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SUMMARY 

Spectroscopy methods of chemical analysis are excellent for the application of chemometric 
methods, because the measurements at many different wavelengths provide inherently multivar- 
iate data. The chemist generally requires three categories of information from specimens under 
investigation: quantitative data, qualitative data, and fundamental information on the properties 
of the material. Spectroscopy has long been used for all three purposes; the recent application of 
chemometric algorithms has assisted greatly in these endeavors. Although there is some overlap, 
three chemometric methods correspond to the three types of information: multiple regression, 
discriminant analysis, and principal components analysis. The basis of these chemometric meth- 
ods and some of their strengths and limitations in application to near-infrared spectroscopy are 
discussed. 

The science of what is now called chemometrics, the application of multi- 
variate mathematical/statistical techniques to chemical problems, developed 
slowly as an evolutionary process from a background of statistical investiga- 
tion, separating itself from other branches of statistics in the early 1970s [ 11. 
The application of multivariate statistical techniques to near-infrared (NIR) 
spectroscopy, however, was developed independently from research at the U.S. 
Department of Agriculture [ 21. This application of chemometrics is certainly 
one of the earliest to be put to practical use, and is among the most successful 
applications of chemometric algorithms. The best current estimate of the num- 
ber of published scientific papers dealing with various aspects of NIR usage is 
over 1200 [ 31, and the number of NIR instruments in routine operation is over 
10 000 worldwide [ 41. 

In order to be of value to chemists, chemometrics must address relevant 
problems. These problems tend to fall into three classes: qualitative analysis, 
quantitative analysis, and understanding the principles underlying the observ- 
able phenomena. Numerous chemometric techniques have been developed over 
the years, and recently they have been compiled in monographs (see, e.g. [ 1 ] ) 
These techniques have been applied in many areas of chemistry, including 
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various spectroscopies. Spectroscopic methods are eminently suitable for ap- 
plication of chemometric algorithms, because they are inherently multivariate, 
with many wavelengths (or frequencies) available at which to measure 
responses: 

Several chemometric techniques have been applied to each of the three classes 
of chemical problems mentioned above. When applied to NIR spectroscopy, 
some overlap has been recognized, but in general, particular techniques have 
been applied to particular types of problems. As will be seen, there is consid- 
erable overlap between several of the chemometric techniques that are in com- 
mon use, but in NIR studies they tend to be considered distinct. Discriminant 
algorithms have been applied to problems in qualitative analysis, multiple 
regression algorithms have been applied to quantitative problems, and prin- 
cipal component analysis has been the method of choice in studies of under- 
lying principles. While some papers dealing with application of principal com- 
ponents have appeared [ 5-71 and Martens and Martens [8] have generated 
interest in applying partial least squares to quantitative NIR spectroscopy, 
these methods are not yet widely used. 

Parts A and B of Fig. 1 show the NIR spectra of water, methanol and acetic 
acid in the llOO-2500-nm and 600-1400-nm regions. The three materials are 
completely miscible and exhibit marked differences in their NIR spectra, so 
that their mixtures are eminently suitable for illustrating the similarities and 
differences between various chemometric algorithms. 

EXPERIMENTAL 

Because of the large differences in absorption coefficients of the three liquids 
used between the llOO-2500-nm and 600-1400-nm regions, the spectra in these 
two regions had to be obtained separately, with sample cups of suitable path- 
length for each region. For the longer-wavelength region, a standard liquid 
drawer accessory for the NIR instrument was used; the sample cell in this 
drawer had a spacing of ca. 0.075 mm. For the short-wavelength region, the 
special sample cell used was made of Teflon and had a spacing of 10 mm. 

The chemicals were reagent-grade (Aldrich); the water was treated with 
deionizing resin. Mixtures were prepared on a % (w/w) basis. 

All measurements were made with a Technicon InfraAlyzer model 500. Data 
were collected at 4-nm intervals. 

