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Abstract-In the present study a greatly simplified method is outlined for the prediction of the transient 
behavior of particle deposition on a spherical collector, taking into consideration a variety of force terms, 
such as inertial, electrostatic, drag, and gravitational forces. The technique developed, which utilizes the 
stochastic simulation procedure of Tien et ai.[lO], is based on the concept of discretizing the fluid control 
volume into small cubical elements of the same size as the particles. This allows for a ready determination 
of both primary collection (particle deposition on the collecting sphere) and secondary collection (particle 
deposition on previously deposited particles). The aerosol dynamic simulations are used to study the 
important phenomena of the charge neutralization of a collecting sphere by the deposition of oppositely 
charged particles. The methodology given may be of interest in the study of particle filtration and particle 
coating processes. 

INTRODUCTION 

The deposition of aerosol particles on collecting 
surfaces is an important, practical problem with 
numerous applications including, for example, deep- 
bed filtration, particle agglomeration, and particle 
coating processes. These problems are complex, since 
they involve both the large-scale, macro-movements 
of the particle-laden fluid, as well as the smaller-scale, 
micro-phenomena of particle deposition (see, e.g. 
[ 1,2]). In general, both aspects involve approximating 
assumptions which are necessary for a complete 
solution to the problem. In the macro-scale, for 
example, such approximations may involve estimates 
of the magnitudes of turbulence scales and dispersion 
phenomena [3]. Simplifying assumptions in the micro- 
scale analysis are typically the neglect of so-called 
particle “bounce-off’ effects, particle-particle inter- 
actions, and particle re-entrainment phenomena[4]. 

Although it is difficult to generalize which aspect of 
the problem is more important, it is not uncommon 
for the micro-scale analysis to be in error by an order 
of magnitude or greater[5]. For example, in fixed-bed 
filtration, the so-called single collector, or target, 
efficiency is determined using the particle trajectories 
predicted from a force balance on the particle[6]. It 
is generally assumed that when the particle intercepts 
the collector boundary (sphere or cylinder) it remains 
there indefinitely. Furthermore, the attached particles 
are often assumed not to affect the deposition of later 
arriving particles. Although these results may give 
valuable insight into the behavior during the initial 
periods of deposition when the collecting solids are 
clean, they may not be accurate over the entire operat- 
ing period of the deposition process [ 71. 
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It is well-known that in filtration processes, particle 
deposition on previously deposited particles leads, 
over a period of time, to the eventual clogging of the 
filter bed. In addition, when electrical forces are 
involved the transient phenomena may be pro- 
nounced on a much shorter time-scale. For example, 
the natural charge build-up in a fluidized bed filter 
can be quickly neutralized by the deposition of 
oppositely charged particles[8]. In particle agglomer- 
ation and coating processes, the transient behavior is 
obviously critical to the final product characteristics. 
Thus, the unsteady-state behavior of particle deposi- 
tion on collecting surfaces is an important problem, 
and one which has stimulated much work in recent 
years. 

By far the most significant advances toward a 
better understanding of the transient behavior of 
aerosol deposition have been in the consideration of 
particle deposition on previously deposited particles. 
Various approaches to particle-particle deposition 
phenomena have been suggested, which include anal- 
ytical methods and stochastic simulation techniques. 
The analytical methodology was first proposed by 
Payatakes and Tien[9], and was later extended in a 
series of papers as recently reviewed by Payatakes 
and Okuyama[ 111. 

The stochastic simulation procedure, which is em- 
ployed in this study, was first introduced by Tien et 
al. [lo] in which particle chain formations, or den- 
drites, from particle-particle interception effects, 
were first theoretically predicted. This technique is 
ideal for studying complex problems in which anal- 
ytical expressions are difficult to develop. For exam- 
ple, Nielsen and Hill[ 121 used the stochastic simula- 
tion procedure of Tien et al. and, in addition, consid- 
ered the Coulombic forces between a charged particle 
and a charged collector. In a recent work of Auzerais 
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et al. [ 131, the two-dimensional nature of the previous 
studies were criticized and extensions to three dimen- 
sions made. In addition, those authors considered the 
presense of an electric field; however, they neglected 
particle inertial effects. Beizaie[4] accounted for the 
particle inertia through the use of curve-fitted expres- 
sions for the particle trajectories, but neglected elec- 
trical effects in the deposition calculations. In the case 
of many filtration systems, it has been shown that 
both electrical and inertial effects can be important in 
the analysis of the single collector efficiencies[5]. 

