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Abstract-Within the framework of the standard k--E-( T”) model of turbulence, self-similar equations 
for the velocity and temperature fields of a plane jet have been integrated numerically. Tables of solutions 
for velocity, temperature, kinetic energy of turbulence, rate of its dissipation, and for the mean square of 
temperature fluctuation at different Prandtl numbers are presented. The quantitative parameters for the 
evolution of mean and turbulent characteristics of free jet flows have been determined. A new numerical 
solution scheme for a non-similar partial differential equation is described. Comparison between the results 

obtained and experimental/numerical data of other authors is made. 

1. INTRODUCTION 

JET LIQUID and gas flows play an important role in 
natural and engineering hydrodynamic systems. Be- 
cause of this, for more than a century the theory of 
turbulent jets and its practical applications have attrac- 
ted the attention of specialists working not only in the 
field of hydromechanics, but also in such branches 
of science as oceanology, meteorology, physics of 
the atmosphere, etc. The interest to the problem of 
turbulent jet flows was spurred at the end of the 
1970s-beginning of the 1980s by the rapid devel- 
opment all over the world of power engineering and 
industrial production accompanied by the growth of 
the large amounts of technological waters and various 
kinds of combustion products that usually enter the 
ambient water and air media in the form ofjet wastes. 
The understanding and prediction of the laws that 
govern momentum and heat transfer in discharged 
streams allows one not only to predict the zones with 
elevated concentrations of particular substances and 
their lifetime under different conditions, but also to 
control the process itself. The latter stimulates the 
development and refinement of the mathematical 
models and methods for analyzing different types of 
jet flows. 

For a long time, the study of laws governing the 
development of turbulent jets, along with the exper- 
imental ways of solving the problem, was based on 
the so-called gradient models of turbulence that relied 
on the analogy with laminar flows. These models 
made it possible to quite generally describe a par- 
ticular phenomenon, but they involved quite.a num- 
ber of arbitrary ‘floating’ constants which were deter- 
mined in the process of matching the predicted results 
with experimental data. As a result, the applicability 
and use of the solutions constructed was usually lim- 
ited by those conditions under which the test data 
were obtained. 

This has compelled many scientists to undertake the 
development of new, more improved models which 
employ differential equations of the kinetic energy k 
and of the rate of its dissipation E in the closure 
problem. Since in the majority of applied studies of 
turbulent shear flows the (k-&)-model made it pos- 
sible to combine a relative simplicity with a sat- 
isfactory physical realism, it has become most popular 
at the present time. Checks have revealed that it is 
more general than gradient models, since with the 
same initial empirical information it allows one to 
calculate a number of different engineering problems 
(jets, wakes, channel flows, etc.). 

However, as regards the quantitative results given 
in the available publications (a certain stage in the 
development of the theory of turbulent jets has 
received its treatment in ref. [l]), it turns out very 
often that the numerical data obtained in the analysis 
of identical problems do not agree amongst 
themselves. Naturally, this results from the employ- 
ment of different approaches to numerical solution 
(selection of a numerical algorithm), the number and 
distribution of grid points, limitation on the com- 
putational domain of the flow from different approxi- 
mations of differential equations proper and also from 
the somewhat different initial empirical coefficients. 

From this it follows, in particular, that a good 
coincidence of any computational method with the 
results of one experiment or with a small group of 
tests does not always guarantee its reliability. 

Mereover, the unavailability of a standard intro- 
duces arbitrariness not only in the interpretation of 
quantitative results obtained in different works, but 
of the possibilities of the mathematical model as a 
whole. In. these conditions, of great theoretical and 
applied importance are the approaches to the analysis 
of the problems which allow one to readily distinguish 
the errors introduced by numerical procedures from 
those associated with the simulation of turbulence. In 
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NOMENCLATURE 

jet half-width 

specific heat at constant pressure 
flow momentum 

kinetic energy of turbulence 
heat flux 
mean square of temperature fluctuation, 
(T’?) 

jet width at exit 
temperature, AT = T- T, 

temperature fluctuation 
turbulent fluctuations of velocity u 
turbulent fluctuations of velocity r 

longitudinal coordinate 
transverse coordinate. 

Greek symbols 
c dissipation rate 
,* i self-similar coordinate 
1: f turbulent viscosity coefficient 

/’ density 

0, turbulent Prandtl number. 

