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Abstract 

Techniques based on reinforcement learning (RL) have been used to build systems that learn 
to perform nontrivial sequential decision tasks. To date, most of this work has focused on learning 
tasks that can be described as Markov decision processes. While this formalism is useful for 
modeling a wide range of control problems, there are important tasks that are inherently non- 
Markov. We refer to these as hidden state tasks since they arise when information relevant to 
identifying the state of the environment is hidden (or missing) from the agent’s immediate 
sensation. Two important types of control problems that resist Markov modeling are those in 
which ( 1) the system has a high degree of control over the information collected by its sensors 
(e.g., as in active vision), or (2) the system has a limited set of sensors that do not always 
provide adequate information about the current state of the environment. Existing RL algorithms 
perform unreliably on hidden state tasks. 

This article examines two general approaches to extending reinforcement learning to hidden 
state tasks. The Consistent Representation (CR) Method unifies recent approaches such as the Lion 
algorithm, the G-algorithm, and CS-QL. The method is useful for learning tasks that require the 
agent to control its sensory inputs. However, it assumes that, by appropriate control of perception, 
the external states can be identified at each point in time from the immediate sensory inputs. A 
second, more general set of algorithms in which the agent maintains internal state over time is 
also considered. These stored-state algorithms, though quite different in detail, share the common 
feature that each derives its internal representation by combining immediate sensory inputs with 
internal state which is maintained over time. The relative merits of these methods are considered 
and conditions for their useful application are discussed. 
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1. Introduction 

Computational theories of agent-environment interaction need to include an account of 
learning. Learning is necessary to develop and maintain intelligent agents. Sophisticated 

real-world robots cannot be achieved through meticulous programming alone. The real 

world is much too complex, idiosyncratic, and uncertain to know ahead of time, and 
programming languages are too rigid and inexpressive for programming alone to be 
feasible. Intelligent agents must bear at least some of the burden of skill acquisition 
themselves. Also, because the world does not stand still, to maintain a high level 
of performance, agents must learn new skills and adapt old ones to changes in the 
environment. 

Though there are many kinds of learning, and many things that an agent might learn, 
in the end, all learning boils down to learning control. The value of anything learned can 
only be measured in terms of its effect on the agent’s interaction with its environment, 
in terms of its ability to control the environment to a desired end. 

This article focuses on reinforcement learning, a paradigm that is well suited to 

learning control in highly interactive environments [ 7,461. In reinforcement learning 

the agent-environment interaction is modeled as a controller coupled to a finite state 
machine (whose transition probabilities are unknown). At each time step, the controller 
performs an action which causes the environment to change state and generate a payoff. 
The agent’s objective is to learn a state-dependent control policy that maximizes a 

measure of the total payoff received over time. 
Some of the features that make reinforcement learning (RL) appealing are: 
( 1) RL is a weak method in that 

(a) learning occurs through trial-and-error experimentation with the environ- 
ment; 

(b) the feedback used for learning takes the form of a scalar payoff-no explicit 
teacher, who offers the “correct answer” is required; 

(c) on sequential decision making tasks, payoffs may be sparse and considerably 

delayed; and 
(d) little or no prior knowledge is required. 

(2) RL is incremental and can be used online. 

(3) RL can be used to learn direct sensory-motor mappings, and is, thus, appropriate 
for highly reactive tasks in which the agent must respond quickly to unexpected 
events in the environment. 

(4) RL is valid in nondeterministic environments. 
(5) When used in conjunction with temporal difference (TD) methods [ 19,441, RL 

has proven to be effective on difficult sequential decision making tasks (e.g., 
checkers [ 381, pole balancing [ 8,301, and backgammon [ 491) . 

(6) RL architectures are extensible. Recently, RL systems have been extended to 
incorporate aspects of planning [ 25,45,5X], intelligent exploration [ 21,23,5 11, 
supervised learning [ 15,24,56] and hierarchical control [ 16,26,4 1,621. 

Traditionally, research in RL has focused on Markov decision processes (MDPs). 
Described formally in Section 2, a Markov decision process intuitively corresponds 
to a control task in which at each point in time (a) the agent directly observes the 
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state of the environment and (b) the effects of actions depend only upon the action 
and the current state. In most applications, the agent does not observe the state of 
the environment directly, in the sense of being given a label which names the state. 
This assumption that the agent, at each point in time, encodes in its internal repre- 

sentation all the information relevant to predicting the effects of actions is known as 
the Murkov assumption. It is important for two reasons. First, it has been important 

to the theoretical development of RL, because focusing on Markov decision processes 
has allowed researchers to apply the classical mathematicals of stochastic processes and 
dynamic programming [ 7,44,54,55]. Second, existing reinforcement learning methods, 

which use TD-methods [ 441, rely on the Markov property during credit assignment, 
and may perform badly when the assumption is violated [ 18,593. Nevertheless, there 
are important learning control problems that are not naturally (or easily) formulated 
as Markov decision processes. These non-Markov tasks are commonly referred to as 
hidden state tusks, since they occur whenever it is possible for a relevant piece of 

information to be hidden (or missing) from the agent’s representation of the current 
situation. 

Hidden state tasks arise naturally in the context of autonomous learning robots. The 
simplest example of a hidden state task is one which occurs when the agent’s sensors 
are inadequate for the task at hand. Suppose a robot is charged with the task of sorting 

blocks into bins according to their color, say Bin-l for red, Bin-2 for blue. If the robot’s 
sensors are unable to distinguish red from blue, then for any given block it can do 

no better than guess a classification. If there are an equal number of blocks of each 

color, then guessing can do no better than chance. On the other hand, if the robot 
can detect color, it can easily learn to achieve 100% performance. The former case 
corresponds to a non-Markov decision problem, since relevant information is missing 

from the agent’s representation. The latter case is Markov since once a color sense is 
available the information needed to achieve optimal performance is always available. 

In general, if a robot’s internal representation is defined only by its immediate sensor 
readings, and if there are circumstances in which the sensors do not provide all the 

information needed to uniquely identify the state of the environment with respect to the 
task, then the decision problem is non-Markov. 

Hidden state tasks are also a natural consequence of integrating learning with ac- 
tive/selective perception [ 601. In active perception, the agent has a degree of control 

over the allocation of its sensory resources (e.g., controlling visual attention or selecting 
visual processing modules) [ 3,5,6]. This control is used to sense the environment in 

an efficient, task-specific way. However, if control is not properly maintained then the 
data generated by the sensors may fail to code a relevant piece of information, and the 
resultant internal representation may be ambiguous with respect to the current state of 
the environment. It follows that if the agent must learn to control its sensors, there will 
be periods of time when the internal representation will be inadequate. Therefore the 

decision task will be non-Markov. 
Techniques for applying reinforcement learning to non-Markov decision processes is 

the central focus of this article. We describe a generalized technique called the Con- 
sistent Representation (CR) Method that can be used to learn control in systems with 
active perception [ 571. The principal idea underlying the CR-method is to split con- 
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trol into two phases, a perceptual phase and an overt phase. During the perceptual 
phase, the system performs sensing (or sensor configuration) actions in order to gen- 
erate an adequate (i.e., Markov) representation of the current external environment. 

During the overt stage, this representation is used to select overt action; that is, an 
action that changes the state of the external environment. Systems using the consistent 

representation method learn not only the overt actions needed to perform a task, but 
also the perceptual actions needed to construct an adequate, task-specific representation 
of the environment. Although, the CR-method unifies such recent algorithms as the 

Lion algorithm [60], CS-QL [48], and the G-algorithm [ 131, it is restricted to tasks 
in which the agent can always identify the current state of the environment through 
proper control of its sensors. It is not appropriate for tasks in which the agent must store 
state information over time, or remember previous events in order to infer the current 

state. 
To overcome this restriction, several, more general approaches are considered that 

retain state information over time. We refer to these as stored-state methods. The simplest 

of these approaches is one which augments immediate sensory inputs with a delay 

line to achieve a crude form of short term memory [25]. This approach has been 

successful in certain speech recognition tasks [53]. Another alternative is called the 
method of predictive distinctions [ 4, 14,25,39]. Following this approach, the system 

learns a predictive model of the sensory inputs (i.e., environmental observables) and 
then uses the internal state of this model to drive action selection. A third approach 
uses a recurrent neural network in combination with existing reinforcement learning 
methods to learn a recurrent state-dependent control policy directly [28]. Each of 
these methods is described in detail and conditions for their useful application are 

considered. 

The remainder of the article is organized as follows. Section 2 provides a basic review 
of concepts from reinforcement learning. Section 3 discusses non-Markov decision pro- 

cesses and considers the difficulties they cause for learning control. Section 4 presents the 
Consistent Representation Method as a technique for learning to control perception and 

reviews examples of this technique. Section 5 describes and compares three stored-state 
methods and specifies preference conditions for each. Section 6 discusses all of these 

methods in the broader context of scalability and conclusions are drawn in Section 7. 

2. Review of reinforcement learning 

In this section the basic concepts from reinforcement learning are reviewed. We begin 

by describing a simple model of agent-environment interaction. Next, we review the 
principles of Markov decision processes and Q-learning [ 541, a popular reinforcement 
learning algorithm. A thorough review of Markov decision processes and reinforcement 
learning, however, is beyond the scope of this article. Throughout the article, we shall 
focus primarily on Q-learning and the difficulties caused for it by non-Markov decision 
processes. Other algorithms [ 8,19,44,63] suffer a similar fate. For a more complete 
review of Markov decision processes and Q-learning, the reader may wish to consult 
[ IO] and [ 541. For a review of reinforcement learning in general, see [ 71. 



S.D. Whitehead, L.-J. Lin/Art$cial Intelligence 73 (1995) 271-306 275 

Environment 

States: S 

i 

Payoffs Actions: A 

Agent 

Fig. 1. A simple model of agent-environment interaction. 

