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In field water balance studies, one of the major difficulties is the separation of
evapo-transpiration into plant transpiration and soil evaporation. In this
paper, the radial basis function (RBF) neural network was implemented using
C language to estimate daily soil water evaporation from average relative air
humidity, air temperature, wind speed and soil water content in a cactus field
study. The RBF neural network learned rapidly and converged after about
1000 training iterations. The optimum number of hidden neurons was found
to be six. The RBF neural network achieved good agreement between
predicted and measured values. The average absolute percent error and the
root mean squared error was 21-:0% and 0-17 mm for the RBF neural network
vs. 30-1% and 0-28 mm for the multiple linear regression (MLR). The RBF
neural network technique appears to be an improvement over the MLR
technique for estimating soil evaporation.
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Introduction

In field water balance studies to determine plant water use, one of the major difficulties
is the separation of evapo-transpiration into plant transpiration and soil evaporation
(Fisher & Turner, 1978; Boast, 1986). Evapo-transpiration can be determined by
subtracting the change of water stored in the soil profile using neutron scattering
method (Heitholt, 1989), and surface runoff collected or measured with weirs and
deep drainage, from the amount of precipitation for a given period of time (Bannister,
1986). Both plant transpiration and soil evaporation, however, are difficult to
determine in the field. A review of literature by Boast (1986) and Bannister (1986)
suggested the determination of soil evaporation was easier and less costly than
determination of plant transpiration. Therefore, soil evaporation is usually estimated
to partition evapo-transpiration into soil evaporation and plant transpiration. Thus,
the determination of soil evaporation is one of the most important parameters that
impacts water balance studies.
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Soil evaporation can be either directly measured or indirectly estimated. Klocke et al.
(1985, 1990), Shawcraft & Gardner (1983) and Boast & Robertson (1982) used a
large-scale lysimeter, minilysimeters or microlysimeters to measure daily soil evapora-
tion. These direct measurements were accurate but costly and time consuming.

Indirect methods developed so far employ mathematical models to predict soil water
evaporation from either nearly saturated soils (stage 1) or non-saturated soils (stage 2)
(Ritchie, 1972; Al-Khafaf et al., 1978; Idso et al., 1979). Energy-based mathematical
models using inputs such as net radiation, evaporative demand, soil water status, plant
canopy conditions etc., have been used to predict soil water evaporation under stage
1 conditions when the soil surface was near saturation. In contrast, mathematical
models used to predict soil water evaporation when the soil surface is no longer
saturated (stage 2) do not use energy or climatic data. Typically, stage 2 models are
determined empirically, and relate declining soil water evaporation rates after
saturated soil water conditions to time with an exponential decay function (Ritchie,
1972; Al-Khafaf et al., 1978; Idso et al., 1979).

For example, Ritchie (1972) developed an empirical energy-based model in which
net radiation, air temperature and leaf area index were used to predict daily soil
evaporation from a row crop field. Idso et al. (1979) also developed an empirical
energy-based model in which daily net solar radiation, daily net thermal radiation and
soil albedo were used to estimate daily soil evaporation from the bare soil. Al-Khafaf
et al. (1978) described two mathematical models that were used in a combined manner
to estimate daily soil evaporation after rainfall or irrigation.

Under semi-arid, non-irrigated conditions, many rainfall events are not sufficiently
great to bring soil back to saturated stage 1 conditions. Under these circumstances it
is difficult to know whether to use models for stage 1 or stage 2 conditions. Thus it
would be useful to have a more general model in which it was not necessary to specify
whether one was operating under stage 1 or stage 2 conditions.

Artificial neural networks, derived from the structure and functioning of the human
brain, have been used in a broad range of applications including pattern recognition,
classification, function approximation and automatic control (McAvoy et al., 1989;
Leonard et al., 1992; Rao & Gupta, 1993). In this paper, we employ the radial basis
function (RBF) neural network technique to estimate soil evaporation from a 3-year-
old cactus plantation in a semi-arid region, and compare this new technique with a
more conventional multiple linear regression (MLR) technique.

Methods and materials

Data was obtained in a 3-year-old experimental planting ona 1-0 m X 1.5 m spacing
of slow-growing but cold-hardy spineless Opuntia ellisiana selection (Han & Felker,
1996). The non-irrigated field trial was located in a semi-arid, subtropical region of
Texas. The leaf area index was 2:02 on 15 April 1994 when new cladodes were
emerging. By 15 May 1994, when this study began, the new cladodes were well
developed. On 15 April 1995 the leaf area index was 3:08. This study ended on 15
February 1995. The leaf area index showed only a small change during the course of
this study. The effect of plant canopy conditions on soil evaporation, therefore, was
limited. The factors considered in this study include air relative humidity, air
temperature, wind speed and soil water content.