Subscripts 
x surrounding fluid 
( axial line of jet 
* jet boundary 
0 exit jet cross-section 

; 
refers to velocity 

refers to temperature 

particular, one such approach is the deviation and 
construction of self-similar solutions for different 

kinds of models [2,3]. From a mathematical view- 
point, the self-similar solutions are convenient 
because partial differential equations can be reduced 
to ordinary differential equations, the solution of 
which can be obtained with a high accuracy. 

In the present paper, self-similar equations for the 

scalar field of a plane free jet, which are based on the 
use of the k -E - (T”) model of turbulence, are given 
and numerically integrated. Detailed tables of the 

results obtained are presented which can be used for 
evaluating the accuracy of numerical data obtained 
within the framework of ordinary finite-difference 
schemes for the asymptotic area of a plane jet flow. A 
new effective method for solving a non-self-similar 
problem is suggested which is based on the intro- 
duction of mathematical variables in which the prob- 
lem of finding unknown functions, that describe the 
development of flow from the profiles prescribed at 

the nozzle tip to the asymptotic distributions, is 
reduced to the analysis of a system of first-order ordi- 
nary differential equations. Comparison of the results 

of the present calculations with self-similar solutions 
and also with numerical and experimental data of 
other authors is carried out. 

2. STATEMENT OF THE PROBLEM 

Let u and v be the averaged velocity components 
directed along (x) and normally to (y) the jet axis. It 
is assumed that the flow is steady and that it satisfies 
the boundary layer approximation. The Reynolds 
numbers are regarded to be rather high, so that the 
effect of molecular viscosity in explicit form has turned 
out to be insignificant. Then, the equations of con- 
tinuity, momentum and energy can be written down 
in the form 

(1) 

With the use of the k-E- (T”)-model of turbu- 
lence, the main quantities that characterize the tur- 
bulent transfer are taken to be the local values of the 

kinetic energy k, rate of its dissipation E and the mean 
square of temperature fluctuations (T1’), which 
satisfy the following model equations : 

U 

-L’<,, ; ( T’2) (2) 

where c,,, c,~. and c,, , are additional constants of the 
problem. Moreover, ok, c,, cr,, and o,, are the turbulent 
Prandtl numbers for k, ET, and (T”), respectively. 
Next, the model is closed by an expression for tur- 
bulent viscosity 

Equations (l))(3) form a system of partial differential 
equations which involves seven empirical constants 

c/1 = 0.09, (‘, , = 1.44, ct.? = 1.92. crI = 1.0, 

fJ, = 1.3, (“, I = 1.25. (TV = 0.6923. (4) 
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And, finally, the statement of the problem is com- equations (l)-(3), (5b), and (6), a system of ordinary 
pleted with the formulation of initial and boundary differential equations will be written by the standard 
conditions for the velocity and temperature fields of technique : 
a plane free jet 

ll = Ug, T= To, k=k,, c:=gO, q--q0 

when O<JJ<;, 1 a* ’ 
’ 

s = 0 -C-a) cr, b 

u = 0, T= T,., k = 0, E = 0, q = 0 
’ 

when To 
-2- < )’ < (r; 

+$y+if’h=o 

(Sal 

du dk Se dT 3q o 
*~=ay=&=ay=iiv=ay:: 

u,k,E,q-+O,T-+ T,. 

3. SELF-SIMILAR SOLUTIONS 

Since this section will deal with the character of 
change of the basic quantities for the asymptotic (self- 
similar) region of the jet flow development, initial 
conditions (5a) should be replaced by the integral 
relations 

s .r* 

I:” = 2p 
0 

u*dy, Qo = 2pC, 
s 

**uATdy (6) 
0 

that express the conservation laws for momentum and 
energy fluxes through a plane perpendicular to the jet 
axis. The solution of the above-stated problem will be 

+ i- s h’* = 0 (9a) 
I 

with boundary conditions 

(~0: ,f=f‘“=:a’=:h’=c’=h’=O 

r 
4-i*: f’,a,b,c,h-+O (9b) 

and integral conditions 

2 “f’*d[= 1, 
s 

2 
s 

‘*f’hd:= 1. (9c) 
0 0 

Relations (9) form an essentially non-linear two-point 
boundary-value problem in which the value of 

I J L;‘X 

(y* is the line separating the turbulent zone from 
the region of irrotational flow) is also unknown and 
should be found in the process of integration. More- 
over, the analysis of the problem is complicated by 
the existence of a singularity at the jet boundary ;, 
due to the tending to zero of the kinetic energy k and 
of the rate of its dissipation t: (it has been ascertained 
in ref. [3] that v, + 0 when i -+ la). 