2.1. Modeling agent-environment interaction 

Fig. 1 illustrates a model of agent-environment interaction that is widely used in 

reinforcement learning. In this model the agent and the environment are represented by 
two synchronized finite state automatons interacting in a discrete time cyclical process. 
At each time point, the following sequence of events occurs. 

( 1) The agent senses the state of the environment. 

(2) Based on this current state, the agent chooses an action to perform. 
(3) Based on the current state and the action selected by the agent, the environment 

makes a transition to a new state and generates a payoff. 

(4) The payoff is passed back to the agent. 

2.1.1. The environment 

The environment is modeled as a Markov decision process. Formally, a Markov 
decision process is described by the tuple (S, A, T, R), where S is the set of possible 

states, A is the set of possible actions, T is the state transition function, and R is the 
reward function. At each time, the environment occupies exactly one state from S, and 

accepts one action from A. S and A are usually assumed to be discrete and finite. State 

transitions are modeled by the transition function, T, which maps state-action pairs into 
new states (T : S x A -+ S). The transition function is in general probabilistic, and 
typically specified in terms of a set of transition probabilities, Px,?. (a), where 

Px,?(a) = Prob(T(x,a) = y). (1) 

Payoffs generated by the environment are determined by a reward function, R, which 

maps state-action pairs into scalar-valued rewards ( R : S x A + II%). The reward function 
may also be probabilistic. 

Notice that in a Markov decision process (MDP), the effects of actions (i.e., the next 
state and the immediate reward generated) depend only upon the current state. Process 
models of this type are said to be memoryless and to satisfy the Markov property. The 

Markov property is fundamental to this model of the environment because it implies that 
knowledge of the current state is always sufficient for optimal control (i.e., to maximize 
the reward received over time) [ lo]. Thus, even though it may be possible to devise 
action-selection strategies whose decisions depend upon additional information (e.g., a 
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history trace), these strategies cannot possibly outperform the best decision strategies 
that depend only upon knowledge of the current state. 

2.1.2. The agent 

The agent is responsible for generating control actions. At each time step it senses 
the current state, selects an action, and observes the new state and reward that result. 

Rewards are used as feedback for learning. 
One way to specify an agent’s behavior is in terms of a control policy, which pre- 

scribes, for each state, an action to perform. Formally, a policy f is a function from 
states to actions (,f : S + A), where f(x) denotes the action to be performed in state X. 

In reinforcement learning, the agent’s objective is to learn a control policy that maxi- 

mizes some measure of the total reward accumulated over time. In principle, any number 
of reward measures can be used, however, the most prevalent measure is one based on 
a discounted sum of the reward received over time. This sum is called the return and is 

defined for time t as 

return(t) = ~yr’r,+,l, 
n=o 

(2) 

where y, called the temporal discount factor, is a constant between 0 and 1, and r,+” 

is the reward received at time t + n. Because the process may be stochastic, the agent’s 

objective is to find a policy that maximizes the expected return. 

For a fixed policy f, define VJ (x) , the value function for policy f, to be the expected 
return, given that the process begins in state x and follows policy f thereafter. The 
agent’s objective is to find a policy, f*, that is uniformly best for all possible states. 

That is, find f*, such that 

* V, (x) =mfgyf(x) V’x t S. (3) 

An important property of MDPs is that f* is well defined and guaranteed to exist. In 
particular, the Optima& Theorem from dynamic programming [ 91 guarantees that for a 
discrete time, discrete state Markov decision process there always exists a deterministic 

policy that is optimal. Furthermore, a policy f is optimal if and only if it satisfies the 

following relationship: 

Q.r(x, f (x) 1 = ~~;(Q~(x.a)) b’x E S (4) 

where Qf( x, a), the action-value function, is defined to be the expected return given 
that the agent starts in state x, applies action a once, and follows policy f thereafter 
[9, lo]. Intuitively, Eq. (4) states that a policy is optimal if and only if in each state, 
the policy specifies an action that maximizes the local “action-value”. That is, 

f*(x) =a such that Qf*(x,a) =sga;[Qf.(.x,b)] ‘dx E S, (5) 

and 

VP(X) =mgy[Qf*(x,a)] b’x E S. (6) 
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Q +-- a set of initial values for the action-value function (e.g., uniformly zero) 
Repeat forever: 

1) 
2) 

3) 

4) 

x + the current state. 
Select an action a to execute that is usually consistent with f(x) 

but occasionally an alternate. 
Execute action a, and let y be the next state and r be the reward 
received. 

Update Q(x,a): 

Q<L~> t (1 -a)Q(x.a) +dr+yU(y)l 
where U(Y) = Q(Y, f(y) ). 

Here for each x E S: f(x) +-- a such that Q( X, a) = max&A Q( x, 6). 

Fig. 2. A simple version of the one-step Q-learning algorithm. 

For a given MDP, the set of action-values for which Fq. (4) holds is unique. These 
values are said to define the optimal action-value function Q* for the MDP 

If an MDP is completely known (including the transition probabilities and reward 
distributions), then the optimal policy can be computed directly using techniques from 

dynamic programming [ 9,10,36]. However, in many cases, the structure and dynamics 
of the environment are not known. Under these circumstances the agent cannot compute 
the optimal policy directly, but must explore its environment and learn an effective 

control policy by trial-and-error. 

2.2. Q-learning 

Q-learning [54] is an incremental reinforcement learning method. It is a good repre- 
sentative for reinforcement learning because it is simple, mathematically well founded, 
and widely used. For our purposes Q-learning is useful for illustrating the difficulties 

caused by non-Markov decision problems. Also, because other reinforcement learning 
algorithms use similar credit assignment techniques (namely TD-methods [44] ), an 

understanding of the difficulties for Q-learning is useful for understanding weaknesses 
of other algorithms. 

In Q-learning the agent estimates the optimal action-value function (also called the 

Q-function) directly and uses it to derive a control policy using the greedy strategy 
mandated by Fq. (5). A simple Q-learning algorithm is shown in Fig. 2. The first 
step of the algorithm is to initialize the agent’s action-value function, Q. Q is the 

agent’s estimate of the optimal action-value function. If prior knowledge about the task 
is available, that information may be encoded in the initial values, otherwise the initial 
values can be arbitrary (e.g., uniformly zero). After initialization, the agent enters the 

main control/learning loop. The first step is to sense the current state, X. Next, the 
agent selects an action Q to execute. Most of the time, this action will be the action 
specified by its policy f(x) as defined by Eq. (5), but for the purposes of exploration 
the agent will occasionally choose an action that appears sub-optimal. For example, one 
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might choose to follow J’ with probability p and choose a random action otherwise. 2 
The agent executes the selected action and notes the reward r and state y that result. 
Finally, the action-value estimate for state-action pair (x, a) is updated. In particular, an 

estimate for Q*( X, a) is obtained by combining the immediate reward r with a utility 

estimate for the next state, (I(y) = max&A [ Q(y, b)]. The sum 

y + YU(Y), (7) 

called a one-step corrected estimator, is an unbiased estimator for Q*(.x,n) when Q = 

Q*? since, by definition 

Q*(x,u) =ElR(x,a) +yV*(T(x,u))l, (8) 

where V*(X) = max&A Q*(x, a). The one-step estimate is combined with the old 

estimate for Q ( X, a) using a weighted sum: 

Q(x.a) + (1 -a)Q(.r,a) +alv+yU(.v)l, (9) 

where @ is the learning rate. Q-learning is guaranteed to converge to an optimal policy 
for any finite Markov decision process if, in the limit, every state-action pair is tried 
infinitely often and if the learning rate decreases according to a proper schedule [ 5.51. 

3. Non-Markov tasks 

To see how non-Markov decision tasks arise in agent-environment interactions, one 
need only make a distinction between an abstract (agent-independent) specification for 

a task and the actual decision problem faced by a learning agent. We shall refer to 
these as the external and the internal decision problems, respectively, since the former 

is agent-independent and exists outside the agent, while the latter is endogenous and 
agent-specific. 

3.1. An example 

To illustrate the distinction, consider the task of inspecting apples in a packaging 
plant. Suppose apples are to be sorted according to whether or not they are ripe. Ripe 
apples are shipped to the supermarket, green apples are crushed for their juice. If apples 
come down a conveyor one at a time, then a Markov decision process model of the 
task might be formulated as follows. We could define a state variable called ripeness 
to characterize the current apple as either “ripe” or “green’‘-this state variable would 
induce a state space of size 2. The model could have two actions, which would be to 
either “accept” or “reject” an apple. A reward function could be defined to give a unit 
of reward whenever a ripe apple was accepted and a green apple was rejected, and a 
unit of penalty otherwise. A transition function could be defined to model the dynamics 

*Occasionally choosing an action at random is a particularly simple mechanism for exploring the envi- 

ronment. Exploration is necessary to guarantee that the agent will eventually learn an optimal policy. For 

examples of more sophisticated exploration strategies. see I 2 I, 45,511. 
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b) 
0.1 reject 3 

0.9 6 =ept 

Fig. 3. The apple sorting example. (a) An abstract (external) model of the task. (b) The actual (internal) 

task facing a robot with no sensors. 

of the apple sequence. If the types of apples coming down the conveyor are temporally 

dependent, as might be the case if apples were loaded into the hopper in crates from 
different orchards, then nonuniform transition probabilities could be used to model this 

dependence. For example, we might assume that the next apple down the conveyor will 
be the same type as the last one with probability 0.9, and different with probability 0.1. 

This process model, illustrated in Fig. 3(a), corresponds to a specification of the task. 

It is a mathematical abstraction. The states, actions, rewards, and transitions exist in the 
mind of the modeler, and are intended to capture the essence of the environment and 

the task requirements. It makes no explicit reference to the physical agent that might 
perform the task. It defines the external decision problem. 