Although the results of the above cited studies 
clearly show the pronounced effect of particle-particle 
deposition, there is a lack of a general treatment of the 
phenomena. Furthermore, the computer calculations 
upon which the stochastic simulation procedures are 
based can be complex, and many subtleties are often 
involved: this is particularly true in three dimensions. 

In this paper a greatly simplified method is out- 
lined for the prediction of three dimensional, 
unsteady-state particle deposition on a spherical col- 
lector, taking into consideration inertial, electro- 
static, drag and gravitational forces. As an example, 
we treat the important problem of the charge neutral- 
ization of a collecting sphere by the deposition of 
oppositely charged particles. 

Throughout this study we consider only the case of 
a single spherical collector located in an infinite 
medium, and restrict the particle diameter to be 
greater than approximately 1 pm. The latter assump- 
tion means that we may neglect the Brownian motion 
of the particle. Extensions of the present work to 
multicollectors and Brownian particles may be found 
in Refs. [15] and [19]. 

THEORETICAL CONSIDERATIONS 

The theoretical considerations upon which the 
present analysis is based begin with the equation of 
motion for a single particle. Applying Newton’s 
second law of motion to the particle in an axisym- 
metric spherical coordinate system, as shown in Fig. 
1, and using the appropriate expressions for the 
various forces, namely, drag, gravitational and elec- 
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Fig. 1. Coordinate system employed in the present study. 

trostatic forces (see, e.g. Beizaie and Tien[l6]), we 
obtain 

for the r-direction 

-q(l-;)cose+*+y 

x(v,-!gpg2[~-r(q]=o (1) 

for the e-direction 

(2) 
Note from eqn (1) that a uniform distribution of 
surface charge on the collector and a point charge on 
the particle has been assumed. 

Introducing the following dimensionsless variables, 
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Equations (1) and (2) are transformed as, 
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In the analysis it is assumed that the fluid field is 
known a priori. We have considered potential flow 
here, although the trajectory equations could be 
easily modified to consider any given flow field. The 
relevant expressions for the potential flow field in 
spherical coordinates are 

v,= v, ( > 1-s case 

V, = - V, 1 + $ sin 8. 
( > 

(11) 

(12) 

Introducing the dimensionless variables mentioned 
earlier, eqns (11) and (12) become 

v:= 1-s case 
( > 

V$ = -(I +&)sinB. 

(13) 

(14) 

Equations (6) and (7) were solved numerically, uti- 
lizing a 4th order Runge-Kutta method, to determine 
the trajectory of a single particle. 

In order to study the transient behavior of particle 
deposition onto the collector surface a stochastic simu- 
lation technique is employed based on the principles 
proposed by Tien et al.1 IO]. As reviewed by Bei- 
zaie[ 141, the Tien et al. methodology is based on two 
important concepts associated with the deposition 
process, namely: (1) the increase in the total collecting 
area due to deposited particles; and (2) the random- 
ness of the initial particle position in the fluid stream. 
The former concept is also called the shadowing 
effect [ lo] and involves the deposition of a particle on 
previously deposited particles. The latter concept is 
due to the fact that while the particle concentration 
in a suspension may be macroscopically uniform, the 
instantaneous position of any individual particle in a 
control surface perpendicular to the direction of flow is 
random. As in the Tien et al. methodology, a uniform 
random number generator is employed to simulate the 
initial positions for a suspension flowing toward a 
sphere. In addition, a control volume must be selected, 
as discussed by Beizaie[ 14], in which all possible 
collectable particles are considered. The sphere is 
located at the center and the initial particle position 
grid is located upstream, as shown in Fig. 2. In the 
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present technique for simulating particle-particle 
deposition phenomena, the entire control volume is 
divided into cubical elements the size of which is equal 
to the diameter of the particle, that is 

Ax=Ay=Az=d,. (15) 

For the initial position grid, the total number of 
possible particle positions, n, is assumed to be given 

by 

s s s s 
n=-=__=__=_ 

Ax Ay AZ dp 

where S is the total area of the grid. 
Thus, a given number assigns a particle to a cube 

adjacent to the initial position grid as shown in Fig. 
2. Although the initial particle position could be, 
theoretically, anywhere along the grid and not re- 
stricted to a finite number of positions, the work of 
Beizaie[l4] suggests that such an approximation 
should be valid as long as the ratio of particle size to 
collector size is small. 