Measurement of soil evaporation and soil water content

Soil evaporation was measured using the microlysimeter technique (Boast &
Robertson, 1982; Shawcroft & Gardner, 1983). The microlysimeters, 10 cm long and
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4-9 cm in diameter, were made of 2-mm thick aluminum pipe. The portable electronic
balance, used to weigh the microlysimeters, had an accuracy of 0-1 g (0-05 mm of
water). The microlysimeters were weighed daily at about 0830h CDT.

Two lysimeters were placed between the row and two under the plant canopy, and
the four lysimeters were replaced every day. The daily soil evaporation rate was
obtained by averaging the measured soil evaporation rate from the four lysimeters.

To account for seasonal variations in meteorological factors and soil evaporation,
daily microlysimeter samplings were conducted over an approximate 15-day period in
the spring (May-June 1994), summer (July-Aug 1994), fall (Oct-Nov 1994) and
Winter (Jan-Feb 1995). While no measurable rainfall occurred during the 15-day
periods, a 60 mm rain occurred 1 day before the May-June 1994 period that brought
the volumetric water content (31%) to near field capacity (35%) and allowed a
determination of water evaporation under near stage 1 conditions.

Associated with each microlysimeter measurement, gravimetric soil water content
(top 10 cm) was obtained at a site adjacent to the microlysimeter location. Three
gravimetric soil samples were taken with a hand probe immediately after weighing the
microlysimeters. Average gravimetric soil water content over the three samples was
obtained and used.

Collection of meteorological data

Daily average air temperature, relative humidity and wind speed were obtained from
the Texas A&M University Research and Extension Center at Corpus Christi, about
40 km away.

Radial basis function neural network

Artificial neural networks contain highly interconnected and interacting units
(neurons) (Haykin, 1994). The artificial neural networks accept a set of inputs (an
input vector) from which a corresponding set of outputs (an output vector) is produced
(Wasserman, 1993). In this paper, the radial basis function (RBF) neural network was
chosen because of its rapid learning and generality (Wasserman, 1993). By generality,
we mean that the network can produce the correct output vector despite significant
variations between the input vector and the input vectors used during training
(Leonard et al., 1992).

An RBF neural network is a multi-layer network whose output nodes form a linear
combination of the basis functions computed by the hidden layer nodes (Hush &
Horne, 1993). The architecture of the multi-layer neural network chosen in this study,
depicted in Fig. 1, consists of three layers: the input layer, the output layer and a
hidden layer. The input layer contains four neurons which receive input signals of
relative air humidity (x,), air temperature (x,), wind speed (x3) and gravimetric soil
water content (x,). The output layer contains one neuron which produces a
corresponding output, i.e. daily soil evaporation (y), for a given input vector. The
number of neurons in the hidden layer significantly affects the network performance.
The optimum number of neurons in the hidden layer is determined by the inherent
relationship between the input vectors and the output vectors.

All neurons are fully-connected in a feed-forward fashion. More specifically, each
neuron in a given layer is connected to each neuron in the layer directly above it by an
associated numerical connection weight.

The input neurons simply pass the input signal to each hidden neuron and perform
no computation. The hidden neurons first compute the Euclidean distance between
the input vector and the connection weight vector. Then, the output (activation level)
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Figure 1. Architecture of the multi-layer neural network.

of the hidden neurons is calculated by the Gaussian function (also called a basis
function) of the form (Hush & Horne, 1993; Wasserman, 1993):

(X-Wp, )T (X-Wy ;)
20%,;

where uy, ; is the output of the jth neuron in the hidden layer (‘h’ indicates the hidden
layer); X is the input vector; W, is the centroid of the jth hidden neuron (Park &
Sandberg, 1991) or the weight vector for the jth hidden neuron to the input neurons
(Hush & Horne, 1993); oy, is the normalization parameter for the jth hidden neuron;
“T” indicates the transpose operation; and n is the number of hidden neurons.

The outputs of the hidden neurons are in the range from 0 to 1. The closer the input
is to the centroid of the hidden neurons, the larger the response of the hidden neurons.
The output neuron produces the output for a given input vector by forming a weighted
linear combination of the outputs from the hidden neurons. The output layer neuron
equation is given (Hush & Horne, 1993; Wasserman, 1993):

y:WTOMh
where y is the output of the output neuron, W, is the weight vector for this output
neuron and pu,, is the vector of outputs from the hidden layer. ‘T’ indicates the
transpose operation. The overall network performs a non-linear transformation by
forming a linear combination of the non-linear basis functions.