Conversely, consider the decision problem facing a control system embedded inside 

a robot’s head. For simplicity, consider a robot that has a single binary sensor Sl 
that it uses to represent its environment, and a single binary actuator Al that it uses 
to affect action. In a totally situated agent, the sensors and affecters determine the 

basic structure of the internal decision problem: two states: Sl = 0, Sl = 1; and two 
actions: A 1 = 0, A 1 = 1. The transition and reward dynamics of this internal process 
are determined not only by the dynamics of the external environment, but also by the 

physics of the sensory-motor interface. For example, if the robot’s sensor is able to 
detect the color of the apple on the conveyor (say, red or green), and if its affector is 
a lever that can be used to select apples then the internal decision process may closely 

match the external task (assuming red apples are “ripe” and green apples are “green”). 
On the other hand, if the agent’s sensor or affector is not closely matched (e.g., say 
the sensor detects bruises), then the internal problem may bear little resemblance to the 
external one. 

3.2. Accounting for perceptual-motor processes 

The distinction between external and internal decision tasks can be incorporated into 
our model of agent-environment interaction by augmenting Fig. 1 to explicitly account 
for the mappings performed by the agent’s perceptual-motor processes. The new model 
is shown in Fig. 4. On the sensory side the agent’s perceptual processes map states in 
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States: S Actions: A 

I I 
t I 

Percaphrd Motor 
Pr- PmmsssS 

,“‘_i ’ ,‘d ’ Embedded 

Internal Controller 
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Fig. 4. A model of agent-environment interaction that explicitly accounts for the agent’s perceptual-motor 

processes. Perceptual processes map states from the external world model onto internal representations. Motor 

processes map internal motor commands onto actions in the external world model. 

the external world onto states in the agent’s internal representation. On the motor side, 

the agent’s motor processes map internal motor commands to actions in the external task 
model. s In general, these mappings could be of considerable complexity. A perceptual 
mapping might involve immediate precepts, attentional mechanisms, and stored history 
information; and a motor mapping might involve complex motor sequences or parallel 

actions. For the purposes of the present discussion we shall restrict consideration to 
simple mappings only. Indeed, for the remainder of the article, we will concentrate 
only on sensory mappings and assume that there is a one-to-one mapping between 

motor commands and external actions. We also assume reward is passed directly to 
the embedded controller. That is, whenever a situation arises in the world that would 
generate a reward in the external model, that reward is correctly passed to the embedded 

controller. 

3.3. Non-Mar&v internal tasks 

Formally, a decision task is non-Markov if information above and beyond knowledge 

of the current state can be used to better predict the dynamics of the process and improve 
control. 4 

In general, an agent’s internal decision problem will be non-Markov if there are 
internal states that can represent multiple external states. We call this phenomenon per- 

ceptual aliasing since it occurs when two or more external states, through the perceptual 

‘Notice that these mappings are conceptual more than physical, in that they run through the world and 

then into the external (abstract) task model. For example, a state in the agent’s internal representation may 

represent certain situations in the physical universe. which (via the modeling process) get mapped into states 

in the external task model. 
4 Strictly speaking, this definition is slightly overstated. Traditionally a process is said to be non-Markov 

if information about the history of the process (in addition to its current state) can be used to improve 

prediction and control. However, because we are dealing with systems that have the potential to collect 
additional information through sensing we have chosen to adopt a definition that is slightly more general. 
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mapping, get superimposed onto a single internal state. Intuitively, perceptual aliasing 
occurs when the agent is uncertain about the state of the external world. For example, 
in a situated agent, it occurs when the agent’s sensors fail to code a relevant piece of 
information. Perceptual aliasing results in non-Markov decision tasks because, by defi- 
nition, there are states in the internal representation that do not code all the information 
needed to characterize the future dynamics of the task. 

Returning to our apple sorting robot, suppose the robot’s color sensor is temporarily 
disconnected (i.e., always made to read zero). In this case, the robot is unable to 
distinguish apples by their color and the internal representation collapses to a single state, 
(see Fig. 3(b) > . Clearly, this decision problem is non-Markov since ( 1) knowledge of 
the current apple’s color could be used to improve the systems performance-without 
its sensor, the robot is reduced to guessing; and (2) knowledge of the recent history 
of the process could be used to improve performance. For example, knowledge that the 
last action resulted in a positive reward could be exploited to yield a control policy 
that performs better than chance. This follows since according to the external model, 90 
percent of the time the current apple is the same type as the previous one. 

3.3.1. The ubiquity of non-Markov tasks 
Markov decision tasks are an ideal. Non-Markov tasks are the norm. They are as 

ubiquitous as uncertainty itself. An agent that can be uncertain about the state of 
the external task necessarily faces an internal decision problem that is non-Markov. 
And sources of uncertainty abound. Sensors have physical limitations. Rarely are they 
perfectly matched to the task. Sensor data are typically noisy, unreliable, and full of 
spurious information. Sensors have limited range, and relevant objects are often occluded. 
Also, information can be hidden in time. The spoken word is transient and lost unless 
it is actively processed and stored. Short term memory too is limited and subject to 
deterioration. Lin [ 281 provides a good example: 

Consider a packing task which involves 4 steps: open a box, put a gift into it, 
close it, and seal it. An agent driven only by its current visual precepts cannot 
accomplish this task, because when facing a closed box the agent does not know 
if the gift is already in the box and therefore cannot decide whether to seal or 
open the box. 

In this case occlusion of the gift by the lid prevents immediate perception of a vital 
piece of information. Such hidden state tasks also arise when temporal features (such 
as velocity and acceleration) are important for optimal control, but not included in the 
system’s primitive sensor set. 

Even if perfect sensors were available, many control problems are too ambiguous or 
ill-posed to specify a state space in advance. Indeed, part of the agent’s task may be 
to discover a useful state space for the problem. For example, integrating learning and 
active perception invariably leads to non-Markov decision tasks [ 571. Active perception 
refers to the idea that an intelligent agent should actively control its sensors in order to 
sense and represent only information that is relevant to its immediate ongoing activity 
[ 1,3,5,6,12,52]. If an agent must, as part of the task, learn to control its sensors, 
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its internal control problem will necessarily be non-Markov. This follows since during 
learning there will be periods of time when the agent will improperly control its sensors, 
fail to attend to a relevant piece of information, and fail to unambiguously identify the 

state of the external task. 

3.4. Eflects on control 

The level of performance that can be obtained by an agent whose internal decision 

problem is non-Markov is generally inferior to that of its Markov counterpart. That 
is, a non-Markov decision problem usually leads to sub-optimal control if the agent 
mistakenly assumes the problem is Markov. This can be seen in the apple sorting task, 

where the robot with its color sensor intact can achieve perfect classification, but the 
robot without the sensor (and no memory) can perform no better than chance. Notice 

that the degree of performance degradation depends on the problem. For example, if 

95% of the apples are ripe, then a blind policy that “accepted” every apple would fail 

only 5% of the time. On the other hand, perceptual aliasing can lead to non-Markov 
decision tasks whose best fixed policies are arbitrarily bad.5 

3.5. Dijj’iculties for reinforcement learning 

The straightforward application of traditional reinforcement learning methods to non- 

Markov decision problems in many cases yields sub-optimal control and in some cases 
severely degraded performance. These difficulties stem from the agent’s inability to 
obtain accurate estimates of the utility and action-values for the underlying decision 
process. In particular, because of perceptual aliasing, there are states in the agent’s 
internal representation that represent two or more distinct states in the external world 
model. The utility and action-value estimates learned by the agent for these non-Markov 

internal states tend to reflect a mix (or average) of the values for the external states 
they represent. Because of this averaging, it is inevitable that the agent’s internal utility 

and action-value estimates will be erroneous for some situations. These errors, in turn, 
may result in the selection of sub-optimal actions for the non-Markov states, as the 
agent may inaccurately perceive a sub-optimal action to be of higher value than the true 
optimal action, or the agent may incorrectly degrade the value of the optimal action. 

Unfortunately these difficulties are compounded by use of temporal difference meth- 
ods [44] which cause errors to propagate throughout the state space, thus infecting 
action selection even for non-aliased states. In particular, most reinforcement learning 
algorithms employ utility (action-value) estimators that combine values for recently 

observed rewards with utility estimates for subsequent states-in one-step Q-learning, 
action-value estimates are obtained by adding the immediate reward with a utility es- 
timate for the next state (cf. Eq. (7) ). Thus, for a given state if the agent constructs 
estimators that use utility estimates from non-Markov states, those estimators will likely 

5 This is significant because most reinforcement learning algorithms aim to learn fixed policies. Opening the 

door to probabilistic policies could improve performance under these circumstances. 
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be erroneous and the error will be propagated to that state. Once infected a state may 
propagate its error to other states in a similar manner. 

4. Consistent representation methods 

In the last few years several RL algorithms have been developed to deal with selective 
perception. The Lion algorithm [60] learns to control visual attention in a primitive 

deictic sensory-motor system; the CS-QL algorithm [ 481 learns efficient, task-specific 

sensing operations; and the G-algorithm [ 131 learns to extract task-relevant bits from 

a large input vector. 6 In this section, we review these algorithms in turn. We then 
present the Consistent Represenration Method, a computational framework that unifies 
these different algorithms [ 621. 

4.1. The Lion algorithm 

The Lion algorithm was perhaps the first reinforcement learning algorithm specifically 
designed to address an adaptive perception task [59]. It was used to learn a simple 
manipulation task in a modified Blocks World. The distinguishing feature of this task is 

that the agent is equipped with a controllable sensory system that provides it with only 

partial access to the environment. To learn the task, the agent must learn to focus its 

visual attention on relevant objects and select appropriate motor commands. The details 
of the task are as follows. 