Once a particle position has been selected by a 
suitable random number generator, its trajectory is 
followed as it moves through the 3-D grid composed 
of the cubical elements. The collecting sphere itself is 
approximated by the cubical elements; its volume is 
therefore given by 

Kc+L. ,c+hi IC+N 

V sphem = c c 1 AxAyAz 
xc--L /C--M IC--N 

where IC, JC and KC are the coordinates 
center of the sphere and 
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Over each differential time a determination is made 
as to which cubical element the particle lies by the 

Initial Dartlcle --At tlme t particle 

\ Collectlnq sphere 

Fig. 2. Illustration of the control volume and a typical particle trajectory. 



following equations 

where x, y and z are the present Cartesian coordinates 
of the particle position. 

A testing procedure is then invoked to determine 
if the cube in which the particle lies is adjacent to any 
cubical elements of the sphere (primary collection), 
or, a cubical element occupied by a deposited par- 
ticle (secondary collection). 

The testing procedure can be made quite simple by 
coding each cube in the control volume. For example, 
a code number of one indicates an empty cube; a code 
number of two indicates a cube occupied by a 
deposited particle; and a code number of three indi- 
cates a cubical segment of the sphere. 

If the cube in which the particle lies is adjacent to 
either a cube with code 2 or 3, the trajectory analysis 
for that particle is stopped and that position in the 
grid is permanently assigned the code 2. If any 
particle moving in the control volume is not collected 
within its boundaries, it is considered to have escaped 
and the trajectory analysis for that particle is 
stopped. 

Because the possibility of particle-particle inter- 
actions exists, for example, electrical attractions and 
repulsions, it is necessary to consider the simulta- 
neous motion of all particles within the control volume 
at a given time. Although we will not consider par- 
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title-particle interaction forces here (except for the 
collector charge neutralization phenomenon presented 
later in this paper), we will nonetheless consider the 
simultaneous particle motions. 

In general, there are two time steps in the simu- 
lation which must be considered. The first time step 
is necessary for the stable and accurate numerical 
integration of eqns (6) and (7). The second time step, 
or interval, is the duration between successive particle 
generations at the initial position surface. This time 
interval is related to the particle number flux as 

1 
r=----- 

V,GS 
(24) 

where V, is the free stream fluid velocity and C, is 
the bulk freestream number concentration of par- 
ticles. 

Thus, over each time interval given by eqn (24) a 
particle is generated at the initial surface with its 
position selected according to the uniform random 
number generator employed. The positions of all of 
the particles within the control volume are followed 
in time until they have either deposited or escaped. 

The testing procedure as described above is 
deficient in one aspect, namely, that the particle 
position center may not be at the exact center of the 
cubical element determined by eqns (21)-(23). There- 
fore, the testing procedure should only be invoked on 
the surrounding cubes in which particle-particle de- 
position is physically possible. This is easily accom- 
plished using a simple “rule-out” procedure prior to 
the actual test. 

Finally, we note that additional assumptions made 
in the present analysis include: (1) changes in the flow 
field around the collector due to deposited particles 
are neglected; (2) the system under consideration is 
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Fig. 3. Real-time simulation of particle deposition in the absence of electrostatic forces. The values of 
the input parameters are given in Table 1. 
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Fig. 4. Typical particle trajectories in the absence of electro- 
static forces corresponding to Fig. 3. 

isothermal, and the fluid is incompressible; and (3) 
the effect of re-entrainment of particles once they are 
collected, due to the imbalancing of shear and adhe- 
sive forces, has been neglected. 

In the simulation studies presented here the control 
volume was selected large enough such that no particle 
outside the initial position grid had the possibility of 
being collected. In addition, to conserve storage space, 
the initial position grid was located four collector radii 
upstream. This will introduce small errors in utilizing 
the infinite medium expressions of eqns (11) and 
(12) [ 161. However, in a practical application of the 
theory to the multicollector case, the control volume 
would be selected on the basis of the voidage (for 
example via a unit cell type model[ 17]), and the 
ambiguities mentioned above would disappear (also, 
see the discussion in Ref. [ 151). 