RESULTS 

Each sample was read twice in the instrument, to generate an estimate of 
the noise contribution to the data. As will be seen in the figures, the two read- 
ings from each sample coincide in virtually all cases, indicating that the noise 
is very small compared to other effects. The discussion will therefore ignore 
the random noise. 
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Fig. 1. Data from the pure materials used. (A) The spectra in the 1100-1500 nm region; (B) the 
spectra in the 600-1400 nm region; (1) acetic acid, (2) water; (3) methanol. (C) Absorbance/ 
absorbance plot of the data at 1500 nm and 1800 nm; (D) absorbance/absorbance plot of the data 
at 900 nm and 1200 nm. 

Disciminant analysis 
The key to achieving qualitative analysis by NIR spectroscopy is the appli- 

cation of the multivariate algorithms that are classified as “supervised learn- 
ing” [ 1 ] ; the supervised training method used in NIR spectroscopy is discrim- 
inant analysis [8], through the use of multidimensional distance measures 

[lOI* 
The approach needed is to examine the spectrum from the point of view of 

the mathematician rather than that of the chemist. In this vein, the spectra of 
Fig. 1, for example, can be examined in the following way. The data at certain 
wavelengths will allow a computer to distinguish among the various materials 
of interest, and thus classify the samples into their respective categories. The 
spectral data for the three materials shown in Fig. 1 constitute the training set, 
and the materials can be distinguished by using data from only two wave- 
lengths. The three materials have suitable characteristics at several pairs of 
wavelengths. Suitable pairs include 950 nm and 1200 nm in the short-wave- 
length region, and 1500 nm and 1800 nm in the long-wavelength region. The 
spectra presented in Fig. 1 show that water and acetic acid have similar values 
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of absorbance at 1800 nm while methanol has a smaller absorbance. At 1500 
nm, the absorbances increase in the order acetic acid, methanol, water. In the 
short-wavelength region, methanol and water have the same absorbance at 
1200 nm while acetic acid has a smaller absorbance. At 900 nm, the absor- 
bances increase in the order acetic acid, methanol, water. 

It would be possible to examine the spectrum of an unknown sample at either 
wavelength pair and decide, by comparing the spectral information at only two 
wavelengths with the training set samples, which of the three materials the 
new sample was. In fact, the definition of the term “spectrum” could be ex- 
tended, so that the data at the two wavelengths could be said to constitute the 
“spectrum” of the sample for the purpose of this identification. This is the 
chemist’s view of the situation. 

From the viewpoint of the mathematician, because two wavelengths suffice 
to allow the desired discrimination, the rest of the spectrum is superfluous. 
When only the data at those two wavelengths are retained, the absorbances of 
the three materials constitute a list of paired data. This is a common form of 
data presentation, and at least one obvious operation can always be done to 
paired data: they can be plotted as an ordinary graph. Parts C and D of Fig. 1 
present such plots, by using the two wavelengths pairs under consideration, 
one in each spectral region. Examination of these diagrams shows that these 
absorbance/absorbance plots reflect the same characteristics as were noted in 
the original spectral presentation. At 1800 nm, water and acetic acid show the 
same absorbance, i.e., they have the same ordinate value, the ordinate in Fig. 
1C representing the absorbance at 1800 nm. Similarly, water and methanol 
exhibit the same absorbance at 1200 nm (Fig. 1D). In both frames, the projec- 
tion of the three materials onto the abscissa places them in the order acetic 
acid, methanol, water; the abcissa represents 1500 nm in Fig. 1C and 900 nm 
in Fig. 1D. Thus, in this presentation, the materials are described by their 
locations in the two-dimensional spaces represented by Fig. 1C and D. Each 
dimension represents the data at a different wavelength. Clearly, other mate- 
rials could be contained in the same space and could be distinguished from 
these three, the only requirement being that the absorbance of the new mate- 
rials must differ from all the materials currently in the training set. 