4.1. I. The block-stacking task 
The learning task is organized into a sequence of trails. On each trial, the agent is 

presented with a pile of blocks. A pile consists of a random number of blocks (ranging 
from 1 to 50) arranged in arbitrary stacks. Blocks are distinguishable only by color; 

they may be red, green, or blue. Each pile contains a single green block. The agent’s 
goal is simply to pick up the green block as quickly as possible. If the robot achieves the 
goal before the trial’s time limit expires, it receives a fixed positive reward, otherwise 

it receives no reward. The dynamics of the environment are such that a block can be 

grasped only when it is uncovered and the agent’s hand is empty. Thus in some cases 

it is necessary to unstack blocks to reach the goal. In this task the effects of block 
manipulating actions are completely deterministic. 

What differentiates this task from other Block World problems (and other reinforce- 
ment learning tasks) is the agent’s sensory-motor system. Instead of assuming a sensory 
system that provides a complete and objective description of every object in the scene, 
the system is equipped with a deictic sensory-motor system which provides the controller 
with an ability to flexibly access a limited amount of information about the scene at a 
time [ 1 ] _ In a deictic sensory-motor system, selective perception is implemented using 

h Note that these methods differ from supervised feature selection methods [ 351 that rely on the presentation 

of preclassified samples. The algorithms presented here operate without explicit supervision in the context of 

an embedded reinforcement learning task. 



284 S.D. Whiiehead, L.-J. Lin/Art$cial Intelligence 73 (1995) 271-306 

Sensory Inputs Internal Motor Commands 

Peripher 
iaaturas 

red-in-scene 

green-in-scene 

bluein-scene 

object-in-hand 

action-framecolor: 
(00 - red. 01 -green. . ..) 

action-frameshape:(O - block, 1 -table) 

action-framestack-height: 
(00-O.Ol-l....) 

Local _ 
features attn-framer: 

(00 - red. 01 - green, . ..) 

Action Frame Commands: 

moveactbn-frameto-green 
moveaotiin-frameto4ue 
moveactbn-frameto-at&-top 

eaoeon-frameto-stWk+ottom 
~~e~Mrameto-table 

m$: 

mweattn-frameto-rad 
moveattn-frameto-green 
mweattn-trameto-Uue 
mweattn-frameto-staok-tcq 
move&n-tiS-!xttom 
mweattn-frametetat4e 

attn-framestack-hafght: 
(00 - 0,Ol - 1, . ..) 

attn-frametabbbaiow 

d 
attn-frame-in-hand 

Relational 
frames-vertically-aligned 

properties frames-hotizontally-aligned 

Fig. 5. A specification for the deictic sensory-motor system used by Meliora-11 (Whitehead [60] ). The system 
has two markers, an action-frame marker and an attention-frame marker. The system has a 20-bit input vector, 
8 overt actions, and 6 perceptual actions. The values registered in the input vector and the effects of internal 
action commands depend upon the bindings between markers in the sensory-motor system and objects in the 
environment. 

markers [ 1,521. Conceptually, a marker corresponds to a focus of attention. In practice, 
markers are used to establish frames of reference for both perception and action. On 
the sensory side, placing a marker on an object in the environment brings information 
about that object into view (i.e., into the internal representation). On the motor side, 
marker placement is used to select targets for overt manipulation. A specification for 

the sensory-motor system used by the agent is given in Fig. 5. This system employs 

two markers: the action-frame marker and the attention-frame marker, respectively. On 
the sensory side, the system generates a 20-bit input vector at each point in time. Most 
of these bits represent local, marker-specific information, such as the color and shape 
of a marker’s bound object. Other bits detect relational properties such as vertical and 
horizontal alignment, while others detect spatially non-specific properties such as the 
presence or absence of red in the scene. By moving markers from object to object the 

agent can multiplex a wide range of information onto its relatively small input register. 
Listed on the right-hand side of Fig. 5 are the internal motor commands supported 

by the sensory-motor system. These commands are partitioned into two groups: those 
related to the action-frame marker and those related to the attention-frame marker. Both 
groups contain commands for controlling marker placement. These actions index objects 
by their primitive features (e.g., color) or by spatial relationship (e.g., top-of-stack). 

The action-frame marker has additional commands that are used for manipulating blocks. 
The “grasp-object-at-action-frame” command causes the system to grasp (if possible) 
the object marked by the action-frame marker. Similarly, the “place-object-at-action- 
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Fig. 6. An example of perceptual abasing in the block-stacking domain. In this case, two world states with 
different utilities and optimal actions generate the same internal representation. The “*” indicates the location 
of the attention-frame marker; the “+” the location of the action-frame. 

frame” command causes the system to place a held object at the location marked by the 
action-frame. 

The decision problem facing the agent’s embedded controller is non-Markov since 
improper placement of the system’s markers fails to multiplex relevant information onto 
the agent’s internal representation. This point is illustrated in Fig. 6 which shows two 
different external world states (each corresponding to a different state in a Markov 
model of the task) that, because of an improper placement of markers, generate the 
same internal representation. 

4.1.2. Control 
To tackle this non-Markov decision problem, the Lion algorithm adopts an approach 

which attempts to select overt (manipulative) actions based only on the action-values 
of internal states that are unaliased (Markov). To accomplish this, the Lion algorithm 
breaks control into two stages. At the beginning of each control cycle a perceptual 
stage is performed. During the perceptual stage, a sequence of commands for moving 
the attention-frame marker is executed. These so-called “perceptual actions” cause a 
sequence of input vectors to appear in the input register. These values are temporarily 
buffered in a short term memory. Since perceptual actions do not change the state of the 
external environment, each buffered input corresponds to a representation of the current 
external state. If the perceptual actions are selected with care one of these internal states 
will be Markov (i.e., will encode all information relevant to determining the optimal 
action). Once the perceptual stage is completed, the overt stage begins. During the overt 
stage an action for changing the state of the external environment is selected. These so- 
called “overt actions” correspond to commands for the action-frame marker.’ To guide 

’ Notice that moving the action-frame marker from one object to another changes the state of the external 
environment since it changes the set of objects that can be effected by the grasp and place commands. 
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Fig. 7. A graphical depiction of the Lion algorithm. The large (super) graph depicts the overt control cycle. 

where large nodes correspond to world states and arcs correspond to overt actions. The subgraphs embedded 

within each large node depict perceptual cycles, with nodes corresponding to internal representations of the 

current world state and arcs corresponding to perceptual actions. 

selection of an overt action, the Lion algorithm maintains a special action-value function 
which is defined over internal-state, overt-action pairs. This overt action-value function 

is special in that the action-values for perceptually aliased states are suppressed (i.e., 
ideally they are equal to zero), whereas the action-values for unaliased states are allowed 
to take on their nominal values. Given this action-value function, the Lion algorithm, 

during the overt stage, selects an overt action by simply examining the action-values 
of each buffered internal state and choosing the action with the maximum action-value. 

Since aliased states tend to have suppressed action-values, the selected action tends to 
correspond to the optimal action from a unaliased internal state. Fig. 7 illustrates this 
two-stage control cycle graphically. 

4.1.3. Learning 
A special learning rule is used to learn the overt action-value function. The learning 

procedure operates as follows. First, the internal state with the maximal action-value is 

identified as the Lion. The action-value for this state is updated according to the standard 
rule for one-step Q-learning (i.e., Eq. (9)). Next, the error term in the updating rule 

for the Lion state is used to update the action-values for the remaining buffered states. 
This is done so that once an accurate action-value is learned for an unaliased state, 
further changes in the action-values for aliased states cease. Finally, each buffered state 
is tested to see if it is aliased. If a state tests positive, its action-value is reset to 
zero. 

A very simple procedure is used to identify potentially aliased states. The rule simply 
examines the sign of the error term in the one-step Q-learning rule (that is, the sign 
of the difference between a state’s current action-value and the action-value estimate 
constructed after a one-step delay). If all action-values are initially set to zero, the 
task is deterministic, and rewards are nonnegative, then aliased states tend to regularly 
overestimate their action-values (i.e., show a negative error). Unaliased states, on the 
other hand, tend to monotonically approach the optimal action-value from below (i.e., 
positive error only). Therefore, aliased states can be detected by monitoring the sign in 
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The learning rule for the perceptual stage is much simpler. For perceptual control 
a perceptual action-value function is estimated over internal-state, perceptual-action 
pairs. During the perceptual stage, actions are selected by choosing the perceptual 
action that maximizes the action-value for the current input bit vector (internal state). 
The perceptual action-value function is updated within the perceptual stage, using the 

standard one-step Q-learning rule except that the overt utility of the internal state is 
also accounted for. Since aliased states tend to have suppressed overt action-values, 
perceptual actions that lead to unaliased internal states tend to have higher action-values 

than those that do not. (See [573 for further details.) 

4.1.4. Discussion 

The Lion algorithm is able to learn the block manipulation task described above. It 

learns a perceptual control strategy that focuses the attention-frame marker on the green 
block, and learns an overt control policy that moves the action-frame marker as needed 

to unstack covering blocks. Detailed experimental results can be found in [ 571. 
The Lion algorithm exploits several assumptions in order to deal with non-Markov 

decision problems. These limiting assumptions are: 

( 1) The effects of actions must be deterministic. 
(2) Only nonnegative rewards are allowed. 
(3) For each external state, there must exist at least one configuration of the sensory 

system that generates an internal state that is unaliased. 

4.2. CS-QL 

There is much work in machine learning that focuses upon the predictive power of 
information, but fails to account for its cost [ 2,351. Tan recognized that to be efficient it 

is necessary to explicitly account for the cost of sensing. In [ 481, he develops two cost- 
sensitive learning algorithms for classification tasks: CSID3 and CS-IBL, respectively. 
CS-QL, which stands for Cost-Sensitive Q-Learning, resulted when he combined ideas 

for cost-sensitive learning with reinforcement learning [47]. In CS-QL, the learning 

agent not only learns the overt actions needed to perform a task, but also learns an 
efficient procedure for identifying the current state of the environment. 

