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D .A .  R A T K O W S K Y ,  T .  ROSS,  T . A .  MCMEEKIN AND J. OLLEY.  i m i .  T h e  development of 
Arrhenius-type (‘Schoolfield’) and BElehridek-type (square root) models that  describe 
microbial growth rates is briefly described. Both types of model have been advocated for use 
in predictive microbiology. O n  the basis of published data sets for the growth of bacteria, t he  
consequences of mathematical transformation of data and the  use of invalid stochastic 
assumptions upon model predictions are demonstrated. Mean  square error is shown to be a n  
inappropriate criterion by which to compare the performance of predictive models. T h e  data 
show that bacterial growth responses such as generation t ime and lag time become more  
variable as their mean magnitude increases. The practical consequences of such variability for 
predictive microbiology are discussed. 

INTRODUCTION Specifically, they compared a six-parameter form of equa- 

Predictive microbiology is the term used to describe the 
mathematical modelling of the effects of temperature, water 
activity, pH and other environmental influences on the rate 
of microbial growth or the time to reach specified numbers 
of micro-organisms or their metabolites. The  concept has 
been reviewed by a number of authors (Farber 1986; 
Baird-Parker & Kilsby 1987; Gould 1989; Roberts 1990). 
The potential benefits of predictive food microbiology 
depend entirely on the selection of appropriate models to 
describe the effects of environmental factors on microbial 
growth rate. Two types of kinetic model, viz. non-linear 
Arrhenius and BElehradek-type models, have gained promi- 
nence in attempts to describe the effects of temperature and 
other environmental factors on lag phase duration and 
growth rate. Arrhenius-type models are typically applied 
with the dependent variable expressed as In rate. The  
BElehridek-type model most used in predictive micro- 
biology, the square-root model, expresses the dependent 
variable as Jrate. The development of these models is 
described in the Appendix. This paper describes the effects 
of the form of the model on the variance in rate and time 
for Arrhenius-type and square-root models. 

Adair et al. (1989) published the first direct comparison 
of Arrhenius-type models, for which they expressed the 
dependent variable as In time, and Bglehridek-type models. 

tion A3 with equation A7, and a four parameter form of 
equation A1 (or equation A2) with equation A6. They 
referred to the models as ‘Schoolfield’ models. Their con- 
clusions were commented on by Davey (1989), McMeekin 
et al. (1989) and Kilsby (1989). McMeekin et al. (1989) 
criticized the approach of Adair et al. (1989) because small 
data sets were used to compare models with different 
numbers of parameters and because the fitted models were 
not validated against other data sets to test their general 
applicability. In addition, unusual values of the thermody- 
namic constants of the ‘Schoolfield’ models were obtained 
for several data sets which suggested that a relationship 
unique to a particular data set had been obtained. On the 
basis of the protocol adopted by Adair et al. (1989) it is not 
surprising that the ‘Schoolfield’ models, which have two 
additional fitted parameters, appeared to outperform the 
square root models. 

Comparison of the models by Adair et al. (1989) was 
based upon the mean squared error (MSE) between the 
observed generation or lag time and that predicted by the 
respective models. More detailed examination of the effects 
of mathematical transformations of the observed times and 
model predictions on the magnitude of MSE, and of the 
stochastic assumptions inherent in fitting the competing 
models to data, led to the hypothesis that transformation 
effects and inappropriate stochastic assumptions contrib- 

Correspondence to : D r  T .  A. McMeekin. Department of Agricultural Science, 
University of Tasmania. GPO Box 252C, Hobart 7001, Tasmania, 
Australia. square root model. 

uted to the apparent superiority of the predictions of the 
‘Schoolfield’ models when compared with those of the 
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We here present the results of our evaluation of these 
effects based on theoretical considerations and supported 
by published data sets, and we make further comparisons 
between the square root and Arrhenius-type models. 