An interesting aspect of this is that a new material need not differ from all 
the materials at all wavelengths. Indeed, it is easy to show that the spectrum 
of the new material could match that of each material in the current set at all 
wavelengths except one, and still be distinguishable from all the materials in 
the training set. For example, in Fig. lD, the three materials fall at what might 
correspond to three corners of a quadrilateral. A new material, having the same 
absorbance as water at 900 nm, and the same absorbance as acetic acid at 1200 
nm, would be placed on the plot at the fourth corner of the hypothetical quad- 
rilateral, and be easily distinguished from all the other materials, although its 
absorbances at both wavelengths equal the absorbances of a material already 
in the training set. 
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There remains the development of a method of deciding whether the data 
for an unknown material match those for any of the materials in the training 
set. The criterion for this is that the data from the unknown sample appear in 
a location that is sufficiently close to those of any of the known materials. In 
order to make this decision, it is necessary to have some measure of the amount 
of variability to be expected from the data. In the case of solid samples, the 
Mahalanobis distance [ 111 has been used to take into account the variability 
of natural products. These multidimensional distance measures, which are well- 
described by Gnanadesikan [lo], are computed from the matrix equation: 

0; = (X, -Xj)‘M(X, -Xj) (1) 

where Dj is the Mahalanobis distance from the ith sample to the location of 
the jth material in the multidimensional space, Xi is the vector of absorbance 
data from the unknown sample, M is inverse pooled covariance matrix from 
all the materials in the training set, and X is the location in multidimensional 
space of the jth material. Conceptually, the nature of this equation is to sur- 
round the data from each material with an ellipse, the ellipse being matched 
to the data in such a way that it measures the multidimensional equivalent of 
a standard deviation. Thus, when distances are measured, they are measured 
in terms of this ellipse, so that the distance from the centroid of the data to the 
ellipse in any given direction becomes one “unit distance”. These unit dis- 
tances are then used as the measuring rod for data in that given direction. The 
distance measures used are called “Mahalanobis distances” in recognition of 
the pioneering work of Mahalanobis [ 121. 

The basic assumption in this use of Mahalanobis distances is that the data 
from each material in the training set can be described by ellipses with the 
same size, shape and orientation. In cases where this assumption is not met, 
then the ellipse to match the data from each material must be modified. The 
nature of NIR data is such that a straightforward modification is suitable for 
the purpose of classification. For NIR data measured on powdered solids, the 
largest sources of variation are particle size and repack phenomena; these have 
the effect of causing data at all wavelengths to vary in proportion to each other. 
Accordingly, a simple normalization procedure is satisfactory; the Mahalan- 
obis distance of the data from an unknown sample to a known material is 
divided by the RMS group size of the multidimensional cloud of data from the 
known material in the training set [ 131. The RMS group size used to normalize 
the Mahalanobis distances is calculated as 

RMSj= [C Dt/(n;-1))’ (2) 

where RMSj is the size of the data from the jth material, D, is as defined above, 
and nj is the number of training samples of the jth material. 

For liquids, the situation is simultaneously simplified and more difficult. It 
is simplified because there are no particle-size effects or other effects that de- 
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pend to any great extent on the physical properties of the sample. For natural 
products, then, only changes in the spectrum related to different sample com- 
positions would be observed. For pure materials such as those in the present 
training set, even these differences are non-existent. This raises the problem 
that, under these conditions, the ellipse defining the Mahalanobis distance 
collapses virtually to a point, which results effectively in a “divide-by-nearly- 
zero” problem for calculating the Mahalanobis distances. To circumvent this 
problem, Euclidean distances should be used instead. Little work in this area 
has been done to establish the optimum size of the space surrounding each 
material, and such situations should be dealt with on a case-by-case basis. 