The system of equations at different values of the 

(71 
turbulent Prandtl number ‘I~ was solved numerically 
on the basis of the Runge-Kutta scheme with an auto- 
matic selection of the integration step. Calculation 

where S(i), u(T), b(c), c(i), and h(C) are unknown 
functions of the self-similar variable 1. By virtue of 
the continuity equation and the formulae of transition 
from the former coordinates x and y to the new coor- 
dinates x and i, one obtains 

started at z = 0 and continued up to I’ = 2,. (za = 72). 
which is a numerical approximation of the math- 
ematical point z = co. 

Here z is a new variable 

(10) 

u= ___- ( > y$!;; ‘12f - ‘x . 112 
(8) 

Note that in similarity variables, equations (7), (8), 
the shapes of the profiles are independent of the con- 
stant c,,. Now, substituting equations (71, (8) into 

which not only eliminates the singularities of equa- 
tions (9), but also simplifies the numerical integration 
procedure: since the new coordinate involves the 
de~ndence of the turbulent viscosity in [, equations 
(9) in the variable 2 already look like ordinary bound- 
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Table I. Results of numerical solution of self-similar equations at different Prandtl numbers 

0.5 1.17926 0.113X19 0. I833 0.5343 0. I647 
0.55 I.19938 0.120264 0.1842 0.4992 0.161-I 
0.6 I.21927 0.126585 0. I862 0.4768 O.ISX9 

I .37145 0.123527 0.300437 0.3600 0.1459 
0.65 
0.7 
0.75 

I .23X96 0. I32803 0.1886 0.4568 0.1567 
I .25844 0. I38927 0.1920 0.43xx 0. I547 
I .27772 0.144969 0.1954 0.4225 0. I529 

ary layer equations involving a constant turbulent 
viscosity with: + ~YI when < + ;*. The lacking bound- 

ary conditions. i.e. ,f”(O), a(O), b(O), c(O), /z(O). were 
found with the aid of the shooting technique; itcr- 
ations were continued to the convergence I x 10 ’ 
over all the unknown functions at the conventional 
boundary ofthe jet :, Basic results of the calculations 
arc presented in Table I. Now, prescribing the value 

of c,, equal to 0.09 yields the following expressions 

where the values of the constants A,,, AL, A,, and A,, 

are listed in Table 2. Formulae (11) represent a certain 
standard with the aid of which one may judge the 
accuracy of solutions obtained for the asymptotic 

region of a plane jet on the basis of the k-a-model 01 
turbulent numerical schemes, as well as distinguish 

the errors introduced by numerical procedures from 
those introduced by the models. 

As to the lateral distribution of turbulent transfer 
fluxes 

u- 

(o/T’) Jc,< h h’ 
A sharp decrease of Jq near the jet axis is usually 

typical of those types of jet flows in which the buoy- 
u,.AT, 01 .f”(O)h(O) ancy effects are absent and the equilibration of tem- 

0.5 2.15 0.29 0.36 0.157 
0.55 2.19 0.29 0.36 0. I50 
0.6 2.23 0.29 0.35 0.143 

2.50 0.41 1.83 0. I08 0.0657 0.023 
0.65 2.26 0.29 0.35 0.137 
0.7 2.30 0.30 0.35 0.132 
0.75 2.33 0.30 0.35 0.127 

these have the form of conventional free jet flows. For 
example, the maximum value of (U’r’)/U,! at c,, = 0.09 
is 0.0233 which is attained at i/io,c,, z 0.85. The peak 

value of the turbulent heat flux, normalized, as is 
usually the case, by u,.AT,, is somewhat higher than 
(u’L”),/u~’ and amounts to 0.0285 at c/c,, Srr 2 0.94 
(g, = 0.6). A clear dependence of (r’T’),,,,!u,AT, on (T, 
is being observed: with increase of the latter value. 
the former value decreases. whereas the maximum 

point shifts to the flow axis. 
From the viewpoint of the analysis and construc- 

tion of a more complex model of turbulence, a very 

important characteristic is (T”). The computational 
information obtained about the self-similar profile of 
temperature fluctuations indicates (see Table 2) that 

the values of J(q,.)/AT, and V/(q,,,)/AT, turn out to 
be higher than those experimentally measured, ic. 