MATERIALS AND METHODS 

T o  demonstrate the effect of mathematical transformation 
of data the simple square root model (equation A6) was 
expressed with time, 4, rather than rate as the dependent 
variable. Upon transformation equation A6 becomes the 
non-linear equation : 

4 = l/k = l/[b(T - Tmin)I2 (1) 

where k, T, Tmin and b have the same meaning as in equa- 
tion A6. Data can be fitted to this model by standard non- 
linear regression routines. 

The effect on variance of transforming predicted values 
of the natural logarithm of time, or Jrate to generation or 
lag time was determined. The relationship between the 
variance on the time scale and the variance on the J k  scale, 
where the rate, k, is calculated as 1/4, is approximately 
given by : 

Var( Jk )  = Var(l/+)’” 

= cd(l/4)”2/d412 W 4 )  
= (1/4dJ3) Var(4) 

A similar calculation to relate the variance on the time 
scale to the variance on the In time scale as in the ‘School- 
field’ model leads to 

Var(1n 4) = [d(h 4)/d412 Var(4) 

= (W2) Var(4) 

Furthermore, since 

k = 1/4 

then In k = In(l/d) 

= -In 4 
therefore 

Var(In k) = Var(-ln 4) = (l/42)Var(4) 

or 

Var(4) = b2 Var(1n k )  or 42 Var(1n 4) (3) 

Since Arrhenius-type models are usually fitted in the 
logarithmic form (i.e. the dependent variable is In rate) the 
following discussion will be based on this transformation of 

the dependent variable but, as is apparent from equation 3, 
the discussion applies equally to variance in In time. 

Variance in the generation time, In rate and Jrate was 
calculated for the replicated data set of M.G. Smith 
(personal communication) (CSIRO Division of Food Pro- 
cessing, Meat Research Laboratory, Cannon Hill, 
Australia) who generously provided his raw data for the 
growth of coliform organisms on meat at different tem- 
peratures, which is summarized in Smith (1985). Raw data 
for the growth response of Listeria monocytogenes, provided 
by Dr R.L. Buchanan (US Department of Agriculture, 
Agricultural Research Station, Philadelphia, USA) were 
similarly treated. These data are summarized in Buchanan 
& Phillips (1990). The variances derived were used to test 
(1) the validity of the predicted relationships (equations 2 
and 3) between variances in various transformations of the 
data and (2) the validity of the stochastic assumptions 
inherent in the three forms of the predictive models 
(equations 1, AS and A6). 

RESULTS AND DISCUSSION 

Minimization of MSE 

Least squares modelling, in common with modelling by 
various other criteria, involves consideration of both the 
deterministic part of the model, that is the relationship 
between the response (dependent) variable and the explana- 
tory (regressor or independent) variable, and the stochastic 
part of the model, that is the error assumption (Ratkowsky 
1990). 

Tables 1 and 2 present the data of Smith (1985) for the 
growth of coliform organisms in meat, together with pre- 
dictions for these data for the four-parameter ‘Schoolfield’ 
model (equation A5 with the term containing the para- 
meters G and H deleted) and both forms of the simple 
square root model (equations A6 and 1). The  improvement 
in the square root model predictions at the lowest tem- 
peratures when equation 1 is used is marked. By the MSE 
criterion the two-parameter square root model performs 
about as well as the four-parameter ‘Schoolfield’ model. 

A similar improvement in goodness of fit at the lowest 
temperatures is evident with other data sets. Table 3 shows 
the results of Adair et al. (1989) for growth of the Gram- 
negative spoilage microbiota in air-packed beef mince. 
Again, the improvement at the lowest temperatures is 
marked and in terms of the overall goodness of fit judged 
by the MSE criterion the two models perform equally well. 
However, the price paid for the improved precision at the 
lowest temperature is decreased precision at the highest 
temperatures, less consistency in the estimation of Tmin and 
a non-random distribution of residuals. 
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Table 1 Observed and predicted generation times for growth of coliforms in meat [data of Smith (198S)l 

Generation time (h) 

Square root model predictions 

Temperature ("C) Observed time Using eqn (A6) Using eqn (1) 'Schoolfield' prediction 

10 
15 
20 
25 
30 
35 
MSE 
Tmin (generation time) 

6.68 
2.63 
1.49 
0.80 
0.47 
0.34 

8.50 
2.66 
1.28 
0.75 
0.49 
0.35 
0.57 
3.65"C 

6.69 
2.6 1 
1.38 
0.85 
0.58 
0.42 
0.006 
1.67"C 

6.57 
2-78 
1.39 
0.80 
0.50 
0.33 
0.008 

MSE, Mean square error. 