Multiple regression analysis 
The relationship between discriminant analysis, used for qualitative pur- 

poses, and multiple regression analysis, used for quantitative purposes, can be 
examined via a synthetic sample set. A suitable experimental design consists 
of a set of samples made in accordance with a three-component mixture dia- 
gram, such as that shown in Fig. 2A. The corners represent the pure materials 
used to make the samples (water, methanol and acetic acid). The edges rep- 
resent all possible two-component mixtures; the edge between the water corner 
and the methanol corner, for example, represents all possible mixtures of water 
and methanol, and the position of a point along that edge indicates the actual 
composition of a given mixture. Similarly, the other two edges represent mix- 
tures of acetic acid with water and methanol, respectively. Each point in the 
interior of the diagram represents the composition of a three component mix- 
ture. For example, a line joining the midpoints of the water-methanol edge and 
the water-acetic acid edge represents all mixtures containing 50% water. Thus, 
the midpoint of that line represents a mixture containing 50% water, 25% 

A 
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Fig. 2. (A) Mixture diagram for three-component mixtures of water, methanol and acetic acid. 
(B) Spectra of all the samples comprising the set described by the mixture diagram. 
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Fig. 3. Absorbance/absorbance plots of the data from the full set of three-component mixtures: 
(1) Acetic acid; (2) water; (3) acetic acid. (A) Plots in the long-wavelength region with 1500 and 
2000 nm; (B) plots in the short-wavelength region with 1200 and 950 nm; (C) plots in the long- 
wavelength region with 1500 nm and 1800 nm. 
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Fig. 4. Calibrations based on only one wavelength. (A) Calibration for methanol in methanol/ 
acetic acid binary mixtures, from data at 1500 nm. (B) Calibration for water in the full set of 
ternary mixtures; (1) acetic acid; (2) water; (3 ) methanol. 
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Fig. 5. Calibrations based on two wavelengths, for the I’ll set of ternary mixtures. (A) water; (B) 
methanol; (C) acetic acid. In each calibration, the same two wavelengths were used (1500 and 
2000nm). 
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TABLE 1 

Calibration characteristics for each component in ternary mixtures based on one independent 
variable . 

Constituent Wavelength data 
(1940 nm) 

Principal component 

SEE’ rb SEE r 

Water 6.11 0.9819 7.49 0.9727 
Methanol 25.42 0.6162 24.36 0.6558 
Acetic acid 30.03 0.3656 30.61 0.3168 

“Standard error of estimate. bCorrelation coefficient. 

TABLE 2 

Calibration characteristics for each component in ternary mixtures based on two wavelengths 
(1500 and 2000 nm) 

Constituent Coefficients SEE r 

1500 2000 

Water 218.5 108.7 1.83 0.9984 
Methanol 997.5 - 399.5 3.22 0.9952 
Acetic acid - 1215.9 290.8 4.15 0.9919 

methanol and 25% acetic acid. The filled circles in Fig. 2A mark the composi- 
tions of the mixtures used in the current study. 

Figure 2B presents the spectra corresponding to the fifteen mixtures used. 
Except for small spectral regions, Fig. 2B is very cluttered and very little in- 
formation could be gained from it directly. A possible exception is the 1400- 
1500 nm region, where there is some structure to the set of spectra; the spectra 
can be seen to group together at distinct absorbance levels, with some variation 
between the spectra at each level. The different levels are due to the fact that 
in that wavelength region water is by far the strongest absorber, so that all the 
samples containing the same amount of water have almost the same absor- 
bance. Within each level, the spectral differences are due to the differences 
between methanol and acetic acid. 

An absorbance/absorbance plot of the spectra of the mixtures shows an in- 
teresting aspect to the data: if such plots are made at suitable wavelengths, 
they reproduce the underlying structure of the experimental design by recreat- 
ing the mixture diagram in the data. Examples are shown in Fig. 3. Because 
they reflect the experimental design, these plots reveal the relationships be- 
tween the mixtures and the data obtained from them, and also indicate the 
requirements for multivariate methods of dealing with such data. As can be 



