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Abstract 

Two parallel nodal finite element algorithms for solving the Navier-Stokes equations are developed The algorithms are based on operator 

splitting of the original Navier-Stokes equations. Linear basis functions are applied in the finite element formulation of the equation system. 

The finite element grid is generated by the T&Tree grid generation algorithm. The grid is adapted to the solution according to the element 

Reynolds number. The length of each time step is computed from the Courant number. The linearized equation system is solved iteratively 

by conjugate gradient algorithms. The most time-consuming part of the conjugate gradient algorithm, the generation of the right-hand side of 

the equation system and the matrix-vector multiplication, is distributed to satellite processors. The number of processors which can be used 

by the parallel algorithm is only limited by the number of finite elements or the number of processors available. The parallel algorithm can 

either select a fixed number of satellite processors or the number of satellite processors can be adapted to the amount of work performed 

during the computations. 0 1998 Elsevier Science S.A. All rights reserved. 

1. Introduction 

The algorithm developed is based on the T&Tree adapted grid generator [ 1,2]. This grid generator uses 
triangles in two dimensions and tetrahedra in three dimensions as tree leaves. The Tri-Tree grid generator has 

the same properties as the act tree [3,4], with the exception that the act tree uses rectangles in two dimensions 

and rectangular boxes in three dimensions as basic elements. 

The two numerical solution algorithms use operator sphtting. The first algorithm splits the Navier-Stokes 

equations in three equations, the velocity equation, the pressure equation and the mass equation [5,6]. The 

second operator splitting algorithm splits the Navier-Stokes equations in four equations, the diffusion equation, 

the convection equation, the pressure equation and the mass equation [7]. Both these algorithms are nodal 

algorithms which require no storage of the equation matrices. The velocity equation, the diffusion equation and 
the pressure equation are solved with diagonal preconditioned conjugate gradient algorithms. The convection 
equation and the mass equation are solved by lumping the mass matrix and the inversion of the diagonal lumped 
matrix. 

In the finite element algorithm developed, the generation of the right-hand sides in the equation system and 
the matrix-vector multiplication in the conjugate gradient algorithms, reveal good parallel properties. The most 
time-consuming part of the algorithm, the conjugate gradient solver, is parallelized. The right-hand side of the 
equation system and matrix-vector multiplication are performed by distributing a number of finite elements to 
satellite processors which compute the corresponding partial right-hand side and matrix-vector multiplication. 
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The results of the right-hand sides and multiplications from each satellite processor are then assembled in the 
main computer. 

The idea behind parallelizing is to have N processors to cooperate on a task. Ideally, if it takes one processor 

T timesteps to do a job, then N processors can do the same job in T/N timesteps. Another motivation by 

parallelizing is that it may be possible to run larger problems by distributing the problem on several processors 
rather than to run the problem on one single processor. 

Up to some level the speed will increase as more processors are added. However, the cost of administrating 

multiple processors and the bandwidth of the network will limit the speed. At some point the cost of 

parallelizing will be higher than the gain, and the speed will be reduced. 

The efficiency of parallelization, however, mainly depends on the parallel properties of the numerical 

algorithm. A very efficient parallelization algorithm have been developed by Stagg et al. [8]. These authors use 

multiple instruction, multiple data (MIMD) computers and obtain a fixed solution time as the computational 

work is scaled with the number of processors in use. 

The main computer and the satellite processors may be ordinary pentium processors connected with an 

ordinary ethernet. The parallel computing environment is therefore standard in most research facilities and the 

limitations of the parallel processing system are the number of processors available and the communication 

speed of the ethernet. 

2. The Navier-Stokes equations 

The nonlinear Navier-Stokes equations are given by 

p$--pV2v+pv.Vp=0 in 0 

-v-v =o in 0 
(1) 

where v is the velocity vector, p is the pressure, ,u is the viscosity coefficient and p is the density. The first 

equation is the equation of motion which contains time, diffusion, convection and pressure terms. The second 

equation is the equation of continuity. 