CS-QL and the Lion algorithm share the same basic control cycle. That is, in CS- 
QL control is decomposed into a two-stage process of sensing (perceptual control) 
and action (overt control). However, the sensing model used in CS-QL is considerably 
different. Instead of using a deictic sensory-motor system, CS-QL adopts a sensing 
model in which the agent has a set of primitive sensing tests. Each test provides a 
specific piece of information about the external environment. Also, instead of learning a 
perceptual control policy, as in the Lion algorithm, CS-QL constructs a classification tree, 

8 Subtle interactions sometimes cause unaliased states to overestimate their action-values. This sometimes 

leads to suppression of unaliased states. However these states tend to bounce back from such suppressions 
and eventually stabilize. For a detailed discussion of this technique for detecting aliased states, see [ 571 and 
1481. 
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where each internal node corresponds to a sensing operation, each branch corresponds 
to a test result, and each leaf corresponds to a state in the agent’s internal representation 

(for example, see Fig. 8). In CS-QL, the agent has learned an adequate classification 

tree when every leaf in the tree is unaliased; that is, when each leaf represents a unique 
state in a Markov model of the task. 

The classification tree is learned incrementally. Initially, the tree consists of a single 

root node. In other words, the entire external state space is collapsed onto a single internal 
state. As aliased leaves are detected, they are expanded (converted to internal nodes) 
by attaching sensing operations to them. The new leaf nodes that result introduce new 

distinctions into the representations. The tree is expanded until a Markov representation 
is achieved. 

When expanding a node, CS-QL simply selects the least expensive sensing operation, 
among those that remain, to attach to the target leaf. This heuristic favoring low-cost 
tests tends to explore inexpensive sensing procedures first, but may not always generate 

the most efficient trees. By incorporating a more sophisticated selection method that 
accounts for both cost and the discriminatory power of each sensing test (see the G- 

algorithm below), more efficient classification trees should result. To detect aliased leafs, 
CS-QL uses the same technique employed by the Lion algorithm. Thus, CS-QL shares 
the same limitations as the Lion algorithm. 

CS-QL has been successfully demonstrated in a simulated robot navigation task in 

which the robot must learn to deduce its position from limited information gathered 

from its selective sensors. One very simple instance of this type of navigation task, 
along with a classification tree learned by CS-QL, is shown in Fig. 8. In this example, 
the robot’s sensing operations allow it to detect properties (e.g., empty, barrier, cup) of 
nearby cells in the maze. The cost of sensing a cell is proportional to its distance from 
the robot. By accumulating features from nearby cells the robot can successfully (and 

efficiently) identify its position within the maze. 

4.3. The G-algorithm 

The G-algorithm is a third technique developed to address a kind of adaptive per- 

ception task. However, unlike the Lion algorithm and CS-QL, its development was not 
specifically motivated by the desire to minimize the cost of sensing or by the need to 
control an active sensory system. Instead, the G-algorithm was developed to mitigate 
problems caused by the availability of too much information. In particular, when Chap- 
man and Kaelbling [ 131 tried to apply Q-learning to learn a simple align-and-shoot 
subtask in the context of a more general video-game domain (called Amazon), they 
found that their learning system was being overwhelmed by the sheer volume of in- 
formation generated by the sensors. The subtask they were studying involved aligning 
the agent with a target, orienting to it, and firing a weapon. At each point in time, the 

agent’s sensory system generated 100 bits of input. Using all this information resulted 
in an internal state space containing 2’O” states. Most of these bits, however, were ir- 

relevant to the specific subtask they were studying and just interfere with learning by 
introducing unnecessary distinctions in the internal representation. On the other hand, 
the bits that are specifically relevant are not necessarily known ahead of time and at 
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Fig. 8. A simple example of CS-QL: (a) a 3 x 3 grid world, (b) a learned mapping between state descrip- 
tions and states, (c) a learned optimal decision policy, and (d) a learned cost-sensitive classification tree. 
(Reproduced with permission.) 

other stages of the game, the bits that were irrelevant “now” were vitally important 
“then”. The G-algorithm was developed to learn a control policy which could generalize 
over irrelevant information in the input. 

The G-algorithm works by identifying bits in the input vector that are important for 
control. It is very similar to CS-QL in that both grow classification trees incrementally. 
That is, both start with a single root node (i.e., assuming no information is relevant), 
then construct a tree-structured classification circuit by recursively splitting nodes based 
on the values of sensory inputs. In CS-QL, the information used to split nodes in the tree 
corresponds to the results of sensing acts (or tests), in the G-algorithm nodes are split 
based on the values of bits in the input. As in CS-QL, the leaves of the G-algorithm’s 
tree define the agent’s internal state space. Unlike CS-QL, the G-algorithm does not 
associate a cost with sensing/reading a bit. 

What sets the G-algorithm apart from both CS-QL and the Lion algorithm, is the 
method it uses to detect non-Markov (aliased) internal states. CS-QL and the Lion 
algorithm both monitor the sign in estimation error to detect non-Markov states; a 
method that is limited to deterministic tasks only. The G-algorithm uses a much more 
general statistical test. In general, a leaf in the classification tree is non-Markov if it 
can be shown that there are bits in the input vector (that have not already been tested 
in traversing the tree from root-to-leaf) that are statistically relevant to predicting future 
rewards. To detect if a leaf is non-Markov, the G-algorithm uses the Student’s T-test 
1421 to find statistically significant bits. That is, over time as the agent experiences a 
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variety of external states, reward data is collected and stored for each leaf, target-bit 
pair. Data for a given leaf is separated into one of two bins. One bin corresponds to 
situations when the target bit is on; the other when the bit is off. Given these two sets of 

data, a Student’s T-test is used to determine how probable it is that distinct distributions 

gave rise to them. If after sufficient sampling, this estimate is above a threshold, the bit 
is deemed relevant and the leaf is split. 

The insight provided by the G-algorithm is to use statistical methods to test bit 
relevance (and consequently detect non-Markov states). The specific algorithm is limited 
in that the T-test assumes that the reward distributions being compared are Gaussian. This 
is clearly not the case in general, since reward distributions can be arbitrary. However, 

this problem can be mitigated by comparing distributions of cumulative rewards. Also, 
the G-algorithm is not guaranteed to detect bits that are relevant in higher order pairings. 
A bit’s relevance must be apparent in isolation. Finally, additional memory and sensing 
is required to gather statistics for relevance testing. Nevertheless these difficulties and 
limitations seem to be a minor price to pay for a method that extends to stochastic 

domains. 

The G-algorithm was successfully demonstrated on the orient-and-shoot task. It was 

found to significantly outperform an alternative approach that used error backpropagation 
in a neural network. See [ 131 for details and a discussion of some difficulties they did 

encounter. 

4.4. The Consistent Representation Method 

While the algorithms described above vary considerably in their detail, they share the 
same basic approach. We refer to this common framework as the Consistent Represen- 

tation 

(1) 

(2) 

(3) 

(4) 

(5) 

(CR) Method. 9 The key features of the CR-method are: 
At each time step, control is partitioned into two stages: a perceptual stage 

followed by an action (or overt) stage. 

The perceptual stage aims to generate an internal representation that is Markov. 

The action stage aims to generate optimal overt actions. 
Learning occurs in both control stages. For the action stage, traditional reinforce- 
ment learning techniques are used. These techniques impose a Markov constraint 
on the internal state space. This constraint, in turn, drives adaptation in the 
perceptual stage in that the perceptual stage constantly monitors the internal rep- 
resentation for non-Markov states. When one is found, the perceptual process is 
modified to eliminate it. 
It is assumed that the external state can always be identified from immediate 
sensory inputs. 

‘) The term Consistent Representation is derived from the fact that it is not absolutely necessary for the 
internal state space to be Markov. In particular, it is sufficient for each state to be Markov with respect to 

predicting future rewards (but not necessarily future states). For instance, in Fig. 8, two different external 

states are classified into the same state, state 2. This “mis-classification”, however, does not result in a sub- 

optimal policy. This slightly weaker concept of being “partially Markov” or “Markov with respect lo reward” 

has been associated with the term “consistent”. See [ 57 1 for a futther discussion of this distinction. 
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Fig. 9. The basic architecture of a system using the Consistent Representation Method. Control is accomplished 
in two stages: a perceptual stage, followed by an overt stage. The goal of the perceptual stage is to generate 
a Markov, task-dependent internal state space. The goal of overt controJ is to maximize future discounted 
reward. Both control stages are adaptive. Standard reinforcement Learning algorithms can be used for overt 
learning, while perceptual learning is driven by feedback generated by a representation analysis module, which 
monitors the internal state space for non-Markov states. 

Fig. 9 illustrates an architectural embodiment of the CR-method. The major com- 
ponents include: a selective sensory system, a motor system, a perceptual control, 

an overt control, and a representation monitor. The line from the perceptuai con- 
trol to the selective sensory system represents perceptual control (or selection) acts. 

The line from the overt control to the motor system represents overt acts. Both the 
perceptual and overt controllers are adaptive. Reward from the environment is re- 
ceived by both the overt controller and the representation monitor. The representa- 
tion monitor detects non-Markov states and provides feedback to the perceptual con- 
trol . 