The values of the constant Tmin, estimated by equation 
A6 for the lag and generation time of coliforms in meat, 
differ by only 0.8"C, whereas those estimated by equation 1 
differ by 3.0"C. Thus, to model observed but not necess- 
arily 'representative' values at low temperatures equation 1 
sacrifices an accurate determination of Tmin. 

The above exercise shows how the MSE values can be 
reduced by incorrect stochastic assumptions. In equation 1 
an error term homogeneous in time is assumed, i.e. the 
magnitude of the error is assumed to be constant irrespec- 
tive of the magnitude of the observed generation or lag 
time. As can be seen from Table 4, this is an invalid 
assumption and is contradicted by the data. 

Stochastic assumptlons 

The stochastic assumption for fitting the square root model 
is quite different from that implicit in the 'Schoolfield' 
model. In the former case, the minimization procedure is 
carried out on a 'square root of rate' scale, which assumes 

that the residuals in the square root of rate have a constant 
variance. When these fitted values of Jk  are transformed to 
predict lag or generation times, small discrepancies on the 
rate scale can become rather large discrepancies on the time 
scale; this is evident from Table 5. When the MSE cri- 
terion is applied to rates predicted by either model, there is 
no difference in the goodness of fit, yet there is a large 
difference in the MSE when these predictions are trans- 
formed to times. This further emphasizes that the differ- 
ences reported by Adair et al. (1989) relate more to the 
stochastic assumption than to the model itself. 

Table 4 and Fig. 1 show the variances of generation time 
(Var [4,]), square root of generation rate (Var[,/k,]) and 
natural logarithm of generation rate (Var[ln k,]) as func- 
tions of generation time. The  increase in Var[4,] and 
Var[ln k,, with increasing generation time are striking. On 
the other hand, Var[Jk,] is virtually constant, justifying 
the use of a stochastic term that is homogeneous in Jk ,  the 
assumption made when equation A6, the simple square root 
model, is fitted. 

Table 2 Observed and predicted lag times for growth of coliforms in meat [data of Smith (1985)] 

Lag time (h) 

Square root model predictions 

Temperature ("C) Observed time Using eqn (A6) Using eqn (1) 'Schoolfield' prediction 

10 23,25 18.39 23.22 23.18 
15 5.90 6.35 6.22 5.98 
20 3.00 3.19 2.83 2,92 
25 1.92 1.91 1.61 1.88 
30 1.19 1.27 1.04 1.30 
35 0.96 0.91 0.72 0.92 
MSE 3.98 0.048 0.006 
Tmin (lag time) 2.86"C 4.64"C 

MSE, Mean square error. 
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Table 3 Observed and predicted lag times for the growth of Gram-negative spoilage biota in air-packed beef mince [data of Adair el a l .  
(198911 

Lag time (h) 

Square root model predictions 

Temperature (“C) Observed time Using eqn (A6) Using eqn (1) ‘Schoolfield’ prediction 

- 2.0 165.91 222.58 166.45 158.35 
0.0 98.38 114.84 103.12 107.08 
2.0 85.37 69.89 70.10 73.93 
5.0 36.19 39.53 43.93 44.33 

10.0 20.83 19.80 24.20 21.50 
13.0 20.74 14.33 18.15 15.04 
17.0 8.62 9.96 13.06 10.12 
20.0 7.37 7.87 10.53 7.88 
25.0 5.54 5.62 7.69 5.54 
30.0 4.25 4.20 5.87 4.1 1 

MSE 377.91 37.09 36.52 
T m i n  -7’10°C - 940°C 

MSE, Mean square error. 