2.1. The pressure split algorithm 

The original Navier-Stokes equation can be reformulated into three equations which describe the fluid flow. 

In the reformulated version below, there is one excessive equation, which simplify the numerical solution 

algorithm, 

p$--pV2v+pv.Vv+Vp=0 in 0 

The finite element formulation of the 

F, = pL;~+/LvLi.vv+ 

in 0 

in 0 

pressure split equations become 

pL,v -Vu - VL,p 1 I dn - fin/*Li$dSfl=O 

F, = I[ n 
VL;Vp + pLiV+ 1 I d6! - 

6fl 
Li$dS.O=O 

F, = 
J-L R 

pL;$+Vp d.C?=O 1 
The three equations, F,, F, and F, are then solved sequentially 

(2) 

(3) 

by the nonlinear Newton algorithm, 
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dF” 
& A$+’ = -F: ?$A$” = _F:, 

(4) 

By replacing the pressure by d” =p” -p”-’ [9], divergence free flow is obtained. The Newton formulation of 
the pressure split equations then becomes 

4 PL, z + ,uVL~VL~ + PL;<VZJ”L~ + v”VLj) 1 dv AU”+’ 

= -1 [,uVL;Vv”+pL;vn4’v”+VLip”]dR 
n 

VL,VLj da A$‘+] = - 
V*v” 

PL; At - + VL,Vd” da 
I 

Lj 
pL,KdfiAv n+l 

The above equations are solved sequentially and only one Newton iteration is applied to the nonlinear velocity 

equation F, . 

2.2. The velocity-pressure split algorithm 

The original Navier-Stokes equation is reformulated into four equations, 

p$pV2viVp=0 in 0 

p$-pvVv=O in R 

av2p-pv.~=o in 0 

pg+vp=o in R 

The finite element formulation of the velocity-pressure split equations 

F, = 
I[ R 

pL,$+L;Vv-VL,p da-- 1 I a0 
pL,$dUI=O 

F, = 
II R 

pL,$+pL;v4’v da=0 
I 

F, = 
I[ R 

pL,V. g + VL,Vp 1 I da - 
60 

Li$dW=O 

F, = pL, $ + Vp 1 da = 0 

becomes 

(7) 

The four equations, F,, F,, F, and F,, which are linear, are solved by the nonlinear Newton algorithm, 

5 av AU”+’ z.z -F; 
dF" 
$ Au”+’ = -FE 

dF" 
+jp”+’ = -F”p i!$&,n” = _F; 

(8) 

Divergence free flow is achieved by replacing the pressure by d” = p” - p”- ’ [9]. The Newton formulation of 
the pressure split equations is 
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I[ R 
pLi 2 + pVLiVLj 1 d&? AU = - n [pVLi -VU” + VLip”I dfi i 

I Lj R phi z d&? Au = - 

VLi VL, da Ap = - 

Lj 
pL,zdfiAv= - 

- + VL,Vd” d0 
1 

(9) 

Let nd be the spatial dimension, then the exact integrals above can easily be computed both in two and three 

dimensions by the formula [2,10] 

I nLpLpL:= 
a!P!y! 

(a + p + y + n,)! nd!n (10) 

The boundary conditions are either the velocity, v, specified or C~V/&Z = 0. The boundary integrals 

J,, pL,(W/&z) da0 in (7) at external boundaries are then zero. Since the pressure in Eq. (7) is replaced by 
d” =p” -p”-‘, the normal derivative ad/&x = 0 and the boundary integral J,, Li(ad”/&) d8Q is zero. 

The advantage of using the nonlinear Newton formulation for solving linear equations is that the boundary 

conditions for the correction introduced in the equation system are always zero, while the actual boundary value 

is inserted in the initial solution vector. 

The pressure computations are based on the continuity equation for each element. Therefore, the final pressure 
has to be calculated from the Poisson equation with appropriate boundary conditions. The Poisson equation is 

derived from the differentiation of the Navier-Stokes equations and by substitution of the continuity equation. 