The correspondence between the components of this architecture and each of the pre- 
vious algorithms is as follows. The Lion algorithm assumes a deictic sensory-motor 
system which includes commands for moving perceptual (or attentional) markers; 
CS-QL assumes a sensory-motor interface that consists of a set of discrete sens- 

ing acts; and the G-algorithm assumes a binary input vector from which individual 
bits are selected as relevant. The identification procedure implemented in the percep- 
tual control takes the form of a “perceptual policy” in the Lion algorithm, and the 
form of a binary classification tree in CS-QL and the G-algorithm. The task-specific 
internal representation generated by the Lion algorithms corresponds to a subset of 
input bit vectors; while in CS-QL and the G-algorithm it is defined by the leaves 
of a classification tree. The Lion, CS-QL, and G-algorithm alI use a form of Q- 
learning for overt control. For representation monitoring, both the Lion and CS-QL 
algorithm use an overestimation technique, while the G-algorithm relies on a more 
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general statistical method. ‘” 
Relating the Lion, CS-QL and G-algorithm in the common framework of the CR- 

method is useful for two reasons. First, it promotes cross-fertilization of ideas between 

specific algorithms. For instance, the statistical methods used by the G-algorithm can 

be incorporated into Lion and CS-QL to yield algorithms that function in stochastic 
domains. Second, the structure provided by the CR-method highlights shared assump- 

tions and limitations, and it suggests extensions to overcome them. In particular, a 
fundamental assumption made by all these algorithms is that all external states can be 
identified at each point in time from immediate sensor inputs. This assumption makes 

these techniques inappropriate for many interesting tasks that require memory to keep 
track of information that for one reason or another has become perceptually inaccessible. 

These more general hidden state tasks and several stored-state approaches to them are 
the subject of the next section. 

5. Stored-state methods 

One obvious approach to dealing with inadequate perception and non-Markov decision 

problems is to allow the agent to have a memory of its past. This memory can help the 
agent identify hidden states, since it can use differences in memory traces to distinguish 
situations that based on immediate perception appear identical. The problem is: given a 

huge volume of information available about the past, how should the agent decide what 
to remember, how to encode it, and how to use it. There are two approaches to this 
problem that have been discussed in the literature. In one approach the agent keeps a 
sliding window of its history, in the other approach the agent builds a state-dependent 

predictive model of environmental observables [ 4,14,28,39,.50]. In addition to these 
two approaches, this section describes a third approach, which learns a history-sensitive 

control policy directly from reinforcement. 

5.1. Three stored-state architectures 

Fig. 10 depicts three stored-state architectures for reinforcement learning in non- 
Markov domains. In our experiments with all three, a neural network (Q-net) was 

trained using temporal difference methods to incrementally learn an action-value function 
(Q-function). 

In the window-Q architecture, instead of relying only upon immediate sensory inputs 
(or sensations) to define its internal representation, the agent uses its immediate sensa- 
tions, the sensations for the N most recent time steps, and the N most recent actions 
to represent its current state. In other words, the window-Q architecture allows direct 
access to the information in the past through a sliding window. N is called the window 
size. The window-Q architecture is simple and straightforward. However, to use this 

I0 A version of the Lion algorithm has also been developed where feedback from an external supervisor is 

used to detect non-Markov states. This external supervision dramatically improves both perceptual and overt 

learning [ 57 I. 
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Fig. 10. Three stored-state architectures for reinforcement leaming in non-Markov domains: (a) window-Q, 

(b) recurrent-Q, and (c) recurrent-model. 

architecture one must choose a window size, which may be difficult to do in advance. 
On the one hand, if the selected window size is too small, the internal representation 
may not be sufficient to define a state space that is Markov. On the other hand, an input 
generalization problem may arise if the window size is chosen to be too large, or if 
the window must necessarily be large to capture relevant information that is sparsely 
distributed in time. Under these circumstances excessive amounts of training may be 
required before the neural network can accurately learn the action-value function and 
generalize over the irrelevant inputs. In spite of these problems, the window-Q architec- 
ture is worthy of study, since ( 1) this kind of time-delay neural network has been found 
to be useful in speech recognition tasks [53], and (2) the architecture can be used to 
establish a baseline for comparing other methods. 

The window-Q architecture is sort of a brute-force approach to using memory. An 
alternative is to distill a (small) set of contextual feutures out of the large volume 
of information about the past. This historical context together with the agent’s current 
sensory inputs can then be used to define its internal representation. If the contextual 
features are constructed correctly then the resultant internal state space will be Markov 
and standard RL methods may be used to learn an optimal control policy. The recurrent- 
Q and recurrent-model architectures illustrated in Fig. 10 are based on this basic idea. 
However, they differ in the way they construct their contextual features. Unlike the 
window-Q architecture, both of these architectures can in principle discover and utilize 
historical information that depends on sensations arbitrarily deep in the past, although 
in practice this has been difficult to achieve. 

Recurrent neural networks, such as Elman networks [ 171, provide one approach to 
constructing relevant contextual features. As illustrated in Fig. 11, the input units of an 
Elman network are divided into two groups: the (immediate) sensory input units and 
the context units. The context units are used to encode a compressed representation of 
relevant information from the past. Since these units function as a kind of memory and 
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Fig. I I. An Elman network 

encode an aggregate of previous network states, the output of the network depends upon 

past as well as current inputs. 
The recurrent-Q architecture uses a recurrent network to estimate the action-value 

function directly (Fig. 10(b) ) To predict action-values correctly, the recurrent network 
(called recurrent Q-net) must learn contextual features which enable the network to 

distinguish between different external states that generate the same immediate sensory 

inputs. 

The recurrent-model architecture (Fig. 10(c)) consists of two concurrent learning 
components: a one-step prediction module or action model, and a Q-learning module. 
The prediction module is responsible for learning to predict the immediate sensory inputs 
(and payoffs) that result from performing an action. Because the agent’s immediate 

inputs do not completely code the state of the external environment, the model must 

learn and use contextual features to accurately predict the effects of an action on the 
the environment. If we assume that an accurate predictive model can be learned, and 
that the model’s contextual features can be extracted, then a Markov state space can be 
generated for the Q-learning component by defining its inputs (internal state space) to be 
the conjunction of the agent’s immediate sensory input and the contextual features. This 

follows since, at any given time, the next state of the environment can be completely 
determined by this new state representation and the action taken. 

Both the recurrent-Q and recurrent-model architectures learn contextual features using 
a gradient descent, least-mean-square method (e.g., error back-propagation), but they 
differ in an important way. In learning the predictive model, the goal is to minimize 

errors between actual and predicted sensory inputs and immediate rewards. In this case, 
the environment provides all the needed training information, which is consistent over 
time as long as the environment does not change. For recurrent Q-learning, the goal 
is to minimize errors between temporally successive predictions of action-values (see 
Eq. (9)). In this case, the error signals are computed based partly on information 
from the environment and partly on the agent’s current estimate of the optimal action- 
value function. Since this latter term changes over time and carries little or no useful 

information during the early stages of learning, these error signals may be in general 
weak, noisy, and even inconsistent over time. Because of this the practical viability of 
the recurrent-Q architecture is uncertain. 

Having introduced these architectures, it is worthwhile to note that combinations 
of these approaches are also possible. For example, we can combine the first two 
architectures: the inputs to the recurrent Q-net could include not just the current sensory 
input but also recent inputs and recent actions. We can also combine the last two 
architectures, For instance, one approach would be to share the context units between 
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2 possible initial states: 

a 

W c”‘“^“’ 

3 a$Xions: walk left, walk right &pick up 
4 blnaty inputs: left cup. right cup, left collision & right collision 
reward: 1 when the last cup is picked up 

0 otherwise 

Fig. 12. Task 1: a two-cup collection task. The cup locations are denoted by filled circles. 

the model network and the Q-network such that the contextual features learned would be 
based on prediction errors from both networks. Although there are many possibilities, 

this article is only concerned with the three basic architectures. Further investigation 
is needed to see if other combinations will result in better performance than the basic 
versions. 

5.2. Network training 

The (nonrecurrent) Q-nets of the window-Q and recurrent-model architectures can be 

trained using a straightforward combination of temporal difference methods [ 441 and the 
connectionist back-propagation algorithm [ 37 1. This combination has been successfully 

applied to solve several nontrivial reinforcement learning problems [ 24,25,49]. 
Training the model of the recurrent-model architecture is slightly more complicated. 

Recurrent networks can be trained by a recurrent version of the back-propagation algo- 
rithm called back-propagation through time (BF’TT) or unfolding of time [ 371. BFTI’ is 
based on the observation that any recurrent network spanning T steps can be converted 
into an equivalent feed-forward network by duplicating the network T times. Once a re- 
current network is unfolded, back-propagation can be directly applied. The Q-net of the 
recurrent-Q architecture can also be trained by BF’TT together with temporal difference. 

For detailed network structures and implementation, see [ 281. 

5.3. Simulation results 

This subsection presents simulation results of a study in which the three history-based 

architectures were applied to a series of non-Markov decision tasks. Through this study, 
we have gained insight into the behavior of these architectures, and a better understanding 
of the relative merits of each and the conditions for their useful application. (Detailed 
descriptions of the simulation and results can be found in [ 281.) 

5.3. I. Task 1: two-cup collection 
We begin with a simple two-cup collection task (Fig. 12). This task requires the 

learning agent to pick up two cups located in a 1-D space. The agent has three actions: 
walking right one cell, walking left one cell, and pick-up. When the agent executes the 
pick-up action, it will pick up a cup if and only if the cup is located at the agent’s 
current cell. The agent’s sensory input includes four binary bits: two bits indicating if 
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there is a cup in the immediate left or right cell, and two bits indicating if the previous 
action results in a collision from the left or the right. An action attempting to move the 
agent out of the space will cause a collision. 

The cup collection problem is restricted so that there are only two possible initial 
states (Fig. 12). In each trial, the agent starts with one of the two initial states. Because 

the agent can see only one of the two cups at the beginning of each trial, the location 
of the other cup can only be learned from previous trials. To collect the cups optimally, 
the agent must use contextual information, such as which initial state it starts with, to 
decide which way to go after picking up the first cup. Note that the reason for restricting 

the possible initial states is to avoid perceptual aliasing at the onset of a trial when no 
contextual information is available. 