,,;(q,)/AT, = 0.22 and ,,‘(q,!))/AT, = 0.30 [4]. Thcrc- 
fore, an attempt has also been made in the present 
work to find a set of constants-0,. c,,, -that detcr- 
mine the self-similar solutions which would most 
closely correspond to experimental data. Numerical 
integration was made at those values of oy and 
cc,, which are already employed in calculations of 
jet flows [5]. It has turned out that the best predic- 
tion is provided by the following set of coefficients: 
r~(, = 0.6923 and cc,, = 1.79 (Table 3). In this case 
the relative magnitude of the intensity of tem- 
perature fluctuations comprised 0.213 on the axis and 
0.296 at i/i,, j, E I .I3 (0, = 0.6). 

Table 2. Self-similar characteristics of a plane jet at different turbulent Prandtl numbers 

0.030 
0.029 
0.0285 

0.028 
0.027 
0.026 
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Table 3. Results of numerical solution of self-similar equations for the temperature field of a plane turbulent jet 

01 0.5 0.6 
Ou - ..-.~___- _._... __..__ -~ -_--____ 

0.6923 1.0 0.6923 1.0 
L;I 1.25 1.54 1.79 1.25 1.54 1.25 1.54 1.79 1.25 1.54 

-__ ~. __~_ ..-__ I___ ,__ 

ygW;,.L 
AT, 0.29 0.24 0.21 0.27 0.22 0.29 0.24 0.2 I 0.28 0.23 

,ic T’ = >m 
Ar, 0.36 0.33 0.31 0.37 0.33 0.35 0.32 0.30 0.36 0.32 

peratures is associated in the main only with hydro- 
dynamic agitation in the mixing layer. 

To determine the shear layer boundary <*, use will 
be made of the formula 

by virtue of which [* = 0.8292 (in ref. [3] the value 
obtained was {+ = 0.83127). Thus, according to the 
k--E model of turbulence, there is a line which sep- 
arates the turbulent zone from the irrotational flow 
region. The latter result testifies to the fact that it is 
necessary to more adequately approach the problem 
of specifying the artificial boundaries which are to be 
introduced into numerical analysis for limiting the 
computational domains of free jet flows. 

4. NON-SELF-SIMI~R SOLUTIONS 
By virtue of equations (12) one obtains 

The drawback of equations (11) is that the region 
of their applicability is limited by an asymptotic por- 
tion in the development of a plane forced jet, which 
is observed, according to ref. 161, when x/r0 > 10 for 
mean parameters and when x/r0 > 20 for pulsational 
parameters. Therefore, it is natural that one cannot 
except that equations (11) can ensure an exact quan- 
titative description of the basic features of turbulent 
flow for x/r0 < 10. 

These limitations can be overcome only by con- 
structing non-self-similar solutions that take into 
account the dependence of the unknown functions on 
the initial parameters of the problem. This implies a 
direct numerical integration of the system of partial 
differential equations (l)-(3) with provision for equa- 
tions (4), (5), for example, by the finite-difference 
method. In this case, the flow region (0 < x < ns, 
0 d )’ < co) is overlaid with a rectangular grid with 
the step Ax, Ay at the nodes of which the differential 
equations are replaced by difference analogs. As a 
result, the initial expressions are reduced to an 
approximating system of algebraic equalities which 
are solved by the trial-run method with the use of 
iterations. 