3. Numerical solution algorithms 

In the pressure split algorithm (3), the Navier-Stokes equations are split in three equations, the velocity 

equation F,, the pressure equation F, and the mass equation F,. The velocity equation is solved by the diagonal 

preconditioned nonsymmetric CGSTAB conjugate gradient algorithm. Then, the pressure is found from the 

pressure equation F, by the diagonal preconditioned symmetric conjugate gradient algorithm. The pressure 

correction is performed through the mass equation F,. The mass matrix in F,,, is lumped and the equation is 

solved by the inversion of the lumped diagonal mass matrix. 
In the velocity-pressure split algorithm (7), the Navier-Stokes equations are split in four equations, the 

diffusion equation F,, the convection equation F,, the pressure equation F, and the mass equation F,. The 

diffusion equation is solved by the diagonal preconditioned symmetric conjugate gradient algorithm. The 

convection equation is solved by lumping the mass matrix and the inversion of the lumped diagonal. The 

pressure is then found from the pressure equation F, by the diagonal preconditioned symmetric conjugate 
gradient algorithm. The pressure is then corrected by lumping the mass matrix in the mass equation. 

The iterations in the operator split algorithms (3) and (7) are executed sequentially. When the split algorithms 
have converged or after a fixed number of split iterations, the grid is adapted to the solution. The grid adaptions 
are performed iteratively outside the split iterations. 

The main computational difference in the two algorithms is that the pressure split algorithm (3) is nonlinear 
while the velocity-pressure split algorithm (7) is linear. The pressure split algorithm therefore requires more 
work in generating the matrix coefficients than the velocity-pressure split algorithm. 

The time-consuming parts of the algorithms described above are the conjugate gradient equation solvers. 
Within the conjugate gradient solvers the computation of the right-hand sides and the matrix-vector 
multiplications are dominant in time consumption. Parallel computations are therefore implemented for the 
computations of these two arithmetic operations. 
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4. Parallel algorithm 

The structure of a main processor with N satellite processors are shown in Fig. 1. The communication in the 

network is only between the main processor and each of the satellites. The data is transmitted to each satellite 

through the network across communication sockets. Theoretically, the number of satellite processors which can 
be activated is only limited by the number of finite elements present in the grid. The number of satellite 

processors in the computational network can be fixed and activated before the computations begin or the satellite 

processors can be allocated and deallocated dynamically during the computational procedure. 

The parallel computation is performed at finite element level. After the grid has been adapted to the solution, 

the number of elements are evenly divided and the elements are distributed to each satellite processor, as shown 

in Fig. 2. The assignment of elements to the different processors are determined by the order which the elements 

Fig. 1. This shows the structure of processors with the main processor communicating with satellite processors. The number of satellite 

processors can be changed during the computations. 

Fig. 2. This shows the distribution of finite element grids to eight satellite processors. The complete grid is shown in the middle. The total 

number of elements in the grid is 9426. The number of elements is 1179 in satellites l-7 and 1173 in satellite 8. 
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Fig. 3. This shows the time schedule for computations in the main processor, sending data to the satellites, computations in the satellite 

processors and reception of data from the satellite processors. M denotes the main processor and S the satellite processors. Tc is the 

computation time, TS is the data sending time and TR is the data receiving time. The time Gap indicates that the main processor is waiting 

for the satellite processors to finish their computations. 

are generated by the Tri-Tree grid generator. In the distribution procedure, the nodes are renumbered and only 

those nodes needed in each satellite processor is communicated. The element data is sent to the satellite 

processors only once for each grid, after the grid adaption is performed. 

The initial step of the conjugate gradient solver is to compute the right-hand side of the equation system. 

During the conjugate gradient algorithm, the diagonal of the equation matrix and the lumped mass matrix are 

needed. These vectors are also computed together with the right-hand side. In the transmission of data to each 

satellite processor, only the data associated with the elements belonging to the satellite is sent. When the result 

of the computations are returned to the main processor, the vectors from the satellites are assembled in the 

correct positions in the corresponding global vectors by the main processor. The data needed by the satellite 

processor in the matrix-vector multiplication is also the solution vector and the vector which is to be multiplied 

by the corresponding matrix. 