When fitting the ‘Schoolfield’ models Adair et al. (1989) 
assumed that Var[ln time] is homogeneous, an assumption 
contradicted by the data of Smith (personal 
communication) in Fig. 1. A consequence of this incorrect 
assumption is that when the model is fitted to data by ordi- 
nary (i.e. unweighted) least squares, there is a tendency for 
the more variable points (i.e. those at lower temperatures) 
to be more influential in determining the least squares line 
than‘ the points at higher temperatures. The result is a 
better fit to the points at low temperature. Schoolfield et al. 
(1981) recognized the problem caused by the non- 
homogeneity of Var[ln k] and performed least squares non- 
linear regression ‘weighted according to the reciprocal of 
the rate values’. 

The  above explanation coupled with the fact that the 
‘Schoolfield’ models have two more parameters than the 
square root models, are the major reasons why Adair et al. 

(1989) obtained better fits with the ‘Schoolfield’ models 
than with the square root models. The increase in variance 
in generation time and in lag time as the temperature 
moves further from the optimum, means that obtaining 
representative estimates becomes increasingly difficult as 
the population is placed under stressful conditions. 

The increased variability of data poses a greater problem 
for the ‘Schoolfield’ model than for the square root model 
because Var[Jk] is constant but Var[ln k] increases pro- 
gressively with response time. The  consequence of this is 
that estimates of parameter values can vary widely at low 
temperatures and long times; for example, the value for 
AHL (enthalpy of low temperature inactivation of growth) 
is virtually determined by the data at the lowest tem- 
peratures. 

This problem does not arise with the square root model 
because Var[Jk] is homogeneous throughout the bio- 

Table 4 Variance data for generation times of Escherichra coli on meat carcasses from the raw data of Smith (personal communication) 

Variance 

Generation time 
Mean Observed predicted from 

Temperature generation No. of 
(“C) time (h) replicates Generation time In rate Jrate  eqn (2) eqn (3) 

10 5.86 7 0.85 0.027 0.00 1 2 0.98 0.93 
15 2.50 11 0.083 0.014 0.00 14 0.090 0.087 
20 1.49 7 0.012 0.0056 0,00096 0.013 0.0 13 
25 0.79 9 0.0038 0.0052 0.00 16 0.0032 0.0032 

35 0.34 8 0.00029 0.0025 0.00 19 0.00029 0.00029 
40 0.28 8 0.00026 0.0034 0.0030 0.00025 0.00025 

30 0.47 14 0.00 19 0.0088 0.0046 0.0019 0.0020 
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Table 5 Mean square error (MSE) of rates (generations/h) 
predicted by the 'Schoolfield' and square root models for the data 
sets of Smith (1985) and Adair et al. (1989) presented in Tables 1, 
2 and 3 

Predicted rate 

Observed 'Schoolfield' Square root 
Data from rate model model 

Table 1 0.1 so 0.152 0.118 
0.380 0.360 0.376 

1.250 1.250 1.333 
2.128 2.000 2.041 

0.67 1 0.719 0.781 

2.941 3.030 2.857 
MSE (rate) 0~004500 0.005788 

Table 2 0.043 0.043 0,054 
0.169 0.167 0.157 
0-333 0.342 0.313 
0.521 0.532 0.524 
0.840 0.769 0.787 
1.042 1.087 1.099 

MSE (rate) 0.00 1220 0~001125 

Table 3 0.006 
0.0 10 
0.012 
0.028 
0.048 

0.1 I6 
0.136 
0.220 
0.235 

0.048 

MSE (rate) 

MSE, Mean square error. 

0.006 
0.009 
0.0 14 
0.023 
0.047 
0.066 
0.099 
0.127 
0.181 
0.243 
0400238 

0.004 
0.009 
0.014 
0.025 
0.05 1 
0.070 
0.100 
0.127 
0.178 
0.238 
0.000261 

kinetic range. Predictive models should be based on exten- 
sive data sets and we suggest, from experience, that a 
minimum of 1CL1.5 temperature/rate determinations at 
close temperature intervals are required to obtain reliable 
estimates of parameter values. In adopting this strategy the 
size of the experiment limits the number of replicates at 
any temperature particularly if plating methods, rather than 
turbidity or other indirect methods, are used to estimate 
growth. T o  obtain confidence limits for estimates of growth 
rate or lag phase duration, replicate determinations can be 
made at a few temperatures and the variance in real time 
calculated at any temperature by application of equations 2 
or 3. 