This task is nontrivial for several reasons: (1) The agent cannot sense the cup in 
its current cell, (2) it gets no reward until both cups are picked up, and (3) it often 
operates with no cup in sight especially after picking up the first cup. 

The three memory architectures were tested on this cup collection task. The exper- 
iment was repeated 5 times, and every time each architecture successfully learned an 

optimal control policy within 500 trials. (The window size N was 5.) One interesting 

observation, however, was the following: The recurrent-model architecture never learned 
a perfect model within 500 trials. For instance, if the agent has not seen a cup for 10 
steps or more, the model normally is not able to predict the appearance of the cup. But 

this imperfect model did not prevent Q-learning from learning an optimal policy. 
The two main results of this experiment were: 

l To demonstrate that each of the architectures is capable of learning to perform this 
simple hidden state task, and in particular, to demonstrate that the two recurrent 

architectures are able to develop and use memory-based contextual features. 
l To notice that for the recurrent-model architecture, even when the model is only 

partially correct it may provide sufficient contextual features for optimal control. 
This is good news, since a perfect model is often difficult to obtain. 

5.3.2. Task 2: Task I with random features 

Task 2 is simply Task 1 with two random bits in the agent’s sensory input. The 

random bits simulate two difficult-to-predict and irrelevant features accessible to the 
learning agent. In the real world, there are often many features which are difficult to 
predict but fortunately not relevant to the task to be solved. For example, predicting 
whether it is going to rain outside might be difficult, but it does not matter if the task 
is to pick up cups inside. The ability to handle difficult-to-predict but irrelevant features 
is important for a learning system to be practical. 

The simulation results are summarized as follows: The two random features had little 
impact on the perfotmance of the window-Q architecture or the recurrent-Q architecture, 
but had a noticeable negative impact on the recurrent-model architecture. 

The system using the recurrent-model architecture exhibited streaks of optimal per- 
formance during the course of 300 trials. However, it apparently could not stabilize 
on the optimal policy; it oscillated between the optimal policy and several sub-optimal 
policies. It was also observed that the model tried in vain to reduce the prediction errors 
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on the two random bits. There are two possible explanations for the poorer performance 
compared with that obtained when there are no random sensation bits. First, the model 
might fail to learn the contextual features needed to solve the task, because much of 
the effort was wasted on trying to learn to predict the random bits. Second, because the 
activations of the context units were shared between the model network and the Q-net, 

a change to the representation of contextual features on the model part could simply 
destabilize a well-trained Q-net, if the change was significant. The first explanation is 
ruled out, since the optimal policy indeed was found many times. To test the second 

explanation, we fixed the model at some point of learning and allowed only changes to 
the Q-net. In such a setup, the agent found the optimal policy and indeed stuck to it. 

This experiment revealed two lessons: 
l The recurrent-Q architecture is more economic than the recurrent-model architecture 

in the sense that the former will not try to learn a contextual feature if it does not 

appear to be relevant to predicting action-values. 
l A potential problem with the recurrent-model architecture is that changes to the 

representation of contextual features on the model part may cause instability on the 

Q-net part. 

5.3.3. Task 3: Task 1 with control errors 

Noise and uncertainty prevail in the real world. To study the capability of these 

architectures to handle noise, we added 15% control errors to the agent’s actuators, so 

that 15% of the time the executed action would not have any effect on the environment. 
(The two random bits were removed.) 

In three out of the five runs, the window-Q architecture successfully found the optimal 

policy, while in the other two runs, it only found sub-optimal policies. In contrast, the 
recurrent-Q architecture always learned the optimal policy (with little instability). 

The recurrent-model architecture always found the optimal policy after 500 trials, 

but again its policy oscillated between the optimal one and some sub-optimal ones due 
to the changing representation of contextual features, much as happened in Task 2. If 
we can find some way to stablize the model (for example, by gradually decreasing 
the learning rate to 0 at the end), we should be able to obtain a stable and optimal 

policy. 
Two lessons have been learned from this experiment: 
l All of the three architectures can handle small control errors to some degree. 
l Among the architectures, recurrent-Q seems to scale best in the presence of control 

errors. 

5.3.4. Task 4: pole balancing 
In the pole balancing problem, the system’s objective is to apply forces to the base 

of a movable cart in order to balance a pole that is attached to the cart via a hinge 
(Fig. 13). This problem has been studied widely in the reinforcement learning literature. 

It is of practical interest because of its resemblance to problems in aerospace (e.g., 
missile guidance) and robotics (e.g., biped balance and locomotion). It is of theoretical 
interest because of the difficult credit assignment problem which arises due to sparse 



Fig. 13. The pole balancing problem 

reinforcement signals. In particular, in most formulations of the problem, the system only 
receives nonzero reinforcement when the pole falls over. For instance in our simulations 
the system receives a penalty of -1 when the pole tilt exceeds 12 degrees from vertical. 

In the traditional pole balancing task, the system’s sensory inputs include the position 

and velocity of the cart and the angular position and velocity of the pole (431. This 
information completely characterizes the state of the system and yields control problem 

that is Markov. In our experiments, only the cart position and pole angle are given. 

This yields a non-Markov decision problem, and in order to learn an adequate control 

policy the system must construct contextual features resembling velocities for the cart 
and pole. In this experiment, a policy was considered satisfactory whenever the pole 
could be balanced for over 5000 steps in each of the seven test trials where the pole 
starts with an angle of 0, fl, f2, or *3 degrees. In the training phase, pole angles and 

cart positions were generated randomly. The initial cart velocity and pole velocity were 
always set to 0. N = 1 was used here. 

The input representation used here was straightforward: one real-valued input unit for 

each of the pole angles and cart positions. The following table shows the number of 
trials taken by each architecture before a satisfactory policy was learned. These numbers 
are the average of the results from the best five out of six runs. (A satisfactory policy 

was not always found within 1000 trials.). 

method window-0 recurrent-Q recurrent-model 

# of trials 20h 552 247 

While the recurrent-Q architecture was the most suitable architecture for the cup 
collection tasks, it was outperformed by the other two architectures for the pole balancing 
task. 

5.4. Comparisons 

The above experiments provide some insight into the performance of the three memory 
architectures. This subsection considers problem characteristics that may be useful in 
determining when one architecture may be preferred over another. 



SD. Whitehead, L.-J. Lin/ArtiJcial Intelligence 73 (1995) 271-306 299 

5.4.1. Problem parameters 

Some of the features (or parameters) of a task that affect the applicability of these 

architectures are: 
l Memory depth. One important problem parameter is the length of time over which 

the agent must remember previous inputs in order to generate an internal represen- 

tation that is Markov. For example, the memory depth for the pole balancing task is 
1, as evidenced by the fact that the window-Q agent was able to obtain satisfactory 
control based only on a window of size 1. Note that learning an optimal policy 

may require a larger memory depth than that needed to represent the policy. For in- 
stance, for Task 1 (cup collection) the window-Q agent was able to represent (and 

occasionally learn) the optimal policy based on a window of size as small as 2, 
but it could only reliably learn the optimal control when using a window of size 5. 

l Payo#delay. In cases where the payoff is zero except for the goal state, we define 
the payoff delay of a problem to be the length of the optimal action sequence leading 
to the goal. This parameter is important because it influences the overall difficulty of 

Q-learning. As the payoff delay increases, learning an accurate Q-function becomes 
increasingly difficult due to the increasing difficulty of credit assignment. 

l Number of contextualfeatures to be learned. In general, the more perceptual aliasing 
an agent faces, the more contextual features the agent has to discover, and the more 
difficult the task becomes. In general, predicting sensations (i.e., a model) requires 

more contextual features than predicting action-values (i.e., a Q-net), which in turn 

requires more contextual features than representing optimal policies. Consider Task 
1 for example. Only two binary contextual features are required to determine the 
optimal actions: “is there a cup in front?’ and “is the second cup on the right-hand 

side or left-hand side?‘. But a perfect Q-function requires more features such as 

“how many cups have been picked up so far?” and “how far is the second cup from 

here?“. A perfect model for this task requires the same features as the perfect Q- 
function. But a perfect model for Task 2 requires even more features such as “what 

is the current state of the random number generator?“, while a perfect Q-function 
for Task 2 requires no extra features. 

It is important to note that we do not need a perfect Q-function nor a perfect 
model in order to obtain an optimal policy. A Q-function needs to only assign 
values to actions so that their relative values are in the correct order. Similarly, a 

model needs to only provide sufficient features for constructing a good Q-function. 