RESULTS AND DISCUSSION 

Typical simulation results utilizing the proposed 
methodology are shown in Figs. 3-10. The dynamic 
calculations were limited to approximately 400 par- 
ticles in total. Figure 3 shows a three dimensional plot 
illustrating particle deposition on a spherical col- 
lector considering the effect of gravity, drag and 
inertia only. The values of the input parameters 
corresponding to Fig. 3 are given in Table 1. Note 
that the plots are conveniently made by drawing only 
the surface cubes of the collecting sphere (part of the 
code 3 cubes) and all deposited particle cubes (code 
2 cubes). It is evident from Fig. 3 that the deposition 
of particles under the absence of electrostatic forces 
takes place only on the front half of the sphere, in the 
direction of flow. This result is expected from plotting 
typical particle trajectories for the system of Fig. 3, 
as shown in Fig. 4. 

In Fig. 5 the electrostatic force term is added to 
the equations of motion and collection of particles 
around the entire sphere is now observed (refer to 
Table 2 for the values of the input parameters for this 
case). The results in Fig. 5 are again expected from 
plotting the particle trajectories with the inclusion of 
the electrostatic force as shown in Fig. 6. Note that 
the effect of charge neutralization of the collecting 
sphere due to the deposition of oppositely charged 
particles is not included in Fig. 6. 

The total number of particles collected as a func- 
tion of time corresponding to Figs. 3 and 4 are shown 
in Figs. 7 and 8, respectively. As noted by Beizaie[l4], 
the chaotic nature of the plots is due to the random 
positions of the particles being considered. However, 
the present results show that under the conditions of 
large electrostatic forces the chaotic nature begins to 
disappear, since the initial particle position becomes 
less important. Note also from Figs. 7 and 8 the 
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Fig. 5. Real-time simulation of particle deposition with the inclusion of electrostatic forces. The values of the 
input parameters are given in Table 2. 
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Fig. 6. Typical particle trajectories with the inclusion of electrostatic forces corresponding to Fig. 5. 

differences in the magnitude of particles collected as 
a function of time. For example, at time t - 0.04 set 
only 10 particles were collected when the Stokes 
number was high and electrostatic forces absent; 
however, during the same time 75 particles were 
collected when electrostatic forces were present and 
the Stokes number was small. 

Although the above results illustrate the dynamic 
behavior by following the number of particles depos- 
ited as a function of time, in order to compare to 
previously given deposition calculations, the results 
should be expressed in terms of the single collector 
efficiencies. 

100 x Particles Deposited at Time t. 

Nst = 2.0 
K, = 0.0 
NG = 0.05 

80 x Particles Deposited at Time t. 
80 

20 

0 

20 
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0 0.04 0.08 0.12 0.16 0 0.02 0.04 0 06 0.08 

Time (t) Time (t) 

Fig. 7. Number of particles collected as a function of lime Fig. 8. Number of particles collected as a function of time 
corresponding to Fig. 3. corresponding to Fig. 5. 

Use of the aerosol dynamics simulation for deter- 

mining the single collector eficiencies 

As a check of the computational scheme devel- 
oped, some simulations were conducted to determine 
the limiting particle deposition trajectories. These 
were obtained in the usual fashion[6] with 
particle-particle deposition ignored. 

In Fig. 9 the results for the combined case of 
inertial and electrostatic forces are compared to the 
sum of the expressions for inertial deposition[6] and 
electrostatic deposition [ 181. This technique is known 

Ns, = 0.1 
K, = -1 .O 
No = 0.05 

I 
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Fig. 9. Comparison of the calculated clean collector efficiencies to previously reported resultsf6, IS]. 

as the principle of superposition, and it is clearly 
invalid for this type of system. A simple physical 
explanation is that the presence or absence of inertial 
forces makes little difference to the particle tra- 
jectories which result in collection by attractive elec- 
trostatic forces. 

From a probability point of view, the mechanisms 
of particle deposition in Fig. 9 are better regarded as 
independent events; thus 

tl - 1 - [(I - %N7)(1 - WfP)(t - %,)I. (25) 

As shown in Fig. 9, eqn (25) is in excellent agreement 
with the calculated values, except at large values of 
the electrostatic force. When K, assumes large nega- 
tive values with q > 1, particle collection takes place 
on the backside of the collector where the inertial 
force opposes the electrical attractive force; thus, eqn 
(25) would not be expected to hold. 