seen in Fig. 3, the spectra of the pure materials are at the corners of the tri- 
angles containing the data. These corner points alone are the same as those 
presented in Fig. 1, that formed the basis of the algorithm for qualitative anal- 
ysis. Figure 3 shows the relation between those data and the data from the full 
mixture set; the qualitative data form a subset of the full data. Also, the sets of 
data points representing the two-component mixtures fall on straight lines, 
just as they did in the mixture diagram. This fact, however, depends on choos- 
ing the proper wavelengths for the display. In Fig. lC, the long-wavelength 
pair 1500 nm/1800 nm was used to illustrate the qualitative algorithm, because 
those wavelengths showed the best separation. Figure 3C displays the full data 
at those wavelengths; this plot clearly shows how non-linear phenomena can 
affect the data at different wavelengths. When the data are linear, as in Fig. 
3A, it is equally clear that, because two-component mixtures are represented 
by the data along straight lines between the points representing the pure ma- 
terials, the composition of a two-component mixture can be determined by the 
position of its spectrum along that line. Indeed, because there is only one de- 
gree of freedom for motion along the line representing a two-component mix- 
ture, it is possible to obtain a result by using only one wavelength. An example 
of this is given in Fig. 4A, which shows the calibration line for methanol in 
methanol/acetic binary mixtures. Except for a slight non-linearity, this line is 
an eminently suitable calibration; it represents data corresponding to one edge 
of the mixture diagram. Not shown are the calibration lines corresponding to 
the other two edges (the water/methanol and water/acetic acid edges) are 
separated from the full data set, equally good calibration lines are obtained 
even when the same wavelength is used. 

When the data are non-linear, as in Fig. 3C, a single wavelength would not 
be satisfactory. For example, an attempt to use data at 1800 nm to analyze 
mixtures of methanol and acetic acid would fail; a reading of 0.44 absorbance 
at 1800 nm could correspond to a mixture containing either 80% methanol or 
10% methanol. In this case, it would be necessary also to use the absorbance 
at 1500 nm, to decide between the two possibilities. The presence of non-lin- 
earities adds the equivalent of a degree of freedom to the data, thus requiring 
the inclusion of an additional variable to the model in order to achieve accurate 
results. In some cases, the non-linearity can be separated from the data and its 
unique contribution determined [ 141. From Fig. 3C, one might argue that data 
at 1500 nm would suffice for the analysis of the binary mixtures. However, it 
is easy to imagine data that are double-valued along both wavelength axes, so 
that neither value alone would suffice. 

To analyze ternary mixtures, the operation corresponding to locating a bi- 
nary mixture along the line representing all possible binary mixtures is locat- 
ing the point corresponding to the ternary mixture within one of the triangles 
described by the data in Fig. 3. Indeed, if a non-linear situation such as that 
shown in Fig. 3C is encountered, the non-linearity need not prevent accurate 
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analysis of the sample, as long as the space is well mapped. This would corre- 
spond to using discriminant analysis algorithms for quantitative purposes. The 
disadvantage of this use of discriminant analysis is that each point within the 
triangle must be defined separately; this algorithm does not use external chem- 
ical knowledge of the behavior of absorbance of the mixture when the compo- 
sition changes. 

Regardless of the algorithms used, more than one wavelength is also needed 
when mixtures containing all three components are present in the training set. 
Figure 4 and Table 1 present the results of attempting to use only one wave- 
length to model the data. The results are predictably poor, because three-com- 
ponent mixtures actually contain two degrees of freedom. Even when the wave- 
length containing the most information is used, this remains true. The NIR 
wavelength that has by far the strongest absorbance is the 1940-nm band of 
water. An attempt to calibrate the set of mixtures for water, based only on that 
wavelength, is shown in Fig. 4B. The structure of the experimental design can 
be seen in this plot; the effect of the uncompensated variation arising from the 
degree of freedom represented by the varying concentrations of methanol and 
acetic acid is clear in the residuals. 

Figure 5 presents the calibrations obtained from water, methanol and acetic 
acid, respectively, based on data at two wavelengths (1500 and 2000 nm). The 
absorbance data at those wavelengths are presented in Fig. 3A. It is clear in 
Fig. 5 that some residual non-linearity is not accounted for by the model and 
produces curvature of the calibration line. The two degrees of freedom ac- 
counted for by the two wavelengths minimize the effects of composition vari- 
ation on the data. As was noted above, non-linearity represents another degree 
of freedom and would require another wavelength to model. The spread of the 
data around the calibration lines is also due to uncompensated non-linearity. 
Figure 5B best illustrates this effect; close inspection shows that the topmost 
point of the three at ACTUAL = 0 is itself composed of two almost overlapping 
points. These two points correspond to the pure water sample and the pure 
acetic acid sample; one is effectively looking along the edge of a surface that 
has the shape of a shallow dish. 