Fig. 3 shows the time events and the time intervals for the computations and communications between the 

main and the satellite processors. The data to each of the satellite processors is distributed sequentially. Each 

satellite processor starts its computations simultaneously with the distribution of data to the next satellite 

processor. The amount of CPU time used by the first processor should therefore not be greater than the total 

time for transmitting data to the subsequent processors. The main processor will then be able to receive the 

results from the first satellite processor immediately after finishing the distribution of data to the last satellite 

processor. If the satellite processors use longer time, the main processor will be idle a certain time interval in 

waiting for the results from the satellite processors. 

5. Adaption algorithms 

There are three important parameters in the parallel solution algorithm for the Navier-Stokes equations. 

These parameters are the Reynolds number, the Courant number and the number of satellite processors, 

Re = PlkJ w 
PIlv*vII 

co = PllV +Jll N 
vu s 

I I Pat 
(11) 

The Reynolds number is defined as the ratio of convection to diffusion. The Courant number is defined as the 
ratio of convection to acceleration. The Reynolds number reflects the degree of nonlinearity in the equation 
system. The Courant number indicates the degree of hyperbolicity in the equation system. The Reynolds number 
and the Courant number are computed for each element. 

5.1. Grid adaption 

The element Reynolds number Re, is computed for each T&Tree element from the expression given below. 
Let LF be the linear basis function evaluated at the geometrical center of the element. Then, the different 
parameters become 
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Re’= 

(12) 

Numerical experiments, Wille [lo, 111, has shown that l Re < 10 in two spatial dimensions and l Re < 30 in three 

dimensions in order to obtain a converged solution for the Navier-Stokes equations. In the present work, the 

element Reynolds number limit is cR, = 1 for refinement and recoarsement of the grid. 

5.2. Time adaption 

The element Courant number Co, is computed for each T&Tree element 

(13) 

For explicit time schemes, it has been shown theoretically that the time marching scheme remains stable if 

l c0 < 1 [ 121. These values have been derived for whole geometries where characteristic length and mean 

velocity are applied in the derivations. The element Courant number has experimentally [7] been found to be in 

the range of 1.0 to 2.5 when divergence occurs. In the present work, the Courant number limit is chosen to be 

0.3. The length of the timestep is computed from 

At < 0.2 At, /Max(Co,) (14) 

where At, is the timestep in the computation of the element Courant Number, Co,. 

5.3. Satellite adaption 

The optimal choice of the number of satellite processors will be to adapt exactly the number of satellite 

processors which make TGap = 0 in Fig. 3. Assume that the sending and receiving time are equal, T,, = TR,. Let 

Tci be the CPU time used by satellite processor i, T, = 2Tsi be the total time for sending data to the satellite 

processors and N, the number of satellite processors. Then, a robust adaption criterion will be 

_& N, - 1 

IV, CT, N, 
or Ns=g+ 1 

Sl 
(15) 

The satellite adaption is performed after the grid adaption. The number of satellites needed in the computations 

is computed from Eq. (15). The number of satellite processors can be both increased and reduced as the number 

of finite elements varies during the computations. 

6. Experiments 

The numerical algorithms are tested for the driven cavity flow. The density of the fluid is p = 1000 and the 
viscosity is p = 0.001. 

The real time for solving a computational problem when applying a multiuser processor system depends on 
several factors, as for example the external computer load and the varying load of the operating system. Such 
factors are beyond the control of a single user. In the test experiments, the main processor was running on one 
computer and all the satellite processors were running on other computers. Since only a limited number of 
computers were available, several satellite processors were running on the same computer. 

Experiments show that the CPU time used in each satellite processor and the communication time between 
the main and the satellite processors, varies slightly even if the number of element data is the same in each 
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satellite processor. The sending times and receiving time of the data between processors varies only slightly and 
they are therefore considered equal. A robust measure for satellite CPU time and communication time are 
therefore based on the average CPU time in all satellite processors and the average sending and receiving time. 