5.4.2. Architecture characteristics 
Given the above problem parameters, we would like to understand which of the three 

architectures is best suited to particular types of problems. Here we consider the key 
advantages and disadvantages of each architecture, along with the problem parameters 
which influence the importance of these characteristics. 

l Recurrent-model architecture. The key difference between this architecture and the 
recurrent-Q architecture is that its learning of contextual features is driven by learn- 
ing an action model rather than the Q-function. One strength of this approach is 
that the agent can obtain better training data for the action model than it can for the 
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Q-function, making this learning more reliable and effective. In particular, training 
examples of the action model (<sensation, action, next-sensation, payoff> quadru- 
ples) are directly observable with each step the agent takes in its environment. 
In contrast, training examples of the Q-function (<sensation, action, action-value> 

triples) are not directly observable since the agent must estimate the training action- 

values based on its own changing approximation to the true action-value function. 
The second strength of this approach is that the learned features are dependent 

on the environment and independent of the reward function (even though the action 

model may be trained to predict rewards as well as sensations). As a result, these 

features can be reused if the agent has several different reward functions, or goals, 
to learn to achieve. 

l Recurrent-Q architecture. While this architecture suffers the relative disadvantage 
that it must learn from indirectly observable training examples, it has the offsetting 
advantage that it need only learn those contextual features that are relevant to the 

control problem. The contextual features needed to represent the optimal action 
model are a superset of those needed to represent the optimal Q-function. This is 

easily seen by noticing that the optimal control action can in principle be computed 
from the action model (by using look ahead search). Thus, in cases where only 
a few features are necessary for predicting action-values but many are needed 

to predict completely the next state, the number of contextual features that must 
be learned by the recurrent-Q architecture can be much smaller than the number 
needed by the recurrent-model architecture. 

l Window-Q architecture. The primary advantage of this architecture is that it does 
not have to learn the state representation recursively (as do the other two recurrent 

network architectures). Recurrent networks typically take much longer to train 
than nonrecurrent networks. This advantage is offset by the disadvantage that the 
history information it can use is limited to those features directly observable in its 

fixed window which captures only a bounded history. In contrast, the two recurrent 
network approaches can in principle represent contextual features that depend on 

sensations that are arbitrarily deep in the agent’s history. 

Given these competing advantages for the three architectures, one would imagine that 
each will be the preferred architecture for different types of problems: 

l One would expect the advantage of the window-Q architecture to be greatest in 
tasks where the memory depths are the smallest (for example, the pole balancing 
task). 

l One would expect the recurrent-model architecture’s advantage of directly available 
training examples to be most important in tasks for which the payoff delay is the 
longest (for example, the pole balancing task). It is in these situations that the 
indirect estimation of training Q-values is most problematic for the recurrent-Q 
architecture. 

l One would expect the advantage of the recurrent-Q architecture-that it need only 
learn those features relevant to control-to be most pronounced in tasks where the 
ratio between relevant and irrelevant contextual features is the lowest (for example, 
the cup collection task with two random features). Although the recurrent-model 
architecture can acquire the optimal policy as long as just the relevant features are 
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learned, the drive to learning the irrelevant features may cause problems. First of 
all, representing the irrelevant features may use up many of the limited context units 
at the sacrifice of learning good relevant features. Secondly, as we have seen in the 
experiments, the recurrent-model architecture is also subject to instability due to 
changing representation of the contextual features-a change which improves the 
model is also likely to deteriorate the Q-function, which then needs to be re-learned. 

The tapped-delay line scheme, which the window-Q architecture uses, has been widely 
applied to speech recognition [53] and turned out to be quite a useful technique. 
However, we do not expect it to work as well for control tasks as it does for speech 
recognition, because of an important difference between these tasks. A major task of 
speech recognition is to find the temporal patterns that already exist in a given sequence 
of speech phonemes. Whereas in reinforcement learning, the agent must look for the 
temporal patterns generated by its own actions. If the actions are generated randomly as 
it is often the case during early learning, it is unlikely to find sensible temporal patterns 
within the action sequence so as to improve its action selection policy. 

On the other hand, we may improve the performance of the window-Q architecture 
by using more sophisticated time-delay neural networks (TDNN) . The TDNN used 
here is quite primitive; it only has a fixed number of delays in the input layer. We 
can have delays in the hidden layer as well [ 20,531. Bodenhausen and Waibel [ 111 
describe a TDNN with adaptive time delays. Using their TDNN, window-Q may be able 
to determine a proper window size automatically. 

6. Discussion 

This paper has described learning techniques that were developed to handle tasks 
that involve either selective perception or state hidden in time. However, many tasks 
of interest in fact involve both selective perception and memory, and solutions to these 
tasks may require integration of both Consistent Representation Methods and stored-state 
methods. 

One simple approach to extending the CR-method would be to extend the agent’s 
selective sensory system to include remembered sensory-motor events. That is, instead 
of selecting bits of information from the current sensory input only, the system could also 
select bits from a memory trace of previous inputs and actions. This approach is similar 
to the window-Q architecture in that a memory trace is maintained, however it differs 
in that only a relatively small amount of information would be selected at each point in 
time. Moreover, under this scheme it might be possible to devise reference-based rules 
for updating the history-trace in a way that would preserve relevant memories while 
dropping irrelevant ones. 

Other architectures that combine features from both the CR-method and history-based 
architectures may also be very useful. For example, one problem with the CR-method 
as it currently stands is that it uses no information about the previous state of the 
environment when trying to identify the current state. In a sense the system re-identifies 
the state of the environment starting from “scratch” after each action. Knowledge of the 
last state and the most recent action could considerably reduce the effort required to 
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identify the current state, since in most environments transitions between states tend to 
be local and predictable. Thus instead of “rediscovering” the state after each action, the 
agent could merely verify the current state, or in the worst case, identify the outcome 
from a limited number of possibilities. 

In addition to further exploring variations on the above architectures, future work 
must also assess the scalability to these algorithms. These algorithms were derived from 

a desire to extend reinforcement learning beyond Markov decision problems and to 
problems that involve selective perception and/or state hidden in time. To some extent 
we have been successful. However, the tasks we have explored remain painfully simple 

compared to the scale of problems required for truly autonomous, intelligent behavior. 
A few of the issues that must be addressed to achieve scalability include: 

l Learning bias: Reinforcement learning can be viewed as a kind of search through 
the space of possible control policies. If that search can be biased in an appropriate 
direction, learning can proceed much more quickly than it might otherwise. One 
approach to introducing bias into a learning agent is to allow it to interact with other 
intelligent agents performing similar tasks. Other agents can serve as role models, 
advice givers, instructors, critics, and supervisors, and in general can strongly bias 

an agent’s learning. Simple versions of these methods have been demonstrated in 
the context of reinforcement learning and have produced significant improvements 

in learning time [ 15,25,61]. Nevertheless, more work is needed. 

l Fast/efJicient credit assignment: Credit assignment is the fundamental problem in 
reinforcement learning: given reward from the environment, which actions were 

responsible for generating that payoff and how should the system be changed to 
improve performance. Most reinforcement learning algorithms solve this problem by 
making incremental changes to the system over a long period of time. If additional 
knowledge about the causal structure of the environment (for example, an action 

model) can be made available, more efficient credit assignment methods can be 
developed. For example, see [ 25,3 I, 33,34,45,64]. 

l Generalization: A reinforcement learning agent must generalize from its experi- 
ences. In particular, when the state space is so large that exhaustive search for 

optimal control is impractical, the agent must guess about new situations based 
on experience with similar situations. Instead of representing action-value func- 

tions (i.e., Q-function) with look-up tables, we must develop function approxima- 
tors that promote useful generalization across states and actions. For example, see 
[ 13,27,29,32,47-491. 

l Hierarchical learning: To date much of the work in reinforcement learning has 
focused on problems that are small compared to those facing real robotic systems. 
For example, a walking robot may require precise (continuous) information from 
dozens of sensors, and may need to control dozens of effecters. The combinatorics 
associated with such problems quickly overwhelm the simplest RL methods. An- 
other source of complexity arises when agents pursue multiple goals. Hierarchical 
learning is approach to turning intractable problems into tractable ones: First, a 
complex task is decomposed into multiple elementary tasks that can be solved ef- 
fectively. Then control policies that are learned for solving the elementary tasks 
can be integrated to solve the original complex task. Once the agent has learned to 
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solve one complex task, solving a new one task may be easier if the two share the 
same elementary subtasks. For work in this direction, see [ 22,26,27,40,62]. 

Of course there are many other issues that stand between current technology and the 
development of intelligent autonomous agents, and reinforcement learning is no panacea. 
However, the autonomy afforded by reinforcement learning methods makes them likely 

to play an important role. 

7. Conclusions 

Intelligent control systems must deal with information limitations imposed by their 
sensors. When inadequate information is available from the agent’s sensors or when the 
agent must actively control its sensors in order to select relevant features, the internal 
decision problem it faces is necessarily non-Markov. Learning these control tasks can 

be very difficult. 
In this article we have presented several approaches to dealing with non-Markov 

decision problems. The Consistent Representation (CR) Method was proposed as an 
approach to dealing with tasks that involve control/selection in an active sensory system. 
In the CR-method, control is partitioned into two phases: a perceptual control phase, 
which aims to identify the current state of the environment; and an overt control phase, 

which aims to maximize reward. Three instances of this method, the Lion algorithm 

[ 601, the G-algorithm [ 131, and CS-QL [47], were described and examples of their 
uses presented. The major assumption made by the CR-method is that the state of 
the environment can be identified at each point in time by appropriately controlling 
the sensory system. This assumption prevents it from being applied to tasks in which 
relevant state information is temporarily hidden from view. 

Stored-state methods are more appropriate for tasks in which information is hidden 
in time. Three stored-state architectures were described: window-Q, recurrent-model, 

and recurrent-Q. The window-Q architecture uses a tapped-delay line to maintain a 

fixed length history of recent sensory-motor events. The recurrent-model architecture 
constructs a predictive model of the external environment, whose own internal state is 

used, in conjunction with sensory inputs, to drive control. The recurrent-Q architecture 

uses a recurrent neural network to learn the action-value function for the non-Markov 
task directly. Because the recurrent network can encode state information across time 

steps, its own internal state is used to resolve ambiguities caused by inadequate sensory 
input. These three architectures were demonstrated on a series of hidden state tasks, and 
conditions for their useful application were discussed. 

The methods described in this article are preliminary in that they have only been 
demonstrated on relatively simple tasks and they have not been extensively tested or 
compared in very complicated domains. Nevertheless, these algorithms represent a sig- 

nificant advance over traditional reinforcement learning algorithms, which do not address 
non-Markov tasks at all. Perhaps these rather modest algorithms will serve as stepping 
stones to more sophisticated and capable methods for dealing with the ubiquitous prob- 
lems of hidden state. 
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