If the residual non-linearities are ignored, and only first-order linear rela- 
tionships apparent in Fig. 3B are considered, then the data at these two wave- 
lengths are clearly sufficient to describe all points within the triangle repre- 
senting the data space. There remains only the development of suitable 
relationships (calibration equations) to relate any position in the triangle to 
the composition. The relations for the data from the ternary mixtures of Fig. 
3B are presented in Table 2. It is interesting to note that at each wavelength, 
the coefficients for the three components sum to zero, indicating the depen- 
dence of the calibrations created by the compositions. 

In developing practical calibrations, one of the important considerations is 
the choice of wavelengths. Spectral information can be helpful but normally 



does not provide the complete answer because the spectrum shows only which 
wavelengths correspond to absorbance bands of known constituents in the 
specimens of interest, and so account only for those degrees of freedom attrib- 
utable to composition variations. Information which is equally important to 
accurate calibrations includes the degrees of freedom related to non-linearity, 
or to physical phenomena such as repack effects [15]. For this reason, it is 
necessary to select at least some of the wavelengths for the calibration via 
automatic computerized search algorithms. Recent studies have demonstrated 
that all such algorithms have the inherent characteristic that the selected 
wavelengths are subject to random variation because of the electronic noise 
superimposed on the data [ 161. 

Principal component analysis 
Figures 6-8 present the spectra of all the binary mixtures, and their first 

principal components. In each case, it can be seen that the principal compo- 
nent is the difference between the spectra of the two materials in the mixture. 
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Fig. 6. (A) Spectra of the water/methanol binary mixtures. (B) First principal component of the 
water/methanol binary mixtures. (1) Water; (2) methanol. 
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Fig. 7. (A) Spectra of the water/acetic acid binary mixtures. (B) First principal component of 
the water/acetic acid binary mixtures. (1) Water; (2) acetic acid. 
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Fig. 8. (A) Spectra of the methanol/acetic acid binary mixtures. (B) First principal component 
of the methanol/acetic acid binary mixtures. (1) Acetic acid; (2) methanol. 

TABLE 3 

Comparison between calibration with a single wavelength and a single principal component (PC) 
for binary mixtures 

Mixture Constituent 

Water/methanol Water 
Water/acetic acid Acetic acid 
Methanol/acetic acid Methanol 

Standard error of estimate 

1500 nm 1PC 

3.15 1.38 
3.66 6.80 
3.59 5.58 

For example, the first principal component of the water/acetic acid mixtures 
(Fig. 7B) shows maxima around 1445 nm and 1940 nm, corresponding to the 
absorbance bands of water, and minima around 1700 nm (a doublet) and 2250 
nm, corresponding to the absorbance bands of acetic acid. The first principal 
component of an NIR data set is often attributed to repack or particle size 
effects, which are usually the major source of variation of the data for solids. 
As these data show, however, the first principal component of NIR data is not 
inherently due to such phenomena as is sometimes erroneously claimed. 

A calibration for any of the constituents based on one principal component 
is essentially equivalent to a calibration for that constituent with one wave- 
length, as can be seen from Table 3 where one-variable calibrations for one 
constituent in a binary mixture are compared on the basis of their standard 
errors. The main source of error in all these cases is non-linearity; clearly the 
benefit of using principal components versus wavelength data depends on the 
nature of the data. 