6.1. Fixed number of satellite processors 

The real computational CPU time is calculated from Fig. 3. The computational CPU time, T,,,, must be 
considered in two cases 

ZTc; > N, - 1 
- 7 -&i 

4 

T 
tot 

=T 
CM 

I -&i I NSfl 

x%Tci < N, ” 1 

N, 
7 -%t 

5 

- 7 sTSi 
Ns 

T,,, = Tc,, + 2 . ZTsi 
S 

(16) 

When processing time in the satellite processors is greater than the total data sending time, the total CPU time is 
the sum of the CPU time in the main processor, the average satellite processor time and sending time for all 
satellite processors. When processing time in the satellite processors is less than or equal to the total data 
sending time, the total CPU time is the sum of the CPU time in the main processor, the sending time and the 
receiving time. However, the sending and receiving times are considered equal so that the total time is the CPU 
time in the main processor and twice the sending time. 

The purpose of the following experiments is to measure the different time intervals. The measurements are 
performed for Reynolds number 400 and Reynolds number 800. The number of all iterations are fixed to make 
the results comparable. The number of linear iterations NL = 50, the number of operator split iterations No = 10 
and the number of grid iterations No = 2. The grid consists of 1693 elements in the first and 1967 elements in 
the second grid iteration for Reynolds number 400. The grid consists of 4835 elements in the first and 6300 
elements in the second grid iteration for Reynolds number 800. The average number of elements is 1840 for 
Reynolds number 400 and 5568 for Reynolds number 800. The number of elements for Reynolds number 800 is 
2.9 times the number of elements for Reynolds number 400. 

Fig. 4 shows the estimated real CPU time for the velocity-pressure split algorithm for Reynolds number 400 
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Fig. 4. This shows the estimate of the total real time in seconds with the velocity-pressure algorithm as a function of number of satellite 

processors. Curve 1 shows the estimated real time for Reynolds number 800. Curve 2 shows the estimated real time for Reynolds number 

400. 

Fig. 5. This shows the times in seconds for the velocity-split algorithm as a function of number of satellite processors for Reynolds number 

400. Curve 1 shows the estimated real time, curve 2 shows mean satellite CPU time, curve 3 shows the main processor CPU time and curve 

4 shows the sending time for data transmission to the satellites. 
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and Reynolds number 800. The minimum CPU time for Reynolds number 400 is 25 s and Reynolds number 800 

is 75 s. As the number of elements for Reynolds 800 is 2.9 times the number of elements for Reynolds number 

400, these results indicate a linear increase in CPU time as a function of number of elements. The minimum 

CPU time for Reynolds number 400 occurs for 16 satellite processors and the minimum CPU time occurs for 32 

satellites processors for Reynolds number 800. Since the number of elements for Reynolds number 800 is 2.9 
times the number of element for Reynolds number 400, the increase in number of satellite processors is less than 

2.9 times the number of satellite processors for the minimum CPU time for Reynolds number 400. This 

fortunate effect can be explained by relatively large overhead cost in CPU time when the number of elements is 

small. 

Fig. 5 shows curves for the estimated CPU time for the computations, the mean satellite CPU time, the main 

processor CPU time and the sending time for data transmission for Reynolds number 400. As expected, the 

results show that the mean satellite CPU time is decreasing with an increasing number of satellite processors. 

The main processor CPU time is approximately constant until a certain number of satellite processors is reached. 

Then, the main processor CPU time increases with the increase in number of satellite processors due to more 

work in assembling, disassembling of the grid and communicating vectors. The sending time of data is also 

approximately constant until a certain number of satellite processors is reached, Then, the sending time is 

increasing due to the increase in transmission overhead for communicating with each satellite processor. The 

satellite CPU time curve and the sending time curve are crossing each other close to the minimum of the 

estimated total CPU time. 