As further hurdles to bacterial growth such as reduced 
water activity, unfavourable pH, etc. are added, the 
variance increases further. This can be inferred from raw 
data provided by R.L. Buchanan and summarized by 

0'03 r 
0 - 0 2  L 

. 
0 

Generation time ( h ) 

Fig. 1 Comparison of the variance in J(rate)  and the variance in 
In (rate) for the generation time data of Smith (personal 
communication). Var[ln (rate)] = Var[ln (time)] see equation (3). 
0, Var J k ;  0, Var In (rate) 

Buchanan & Phillips (1990) for growth of L. monocytogenes. 
Generally, when the generation time was less than 1.0h, 
the absolute error was of the order of 0.1 or less, but for 
generation times of 5 h or more the variance may be as high 
as 4 h. This latter value was calculated for nine replicates at 
5"C, pH 7.5, 5% NaCl and without nitrite under aerobic 
conditions. Under more stressful conditions produced by 
low pH (19"C, pH 4.5, 5% NaCl, without nitrite), 19 data 
points gave a mean generation time of 8.3 h with a variance 
of 25.66. Twelve points were clustered about the mean, 
while three values were clustered at 19h and four were 
around 3.5 h. Seven replicates of lag phase duration at 
19"C, pH 6.0, 5% NaCl and without nitrite varied from 
2.92 to 16.12h. Four of the estimates were clustered below 
the mean and three were clustered above the mean. These 
unusual patterns of distribution make estimation of repre- 
sentative mean responses difficult. 

Under extremely stressful conditions near the limiting 
values for survival (low pH/high salt), Cole et al. (1990) 
have shown that the results obtained become increasingly 
erratic, making predictions of survival times even less reli- 
able. The contention of Kilsby (1989), that it is most 
important to fit predictions to actual data obtained, can 
only be correct if these data very precisely approximate to 
the mean response. T o  obtain representative estimates 
becomes increasingly difficult at longer generation times 
and lag times, when the latter in particular show marked 
variability. 

Models have been developed to describe the effect of 
environmental factors on the growth of spoilage and patho- 
genic bacteria. In both situations the lag and logarithmic 
phases of growth are of interest. Since spoilage results from 
prolific growth of organisms, the logarithmic phase domi- 
nates models for spoilage processes. Conversely, as the tol- 
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erance levels for pathogens in food are much lower, and in 
some cases zero, emphasis will be on lag phase modelling. 
In view of the increasing variability of estimates under 
severe growth-limiting conditions, completely accurate pre- 
dictions cannot be made from limited data sets, where esti- 
mates of the error in the mean cannot be obtained. When 
reliable estimates of the mean and standard deviation of 
growth responses of organisms become available, it will be 
possible to predict both the extent of growth in a particular 
situation and confidence limits for that prediction, to make 
objective risk assessments and to ‘fine-tune’ predictions for 
specific ‘acceptable risk levels’. Without reliable estimates 
the safest alternative is to adopt a ‘worst case scenario’ to 
accommodate inconsistent growth responses. 

APPENDIX 

There have been a number of models proposed for use in 
predictive microbiology. The following discussion briefly 
traces the development of the ‘Schoolfield’ model and the 
‘square root’ model. 