Some of the principal components from the ternary mixtures are presented 
in Fig. 9. Interpretation of these principal components is not as clear as those 
for the binary mixtures, although some information can be obtained about the 
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Fig. 9. Some principal components of the full set of ternary mixtures: (A) first principal compo- 
nent; (B ) second principal component; (C ) third principal component. 

bands seen. Because water has by far the strongest absorbance bands, the first 
principal component consists of positive-going water bands (at 1940 nm and 
1445 nm) with the combined bands of methanol and acetic acid going negative. 
Most of the remaining variance is due to the methanol/acetic acid differences, 
and this shows up in the second principal component, which is very similar 
(although not identical) to Fig. 8B, the principal component of methanol/ 
acetic acid binary mixtures. 

The result of plotting the first two principal component scores against each 
other, as is usually recommended, is shown in Fig. 10. Again, the structure of 
the experimental design is clear in the data. Thus, as in the case of the absor- 
bance/absorbance plots shown (Fig. 3), the space occupied by the principal 
component scores can be used for qualitative or quantitative analysis, by not- 
ing where the data from an unknown sample lie, in exact parallelism to the 
methods applied to absorbance data. If only the corners of the somewhat cur- 
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Fig. 10. Plot of the first two principal component scores from the full set of ternary mixtures, 
showing the non-linearity. 

TABLE 4 

Calibration statistics for each component of the ternary mixtures based on two principal 
components 

Constituent Coefficients SEE P 

PC1 PC2 

Water 17.89 - 17.56 2.37 0.9973 
Methanol - 12.06 - 56.44 8.53 0.9657 
Acetic acid -5.83 74.00 6.19 0.9821 

vilinear triangle shown in Fig. 10 are utilized, then only qualitative analysis is 
achieved, by distinguishing the pure materials from each other. This is closely 
related to the SIMCA algorithms (see p. 242 [l] ). The entire interior of that 
triangle is utilized for quantitative analysis of the ternary mixtures. 

The principal components can also be used to obtain calibrations. When 
calibration computations are done for each of the constituents, the first prin- 
cipal component is found to be the most important predictor in each case, but 
as with the calibrations based on wavelength data, it is necessary to use the 
first two principal components to achieve accurate results. The results of using 
the first principal component for the calibration of each constituent of ternary 
mixtures are presented in Table 1 along with the corresponding results for 
calibrations based on data from a single wavelength. The results are poor, but 
are virtually identical between the two types of calibration. Similarly, compar- 
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Fig. 11. “Spectra” of the principal component equations for the three constituents: (A) water; 
(B) methanol; (C) acetic acid. 

ing the results in Table 4 (for which the first two principal components were 
used) with those in Table 2 shows that the two approaches are again effectively 
equivalent. If anything, the data at the individual wavelengths used appear to 
compensate slightly better for the non-linearity. 

One aspect of the use of principal components that has been largely ignored 
is the way in which calibration results can be applied to gaining understanding 
of the data, in addition to their quantitative application. The route to this is 
the conversion of the principal component calibration to a set of coefficients 
of the original spectral data. This can be done via the following relationship: 

where ki is the coefficient for the ith wavelength, bj is the calibration coefficient 
for the scores from the jth principal component and P, is the principal com- 
ponent loading for the jth principal component at the ith wavelength [ 71. 

When coefficients are calculated from this equation for all the wavelengths 
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Fig. 12. Plots obtained from principal component calibrations. (A) Residuals of methanol cali- 
bration based on one principal component. (B-D) Principal component calibrations based on the 
first two principal components; (B ) for water; (C ) for methanol; (D ) for acetic acid. 

in the original data set, the set of coefficients themselves forms a “spectrum” 
(if a “spectrum” is defined as any set of numbers that are associated one-to- 
one with a corresponding set of wavelengths). For the data in the current set, 
the spectra corresponding to the calibrations obtained by using the first two 
principal components for the three constituents are shown in Fig. 11. Com- 
parison of these spectra to the spectra of the constituents gives insight into 
which wavelengths are useful for predicting the constituent of interest in each 
case, and which are correcting for the absorbance of interfering compounds. 
Also, as in the case of calibration coefficients obtained directly from the indi- 
vidual wavelength data, the sum of the coefficients at each wavelength for the 
spectra in Fig. 11 is zero, i.e., those three spectra sum to zero. 