Although the above results show some interesting 
features of the clean collector efficiency, the major 
emphasis in this work is on the prediction of the 
transient behavior of aerosol deposition. The single 
collector efficiency in this case can be expressed in 
terms of the change in the number of particles 
deposited as a function of time, as 

*I(t) = (26) 

As an illustration, some simulations for the case of 
attractive electrostatic forces, with inertial and grav- 
itational forces, were carried out as shown in Fig. 10. 
The time dependent collector efficiencies were calcu- 

lated according to eqn (26), replacing the differential 
by AM/At, and selecting a time interval over which 
an appreciable change in AM would occur (0.2 set in 
Fig. 10). 

Two cases were considered in obtaining the results 
shown in Fig. 10. In the first case, the change in the 
net attractive force due to the deposition of op- 
positely charged particles is neglected. The single 
collector efficiency under this condition is shown to 
steadily increase with time, passing through and 
eventually exceeding the initial, or clean, collector 
efficiency value, as shown by the solid line. 

If, on the other hand, we account for the neutral- 
ization of segments of the collecting sphere surface by 
the deposition of oppositely charged particles we 
obtain the dramatic result shown in Fig. 10. Here, the 
net electrostatic force that any particle approaching 
the collecting sphere experiences is simply computed 
by first summing the repulsive forces between the 
approaching particle and any previously deposited 
particles (code 2 cubes); this value is then subtracted 
from the attractive force computed for the “clean” 
collecting sphere. Thus, the repulsive force con- 
tribution must be determined each time the particle 
is moved. Note that we have assumed that the initial 
charges on the sphere are bound charges, as in an 
insulator. In any event, the rapid drop in the single 
collector efficiency with time shown in Fig. 10, indi- 
cates the potential importance of charge neutral- 
ization phenomena, as well as the versatility of the 
present computational scheme in accounting for such 
effects. Certainly experimental verification of the 
results given here is warranted for future in- 
vestigations. 
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CONCLUSIONS 
A thorough analysis of particle deposition onto 

collecting surfaces requires the consideration of the 
time-dependent phenomena of particle build-up, ad- 
hesion and re-entrainment. 

In the present work, a theoretical approach to the 
prediction of particle-particle deposition phenomena 
(time-dependent particle build-up) on a spherical 
collector is given based on a discretization of the 
surrounding control volume into cubical elements. 
Several particle deposition problems are selected to 
exemplify the ease with which the control volume 
discretization technique can accommodate a variety 
of force term combinations. 

A dramatic example considered is the charge neu- 
tralization of an initially uniformly charged sphere by 

Table 1. The values of the input parameters employed in 
Figs. 3, 4 and 7 

STOKES NUMBER, NSt - 2.0 

ELECTROSTATIC FORCE PARAMETER. Kc = 0.0 

GRAVITATIONAL NUMBER, NG = O.D5 

COLLECTOR DIAMETER, Dc = 25 micron 

PARTICLE DIAMETER, d = 1 micron 
P 

the deposition of oppositely charged particles. 
Although the force term is time-dependent in this case, 
little complication is introduced into the aerosol 
dynamics simulation. Future work extending the con- 
cepts of this paper will involve the inclusion of 
Brownian motion (Brownian dynamics) and particle- 
particle interactions prior to any deposition[ 15, 191. 

NOTATION 

C, particle-slip correction factor 
Coz free stream particle number concentration, 

number of particles/c& 
d, diameter of the particle, cm 
g acceleration due to gravity, cm/s* 
1 x coordinate of a particle position in the 

control volume 

Table 2. The values of the input parameters employed in 
Figs. 5, 6 and 8 

STOKES NUMBER. NSt = 0.1 

ELECTROSTATIC FORCE PARAMETER, Kc - -1.0 

GRAVITATIONAL NUMMBER. NG = 0.05 

COLLECTOR DIAMETER, Dc = 25 micron 

PARTICLE DIAMETER, d 
P 

= 1 micron 
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1C x coordinate of the sphere center 
J y coordinate of a particle position in the 

control volume 
JC y coordinate of the sphere center 

K z coordinate of a particle position in the 

rj single collector efficiency 

p viscosity of the fluid, g/cm-s 
pa density of the fluid, g/cm3 
pp density of the particle, g/cm3 

control volume 
KC z coordinate of the sphere center 

K, dimensionless electrostatic parameter 
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