+(2_-(i,)c?ua~+2__...___ 
arl 8s 

In the present paper an alternative approach to 
the analysis of problems (l)-(5), is suggested. Having 
normalized the unknown functions 

avao UdEc70 
+(2-a,)- -.-- - -- -- - 

84 % E aq @ 1 . (13) 

Since during the change of the coordinate Y from 0 

we turn to new variables 

s 

Y 
X=X, q=2 U’dY (12a) 

0 

on the basis of the formulae 
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Table 4. Comparison of predicted and experimental asymptotic characteristics of a plane turbulent jet 

Reference 

[51 2.31 0.38 1.55 0.068 0.116 2.10 0.154 
191 2.35 0.37 1.69 0.067 0.100 2.02 0.133 

[lOI 2.40 0.35 0.061 0.025 
Present work 2.57 0.39 1.78 0.059 0.103 0.021 2.15 0.137 0.028 

[71 0.067 0.109 0.026 

Fd 0.112 0.020 2.27 0.167 0.018 
PI 2.48 0.096 2.00 0.142 

to cc the value of 4 varied from 0 to k,/puir,,, equal- 
ities (13) determine the unknown functions in the 
region X > 0, 0 < TV < K,jpu$, = I (when assigning 
the uniform velocity field at the slit cut one obtains 
that X 3 0. 0 < q < 2). Consequently, instead of inte- 

grating the set problems (l)-(5) in an infinite region, 
we obtain equations (13) in a rectangle. Then, through 

the points of the straight line r] draw a system of n 
lines parallel to the axis X at l/n intervals. On each of 

the straight lines q = 1, (i = 1,2, , n + I), the deriva- 
tives with respect to 1 will be replaced by their three- 
point central-difference ratios. As a result, when pre- 
scribing the initial conditions at X = 0 or in some 
section X* (these can be model conditions or those 
taken directly from the experiment), equations (13) 
transform into a system of first-order ordinary differ- 
ential equations (Cauchy problem), which can be inte- 
grated with the aid of a standard Runge-Kutta 

method with the step along the coordinate X selected 
automatically. 

Let us now direct our attention to the analysis of 
the results of numerical calculus. Calculations were 
begun in the exit section of the slit where the uniform 
profiles of velocity, temperature, of the kinetic energy 
of turbulence and of the rate of its dissipation were 

assumed 

U,, = 1.0. O,, = 1.0, K, = 0.02, E,, = 0.0016 

Then the development of a plane jet up to the section 
X = 100 was calculated. It has been found that start- 
ing from X z 20 the behaviour of the sought-after 
solutions on the flow axis can be approximated by the 
power functions of type (1 I), where the values of the 

found coefficients A,,, A,. A,, and A, are presented in 
Table 4 (ot = 0.6). Note that the transition from the 
mathematical variables X, 11 to the physical variables 
X, Y is performed by the equation 

Y=i 

Analysis of the comparison of the results of cal- 
culation with self-similar solutions (Table 2) shows 
that the proposed method of numerical analysis rather 
accurately predicts the asymptotic behaviour of the 
main parameters of the (k-E)-model (deviations do 
not exceed 5%). even in the case when the flow field 

is roughly divided into bands (it was assumed in cal- 
culations that n = 50). The quantitative discrepancy 
decreases with the growth of the number n. In our 
opinion, this results from the fact, that in the numeri- 
cal scheme the provision is made for the automatic 
fulfilment of the jet momentum conservation law K,, 

over the enitre computational domain, therefore even 
with a rough step Aq the solution turns out to be 

qualitatively correct and rather accurate. 
Also compared were the results of numerical inte- 

gration of the non-self-similar problem with the exper- 

imental data ofrefs. [HI, and their satisfactory agree- 
ment over a broad spectrum of characteristics was 
noted (see Table 4). An appreciable discrepancy is 
observed only in the evaluation of the heat flux dis- 
tribution (z! T’),ju,.AT, in the transverse direction : 
the maximum value for the asymptotic region of flow 
development is equal to 0.0285, whereas that mea- 

sured amounts only to 0.018 [6] and, moreover, it 
is smaller than the experimental value obtained for 
(u’v’),/u,~ = 0.020. Such relationship between the 
maximum values of turbulent fluxes normalized, as 
usual, by u” and u,.A7’,, is obtained in the (k-c-:)- 
model only when 0, > 1, which does not account for 

the physics of the phenomenon : as is known, in tur- 
bulent forced jets (TV < 1. 

And, finally, Table 4 contains numerical estimates 
of the plane forced jet structure obtained on the basis 
of the (k-E)-model of turbulence within the frame- 
works of different numerical schemes [S, 9, IO]. 
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