Arrhenlus-type models 

The model of Schoolfield et al. (1981) is simply a repar- 
ameterization, without change to the model theory, to give 
better parameter estimation properties to the model pro- 
posed by Sharpe & DeMichele (1977). Both models assume 
that growth rate is governed by a single rate-limiting 
enzyme-catalysed reaction, the rate of which may be 
described by the Arrhenius equation with additional ther- 
modynamic terms to describe the rate-modifying effects of 
high and low temperature inactivation of the rate-limiting 
enzyme. Both models are a synthesis of the equations pro- 
posed by Hultin (1955) and Johnson & Lewin (1946). Adair 
et al. (1989) reparameterized the model of Schoolfield et al. 
(1981) and expressed it with In(time), rather than rate, as 
the dependent variable. These models with a description of 
their parameters are presented below. 

The model of Johnson & Lewin (7946) 

(Al) 
c . T . exp( - AH*/RT) 

1 + exp(AS/R) . exp( - AH/RT) 
Rate = 

where c = a constant; T = temperature in degrees Kelvin; 
R = the gas constant; AH* = the heat (enthalpy) of acti- 
vation of the growth rate-controlling reaction ; 
AS = entropy of denaturation of the rate-controlling 
enzyme; AH = enthalpy of denaturation of the rate- 
controlling enyzme. 

In this model the numerator 

c . T . exp( - AH */RT) 

has the form of an Arrhenius relationship, as modified by 
Eyring (1935), and is used to describe the kinetics of the 

growth rate-governing reaction, which is assumed to be 
enzyme-catalysed. T o  account for the deviation of observed 
growth response from that predicted by the above numer- 
ator, the model proposes that the growth rate-governing 
enzyme becomes inactivated at high temperatures in a 
manner also described by a unique Arrhenius model 

[enzyme,,,,,,] = [enzyme,,,,,] . exp(AS/R) . exp( - AH/RT) 

i.e. this function models the temperature-dependent tran- 
sition of the growth rate-controlling enzyme between an 
active and an inactive state. Thus, the overall growth rate is 
determined by the kinetics of the reaction catalysed by the 
growth rate-governing enzyme and also the proportion of 
that enzyme population in an active state. These two 
temperature-dependent processes are mathematically 
‘superimposed’ to yield the full model. For temperatures at 
which the rate of reaction from the active to inactive state is 
close to zero, the denominator approximates to unity, and 
the growth rate is predicted by the numerator. As the rate 
of transition to the inactive form of the growth rate- 
governing enzyme increases, i.e. exp(AS/R) . exp( - A/RT) 
has values greater than zero, the denominator takes values 
greater than unity. Thus the prediction of the above 
numerator is ‘corrected’ for the effects of enzyme inac- 
tivation caused by high temperatures. 

The model of Hultin (7955) for the effect of 
temperature on enzyme activity 

(A2) 
xkT exp AS */R . exp ( -AH */RT) 

Rate = -. 
h 1 + K  

where T, R and -AH* have the same meaning as in equa- 
tion A1 ; k = the Boltzmann constant; h = Planck’s con- 
stant; x = the transmission constant; AS* = the entropy of 
the enzyme-catalysed reaction; K = exp { ( - AH/R) . [( 1/ 
T )  - ( 1/T112)]} ; = AH/AS, the temperature at 
which half of the population of the enzyme is active and 
half has been inactivated by low temperature; AH = 
the enthalpy of (low temperature) denaturation of the 
enzyme. 

This model was developed to describe the effect of tem- 
perature on enzyme activity rather than microbial growth 
rate. Nonetheless, with the parameter K shown in full, this 
model is mathematically equivalent to the Johnson & Lewin 
(1946) model. Hultin introduced the term which can 
be evaluated by graphical methods, to facilitate determi- 
nation of the parameters AH and -AH *. 

The model of Sharpe & DeMichele (7977) 

Rate = 
T expC(4 - AH,t/T)/RI 

1 + exp[(AS, - AH,/T)/R] + exp[(ASH - AH,+/T)/R] 
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where T, R have the same meaning as previously; 4 = a 
constant, similar to that in the Johnson & Lewin (1946) 
model, encompassing the entropy of activation of the rate- 
controlling enzyme, enzyme concentration, and Planck’s 
and Boltzmann’s constants; AH: = the heat (enthalpy) of 
activation of the growth rate-controlling reaction; AS, = 
entropy of low temperature denaturation of the rate- 
controlling enzyme; AHL = enthalpy of low temperature 
denaturation of the rate-controlling enzyme; ASH = 
entropy of high temperature denaturation of the rate- 
controlling enzyme; AHH = enthalpy of high temperature 
denaturation of the rate-controlling enzyme. 