Fig. 6 shows curves for the estimated CPU time for the computations, the mean satellite CPU time, the main 

processor CPU time and the sending time for data transmission for Reynolds number 800. These time vs. 

number of satellite processor curves have similar properties as those for Reynolds number 400. The mean 

satellite CPU time is decreasing with an increasing number of satellite processors. The main processor CPU time 

is constant until a certain number of satellite processors is reached, and the main processor CPU time increases 

with the increase in number of satellite processor. The first part of the sending time of data curve is constant and 

starts to increase when the optimal number of satellite processors is reached. The satellite CPU time and the 

sending time curves are crossing is confirmed to be close to the minimum of the estimated total CPU time. 

Fig. 7 displays the simulation results for the pressure split algorithm for Reynolds number 800. The minimum 

estimated CPU time for the pressure-split algorithm presented by Goda [5] is approximately 100 s. The 
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Fig. 6. This shows the times in seconds for the velocity-split algorithm as a function of number of satellite processors for Reynolds number 

800. Curve 1 shows the estimated real time, curve 2 shows mean satellite CPU time, curve 3 shows the main processor CPU time and curve 

4 shows the sending time for data transmission to the satellites. 

Fig. 7. This shows the times in seconds for the pressure-split algorithm as a function of number of satellite processors for Reynolds number 

800. Curve 1 shows the estimated real time, curve 2 shows mean satellite CPU time, curve 3 shows the main processor CPU time and curve 

4 shows the sending time for data transmission to the satellites. 
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minimum estimated CPU time for the velocity-pressure split algorithm presented in Fig. 6 is 75 s. As the level 
of convergence for the two algorithms with fixed number of iterations is of the same level [7], the estimated 
CPU time of the velocity-pressure algorithm is 75% of the pressure split algorithm. Otherwise, the time vs. 
number of satellite processor curves for the pressure split algorithms reveals similar properties as for the 
velocity pressure split algorithm. 

6.2. Adapted number of satellite processors 

The convergence criteria for the different iterations in the dynamic adaption of the number of satellite 
processors are chosen as follows. The linear conjugate gradient iterations is .q = 0.0001. The limiting number of 
linear conjugate gradient iterations is NLmin = 5 and NLmax = 50. The maximum number of operator split 
iterations is always No,,, = 100. There are therefore two possibilities for exiting the linear and nonlinear 
iterations. The iterations are either stopped when the convergence criterion is reached or when the number of 
iteration limits is reached. The number of grid adaption iterations No at each Reynolds number is 10. 

-%i 
N”==+l (17) 

The size of the simulations is shown in Fig. 8. An increase in the Reynolds number with a factor two also 
increases the number of elements and nodes by the same factor. At Reynolds number 3200 the number of 
elements is 179 001 and the number of nodes is 89 563. The number of degrees of freedom for Reynolds number 
3200 is 268 689. 

Fig. 9 shows the number of elements, the number of Tri-Tree refinements and recoarsements for each grid 
iteration. The number of refinements and recoarsements show peaks at the increase in Reynolds number. The 
increase in number of refinements and recoarsements simultaneously indicate that the concentration of refined 
elements moves towards the cavity boundary with increasing Reynolds number [2]. 

In the first grid iteration after an increase in the Reynolds number by a factor 2, there are no estimates for the 
mean satellite CPU time and sending time of data to the satellite processors for the new Reynolds number. Thus, 
in the first grid iteration, the number of satellite processors used is the same as for the previous Reynolds 
number. For the second grid iteration at each Reynolds number the appropriate times for estimating the number 
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Fig. 8. This shows the number of elements, curve 1, and the number of nodes, curve 2, for the different grid iterations at each Reynolds 
number. 

Fig. 9. This shows the number of elements, curve 1, the number of Tri-Tree refinements, curve 2, and the number of T&-Tree 

recoarsements, curve 3, for each grid iteration. 



S.0. Wille, D. Skipitaris I Comput. Methods Appl. Mech. Engrg. 161 (1998) 215-228 225 

60 .. 
f- 

50 .. 

40 .. 

30 .- 

loo0 
600 

400 

200 

loo 

z 
20 

IO 

20 .. 

100 200 400 800 1600 3200 6400 100 200 400 800 1600 3200 6400 

Fig. 10. This shows the number of satellite processors used at each grid iteration. 