For an RBF neural network to map a specific input vector to target output it must
be trained based on a set of known input-output pairs. All connection weights are
adjusted according to certain learning rules during the training process. The inherent
relationship between the input signals and the output signal(s) is stored in these
connection weights.

The RBF learning process is broken into two stages: learning in the hidden layer,
followed by learning in the output layer. Learning in the hidden layer is performed

Mnj = exp[- 1i=1,2,...,n
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using a K_MEANS clustering algorithm (Lee, 1991; Hush & Horne, 1993), and
learning in the output layer is performed using a Least Mean Square (LMS) algorithm
(Hush & Horne, 1993).

During the first stage, the connection weights between the input neurons and the
hidden neurons, i.e. the centroid of the hidden neurons, and the normalization
parameters for each hidden neuron are determined. Once the clustering algorithm is
complete, the normalization parameter (oy,;) is calculated as:

a? P X=W, )T (X-W,, )
h.j mh_j Xe%h] h.j h.j

where 0y, ; is the set of training input vectors (X) grouped with the centroid of the jth
hidden neuron (W), and my,; is the number of the training input vectors in 6y, ;.

During the second stage, the connection weight between the hidden neurons and the
output neuron are determined. The K_MEANS and LMS algorithms were described
in detail by Hush & Horne (1993). The C programming language implementation of
these algorithms can be obtained from the senior author.

Soil evaporation prediction by regression technique

Least square error fitting was conducted using the SAS statistical software package to
determine the multiple linear regression equation.

Results and discussion

The data set consisting of 53 input—output pairs from the experiment described above
was randomly split into a training set and a test set. The training set had 40 input-
output pairs and the test set 13 input—output pairs. Table 1 shows some statistics of the
training set.

To improve the neural network performance, each component of the input vector in
both the training set and the test set was normalized by the following procedure: the
corresponding component of the mean vector (Table 1) was subtracted from each
component of the input vector and this difference was divided by the corresponding
component of the standard deviation vector (Table 1). The training data set was used
to adjust the connection weight. The test data set was used to test the performance of
the neural network.

Table 1. Simple statistics of the data set used to train the RBF neural network to
predict daily soil evaporation (N=40)

Factors Mean S.D. Minimum Maximum
Relative humidity (%) 76-91 10-01 56-49 96-27
Air temp. (°C) 22-30 6-63 917 30-00
Wwind speed (km h™1) 11.28 4.23 4.93 2146
Top 10 cm soil water
content (g g1) 0-084 0-026 0-040 0-172

Daily soil evaporation (mm) 073 0-57 0-19 2:44
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Determining the required number of training iterations and optimum number of the hidden
neurons

The root mean squared error (SE) for the test data set was used to evaluate the
performance of the neural network. The test data set is shown in Table 2. The SE is

_ 2 4
defined as:SE = (—Z(Ymn Ye) )2
where Y, is the measured soil evaporation, Y, is the predicted soil evaporation and n
is the number of the input vector in the test data set (n = 13).

Figure 2 gives a plot of SE vs. the logarithm of the number of training iterations to
the base 10 in the second stage when the number of the hidden neurons is five. The
network learns rapidly since the network has converged after 1000 iterations.

In theory, the RBF neural network is capable of forming an arbitrarily close
approximation to any continuous non-linear mapping (Park & Sandberg, 1991). For
a given input-output space, the number of hidden layers and the number of neurons
in the hidden layer significantly affects the performance of the neural network (Li et al.,
1993). Figure 3 gives a plot of SE vs. the number of hidden neurons for a converged
network (with 1200 training iterations). As computation time increases dramatically
with the number of hidden neurons, it was determined that six hidden neurons were
optimum.

The performance of the RBF neural network and multiple linear regression

The predicted soil evaporation shown in Table 2 was obtained from the converged
RBF neural network with six hidden neurons. Good agreement between measured and
predicted value was achieved since the average, maximum and minimum absolute
percent error was 21:0%, 49-6% and 1-9%. The root mean squared error was 0-17
mm.

To compare the RBF neural network with MLR, the same 40 input—output pairs in
the normalized training data set were used to obtain the following regression
equation:

Y, = 0.726- 0.054x; + 0-181x, + 0-057x; + 0-549x, (R? = 0.76)

where Y/, is the predicted daily soil evapo-transpiration (mm), x, is the average relative
air humidity (%), X, is the average air temperature (°C), X5 is the average wind speed
(km h™) and x, is the gravimetric soil water content (g g™).