Sharpe & DeMichele’s model also assumes a growth 
rate-controlling enzyme. The rate of the reaction catalysed 
by this enzyme, when all of the enzyme population is in the 
active state, is modelled by the numerator. The denomina- 
tor includes terms which model the transition between the 
active and inactive form of the enzyme for both high and 
low temperature inactivations. 

The model of Schoolfield et al. (7987) 

Rate = 

~ ( 2 5 ° C ) ~  298 exp[ (A - $)] 
1 + exp[ 3 (1 - +)] + exp[ 7 AHH (k - +)] 

R T1/2L 

where all the parameters have the same meaning as those of 
the Sharpe & DeMichele (1977) model, but with three new 
parameters defined as follows: ~ (25°C)  = 298. exp(4 
- AH:/298)/R and is analogous to 4 in equation A3; 
Tl/2L = AHJASL and is the temperature at which half of 
the population of the rate-controlling enzyme is active and 
the other half has been inactivated by low temperature; 
Tli2,, = AHJASH and is the temperature at which half of 
the population of the rate-controlling enzyme is active and 
the other half has been inactivated by high temperature. 

The latter two parameters are analogous to Hultin’s TI/, 
and also represent the low and high temperatures respec- 
tively at which the equilibrium constants for the activation/ 
inactivation reaction for the rate-controlling enzyme are 
1.0. They are introduced because they permit graphical 
determination of parameter values. 

Adair et al. (1989) developed an alternative form of the 
Schoolfield et al. (1981) model which has improved 
numerical stability and increased speed of convergence 
when data are fitted to the model by the NLIN non-linear 
regression procedure of SAS (Statistical Analysis System). 
In this model In time is the dependent variable. The form 

of the model is 

In(K) = A + (B/T) - In T + In { 1 + exp[F + (D/T)] 

+ expCG + (H/T)I) (‘45) 

where K = lag or generation time; A = I n  298 - 
{[AHi/(298.R)] - In ~(25°C)) ;  B = -AH:/R; D = 

R); H = -AHdR;  and where R, T, AH:, -AHH, 
- N I L ,  and In ~ ( 2 5 ° C )  are as defined above. 
For data in the suboptimal temperature range the model is 
simplified by the deletion of the term: exp[G + (H/T)]. If 
the full expression for ~ ( 2 5 ° C )  is substituted into the four- 
parameter form of equation AS, it simplifies to the form of 
equations A1 and A2. 

- AHJR; F = -AHJ(T1/2L.R); G = -AHJ(T1/2,, 

Bglehradek-type models 

The square root models of Ratkowsky et al. (1982, 1983) to 
describe the effect of temperature on bacterial growth rate 
were developed from the model of Ohta & Hirahara (1977) 
which describes the effects of temperature on nucleotide 
degradation. Subsequently Ross (1986) showed that the 
simple square root model was a special case of Bglehradek’s 
temperature function in which the exponent has the value 
two. This relationship was developed by Bglehradek ( 1926a, 
b; 1935). These models and a description of their param- 
eters are shown below. 

The model of Ratkowsky et al. (7982) 

J k  = b(T - Tmin) (A6) 

where k = rate of growth; T = temperature in degrees K ;  
Tmin = a theoretical lower temperature limit for growth a t  
and below which the predicted rate of growth is zero; 
b = a parameter; the regression coefficient of the square 
root of rate versus sub-optimal temperature. 

The model of Ratkowsky et al. (7983) 

where b, T, and Tmin have the same meaning as in equation 
A6; T,,, = the upper temperature limit at and beyond 
which the predicted rate of growth is zero; c = an addi- 
tional parameter to enable the model to fit the data at tem- 
peratures near and above the optimal temperature for 
growth. 
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