The plots of the principal component calibrations themselves contain useful 
information. It is often noted that when principal components are calculated, 
there is some ambiguity, requiring that the eigenvector must be normalized to 
unit vector length. It is not usually appreciated, however, that even after this 
has been done, there is still an ambiguity of 2 1, leaving the resulting principal 
component in one of two orientations, depending on how the computation hap- 
pens to converge. When the principal component calibration is calculated, this 
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remaining ambiguity disappears. Bands in the plotted principal component 
calibration that are positive correspond to those wavelengths that aid in the 
prediction of the constituent, while those bands that are negative correspond 
to correction for the various interferences and physical phenomena. 

Associated with the poor performance of the calibration based on one prin- 
cipal component are residual plots such as that shown in Fig. 12A. Here again, 
the structure of the mixture design is clear in the residuals; residuals from the 
calibrations for the other constituents showed the same effect. 

The calibration plots obtained from the use of the first two principal com- 
ponents are shown in Fig. 12B-D. As in the case of the calibrations based on 
wavelength data, the errors of the calibration are due mainly to non-linearity. 
The plotted points in Fig. 12B-D also lie on a cup-shape surface. In the case 
of principal components, this error appears much worse than when the cali- 
brations were obtained by using data from individual wavelengths, particularly 
for methanol and acetic acid. This can be seen by comparing the calibrations 
in Fig. 12 to those in Fig. 5. Given that the wavelengths used for the calibra- 
tions shown in Fig. 5 were not optimized for linearity, it is clear that the prin- 
cipal component approach is less accurate when such effects are present in the 
data. Of course, the non-linearities could be corrected by including a principal 
component representing the non-linear terms, but three principal components 
would then be needed. 

Conclusions 
As has been shown, the same data can be analyzed by several nominally 

different algorithms. To a large extent, any of the three algorithms considered 
can be used to achieve any of the specified analyses. Discriminant analysis can 
be used for either qualitative or quantitative analysis of the mixtures in the 
dataset, simply by focussing attention on part or all of the space occupied by 
the data, respectively. Multiple (linear) regression (MLR) can be used for 
quantitative analysis, as it is normally used, and for qualitative analysis by 
noting which material is present at 100% concentration. Principal component 
analysis (PCA), of course, is well-known for both its qualitative and quanti- 
tative aspects. 

Proponents of various sophisticated multivariate algorithms such as PCA 
make claims such as “PCA is better than MLR”. Detractors make counter- 
claims such as “PCA is not as good as PLS”. The current work shows that 
neither of these claims is correct: each algorithm has its own set of character- 
istics that make it different than the others, but inherently neither better nor 
worse. As has been seen, any algorithm can perform any function, yet there is 
a certain artificiality to this, clearly certain algorithms are better suited for 
certain types of analysis than others. In comparing different algorithms, it is 
necessary to consider both the strengths and weaknesses of each. 

For example, principal component analysis, when used for quantitative pur- 
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poses, has the advantages of robustness and orthogonality, avoiding the need 
to execute complicated and time-consuming variable selection routines; it also 
allows all wavelengths in a calibration data set to be used without overfitting 
the data. But PCA has the disadvantage of being sensitive to non-linearities 
that a proper choice of wavelengths can avoid. This sensitivity can be seen in 
both Fig. 10 and Fig. 12. Because of this sensitivity to non-linearity, as well as 
the fact that the limiting error of a calibration for most substances of practical 
interest is usually due to the error in the dependent variable (as regression 
theory says should be the case [ 171, there is little justification for the wide- 
spread belief that quantitative calibrations based on principal components, 
partial least squares, or other sophisticated multivariate algorithms are inher- 
ently more accurate than calibrations based on individual wavelength data, 
although of course they may be in particular cases. 

It behooves the chemometric community to investigate each algorithm on 
its own merits and to establish which types of problems each one is best suited 
for, because none of them is optimal for all possible situations. 
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