The same 13 input-output pairs were used to test the performance of the MLR.
From Table 2, the average, maximum and minimum absolute percent error were
found to be 30-1%, 95:1% and 2:0%, respectively. The root mean squared error was
0-28 mm.

It can be seen that the RBF neural network in this study had a lower absolute
percent error and root mean squared error in predicting soil evaporation than did
multiple linear regression technique.

On theoretical grounds, we believe our neural net model containing energy
(temperature, wind speed and humidity) terms and gravimetric moisture terms is more
applicable on a year round basis than hybrid stage 1/stage 2 model of Ritchie (1972).
Essentially, Ritchie’s choice of stage 1 or stage 2 conditions depends on whether soil
water evaporation is more dependent on available energy (stage 1) or hydraulic
capabilities (stage 2) of the soil to deliver water to the soil surface. Under stage 2
conditions Ritchie’s model only uses an empirical determination of a hydraulic
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Figure 2. Predicted root mean squared error vs. training iterations.

conductivity term (alpha) from a drying cycle and the square root of the time.
Certainly in a single summer’s growing season when the evaporative demand greatly
exceeded the soils hydraulic ability to deliver water to the soil surface, use of a single
constant alpha seems warranted. However, on non-frozen soils in winter months, it
would appear possible that the available energy for evaporation could be less than or
equal to the soil’s water hydraulic conductivity properties. Under this scenario, energy
terms could again be important in predicting soil water evaporation and it would be
necessary to recalculate the alpha term under the new energy balance/soil hydraulic
conductivity scenario. As we have demonstrated with RBF neural net technique, this
is not necessary for year round prediction of soil water evaporation. An added
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Figure 3. Predicted root mean squared error vs. number of hidden neurons.
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advantage of our model is that it uses easily obtainable climatic data in conjunction
with easy to measure gravimetric soil moisture contents.

It has been difficult to compare the output of our model to those of Ritchie (1972),
Idso et al. (1979) and Al-Khafaf et al. (1978) since the previous models focused
primarily on stage 1 soil water evaporation. We did compare the output of our model
with Al-Khafaf’s stage 2 model over a 12-day period (stage 2) in June 1994. The
parameters in Al-Khafaf’s stage 2 model shown below were determined using our data
obtained during a 15-day period in May 1994 in which 60 mm of rain occurred 2 days
before we began our measurements. By curve fitting the data, the parameters a and b
were found to be 1.08 mm day°7 and 0.7, respectively.

E, = at’

where E; is the cumulative soil evaporation since the beginning of stage 2 and t is the
days elapsed since stage 2 begins.

A comparison of our RBF model and that of Al-Khafaf during a drying cycle in June
1994 revealed that our model had a slightly higher root mean squared error of 0-11
mm as compared to a root mean squared error from Al-Khafaf’s model (Al-Khafaf et
al., 1978) of 0-08 mm. However, as we noted above, the stage 2 model of Al-Khafaf
et al. (1978) would have to be recalibrated for use in drastically different seasons while
this is not necessary for our RBF model.

While Idso et al. (1979) developed a single equation to calculate daily soil
evaporation rates during all three stages of soil drying, it was still necessary to decide
which phase was operative at a given point in time for year round daily soil
evaporation.

To illustrate the utility of our RBF neural network model, we used it to estimate
yearly soil evaporation and thus separate transpiration from evapo-transpiration in a
4-year study to measure the water-use efficiency of Opuntia ellisiana. We obtained soil
evaporation estimates of 249 mm in 1993 and 214 mm in 1994 and a water-use
efficiency of 162 kg water kg™t dry matter (Han & Felker, 1996).

The RBF neural network (and artificial neural network techniques in general) offers
significant advantages over the MLR and other conventional methods in predicting
soil evaporation because it is not necessary to specify the form of the mathematical
model before fitting the data. This is important since many agronomic system
processes have multiple factors that change with time. As a result it is often difficult to
find an appropriate mathematical model to describe these processes. While this
particular neural network will have to be tested against other models and with data sets
from widely varying climatic and geographical regions, we feel this neural network is
a promising technique to help in understanding processes in complicated and dynamic
agronomic systems.

We gratefully acknowledge financial assistance from the U.S. Agency for International
Development Grant DHR-5542-G-SS-9032. Publication number 97-116 of the Caesar Kleberg
Wildlife Research Institute.
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