation, mechanical foam destruction, influence of
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shear rate on biological systems, etc.) Undoubtly the
results of such investigations are only exactly valid for
the specific material system used.

8. PROBLEMS IN THE GENERATION OF RELIABLE SCALE-

UP RULES

It is an old-established practice to perform experi-
ments in differently sized equipment in order to ob-
tain process characteristics that represent reliable
scale-up criteria. Alas, laboratory devices at universi-
ties normally do not allow a large change of scale and
therefore sometimes do not deliver reliable scale-up
rules for the mixing operation on a really large indus-
trial scale. This situation was already addressed in the
discussion of mixing time problems, Section 5.1. In the
following, this problem will be consolidated in con-
nection with the suspension of solid particles.

So far, no mixing operation has stirred more emo-
tions and has been discussed more controversely in
Germany than the suspension of solids. In this context
it was noticeable that the authors without exception
blamed the dimensional analysis and the resulting pi
space for not being able to present their measure-
ments in a form which would allow a reliable scale-up
of this mixing operation.

This, of course, is absurd inasmuch as the dimen-
sional analysis represents a method for producing
dimensionless numbers. In no way it is a means to
replace thinking or to decide which quantities should
be regarded as relevant and incorporated into the
relevance list.

After the 1-s-criterion has been replaced by the
relative suspension layer criterion h*,h

s
/H, the final

settling velocity of the swarm w
ss

has been addition-
ally added into the relevance list (Einenkel, 1980). This
quantity was chosen in analogy to flow behaviour in
fluidized beds. Several formulas are at our disposal to
calculate it. In addition, the mass ratio u

m
of solids to

liquid has been replaced by the volume ratio u
v

of
them.

With respect to the fact that the interdependence
v
ss
/v

s
"f (u

v
) exists and v

s
, the sinking velocity of one

particle, depends only on the particle diameter d
p
and

weight difference g*o, the following must be stated.
The introduction of v

ss
into the relevance list was by

no means necessary from the viewpoint of dimen-
sional analysis. However, it is very well advantageous
to physically interpret the sedimentation and the sus-
pension process, resp. The sedimentation process can
be described by w

ss@
w
s
and u

v
more clearly than with

w
ss @

w
s
or u

v
alone. In publications of Einenkel (1980)

and Kraume and Zehner (1995) w
ss

and u
v
appear as

a product w
ss

u
v
, in the paper of Voit and Mersmann

(1986) w2
ss

u
v
occurs.

In view of the unambigous interdependence of
w
ss@

w
s
"f (u

v
) it was not necessary to add w

ss@
w
s
and

w
ss
, resp. into a relevance list which already contained

u
v
, d

p
and g*o. However, it is advantageous with

respect to experiments. In the scale-up of suspension
processes, the requirement d

p
/d or d

p
/D"idem has to

be satisfied. This results in extremely small d
p

values

on the laboratory scale. In addition, the high Re
values that occur in large industrial vessels (D'3 m)
are difficult to adjust to the laboratory scale.

The experimental procedure employed by Kraume
and Zehner (1995)—vessel of D"0.1 m, viscous
liquid and a small w

ss
: laminar flow range; vessel of

D"1.0 m, water and a high w
ss
: turbulent flow

range—disclose this problem and show that the incor-
poration of w

ss
/w

s
into the relevance list resulted in an

advantage.
In conclusion, we have to comment on the conjec-

ture that the turbulence field in the experimental
space cannot be adequately described by either the
Reynolds number or the Froude number alone. Kipke
(1982) raised this suspicion in referring to the drag
characteristics of a sphere and the controversy be-
tween Prandtl and Eiffel at the beginning of this
century. Prandtl, however, showed that the laminar
boundary layer around the sphere can be turned tur-
bulent simply by a piece of equipment (‘trip-wire’).
The turbulent boundary layer tears off at a lower
Reynolds number thus diminishing the drag coeffi-
cient.

To put it differently: This piece of equipment is not
characterized by any dimensionless number. Rather,
the drag characteristics of a sphere are unambigously
described by the space MEu, ReN. In mixing techno-
logy, this corresponds to the presence of baffles: Al-
though they influence the flow behaviour just as
strongly (see e.g. Fig. 1) they are captured merely as
a boundary condition and do not enter any dimen-
sionless number.

NOTATION

Dimensional parameters
A area
d stirrer diameter
D vessel diameter
H liquid height
n rotational speed of the stirrer
q throughput of the fluid
v superficial velocity of the fluid
u ratio of solids to liquid (u

v
—by volume)

P stirrer power in pure liquid
P
0

stirrer power in aerated liquid
k
L
a mass transfer coefficient in gas/liquid con-

tacts
h heat transfer coeff. at the inner wall of the

vessel
S surface

Greek letters
o liquid density
g liquid dynamic viscosity
l liquid kinematic viscosity (l,g/o)

Dimensionless numbers
Ar,Re2/Fr@ Archimedes number
Eu,*p/ov2 Euler number
Fr,n2d/g Froude number
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Fr@,n2d o/g*o Froude number, extended
Ga,Re2/Fr Galileo number
Gr,b*0 Ga Grashof number
Ne,F/(ov2l2) Newton number (force)
Ne,P/(o n3 d5) Newton number (power)
Ne

0
,Ne(Re"1)

R,n d2/l Reynolds number
Q,q/n d3 throughput number

REFERENCES

Bridgman, P. W. (1922) Dimensional analysis, Yale
University Press, New Haven, reprinted by AMS
Press, New York, 1978.

Buckingham, E. (1914) On physically similar systems;
Illustrations of the use of dimensional equations.
Physical Review, New ½ork; 2nd Series 4, 345—376.
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