Fig. 1 I. This shows the CPU time used in the main processor, curve 1, for computations and the CPU time used for grid adaption, curve 2. 

of satellite processors were measured and the selection of the number of satellite processors is given by Eq. 

(13. 
Fig. 10 shows the number of satellite processors at each grid iteration. The number of satellite processors 

demonstrates oscillations after an increase in Reynolds number. For the highest Reynolds numbers, these 
oscillations disappear after some grid iterations. In the transition from one Reynolds number to the next, the 

same number of satellite processors is used in the first grid iteration at the new Reynolds number. However, a 

better estimate for the optimal number of satellite processors for the initial iteration at each Reynolds number 

will be sought. 

Fig. 11 shows the comparison of CPU time used in the numerical solution algorithm and the CPU time used 

in the grid adaption algorithm. The figure shows that the grid adaption algorithm is faster than the numerical 
algorithm. However, parallelization of the grid adaption algorithm will increase the efficiency of the total 

algorithm. 

Fig. 12 shows the estimated real CPU time, the effective computational CPU time in the main processor, the 
average satellite CPU time and the total data sending time. The figure indicates that the estimated real CPU time 

800 

Fig. 12. This shows the estimated real CPU time, curve 1, the effective CPU time in the main processor, curve 2, the average satellite CPU 

time, curve 3, and the total sending time, curve 4. 

Fig. 13. This shows the estimated real time as a function of the number of elements. 
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Fig. 14. This shows the estimated real time for a sequential algorithm, curve 1, and the estimated real time for the parallel algorithm, curve 

is only a little longer than the effective main processor CPU time. This means most of the CPU time in the main 
processor is used in the communication between the main processor and the satellite processors. The 
parallelization is therefore very efficient. The satellite processor sending time and mean satellite processor CPU 
time are almost equal. The small difference is due to the number of satellite processors computed from the 
previous time measuring period. 

/ / I , 

Fig. 15. This shows the velocity vectors (left) and the pressure isobars (right) for Reynolds number 1600. The solution is computed by the 

nodal velocity-pressure split algorithm. 
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Fig. 13 shows the estimated real CPU time as a function of the number of elements in the grid. The figure 

shows an advantageous linear relation, the estimated real CPU time increases linearly with the number of 

elements. 
Fig. 14 shows the comparison of estimated CPU time for a serial and a parallel computation. The serial 

computation time is obtained by adding the satellite processors CPU time and the CPU time for the main 

processor. The parallel computation time is obtained from Eq. (16). The figure shows that the parallel 

computations are approximately six times faster than the serial computations for the highest Reynolds number. 

Fig. 15 shows the solution of the cavity flow problem in terms of velocity vectors and pressure isobars for 

Reynolds number 1600. 

The gain in parallelization can be improved both by improving the parallel numerical algorithms and by 

improving the speed of the processors and communication network. As seen from Eq. (16) the efficient CPU 

real time is strongly dependent on the CPU time in the main processor and the time for sending and receiving 

data. If the communication speed of the network can be improved, more satellite processors can be attached for 
increased efficiency. 

7. Discussions 

In the present work a nodal finite element algorithm has been presented. The nodal algorithm saves the 

storage space which is usually needed in implicit algorithms. The saving in computer storage by the nodal 

algorithm makes it possible to solve problems which can be several orders of magnitude larger in size than for 

implicit algorithms where the equation matrices are stored. 
The nodal algorithm has been implemented for parallel processing. The parallel processing is performed on 

ordinary pentium processors and does not require the power of expensive supercomputers. The communication 

between the main processor and the satellite processors are done on standard ethernet. For extremely large 

problems, processors which are geographically located elsewhere can be adopted in the parallel processing. 

The experiments show that the estimated computational time as a function of the number of satellite 
processors has a minimum. The number of satellite processors for which this minimum occur can be predicted 

and dynamically adjusted from measurements of the satellites CPU time and data transmission times. 
Although the parallelization of the numerical algorithms play an important role in gaining efficiency in the 

computations, the efficiency depends on both computational and communication network speed. 
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