
ELSEVIER

Art$cial Intelligence in Engineering 9 (1995) 277-281

Elsevier Science Limited

Printed in Great Britain

0954-1810(95)00001-1 0954-1810/95/$09.50

Case-based knowledge acquisition for
schedule optimization

Kazuo Miyashita
Electrotechnical Laboratory, l-l-4, Umezono, Tsukuba, Zbaraki 30.5, Japan

In recent years, there have been a lot of efforts in solving scheduling problems by
using the techniques of artificial intelligence (AI). Through development of a
variety of AI-based scheduling systems, it became well known that eliciting
effective problem-solving knowledge from human experts is a difficult task, and
human schedulers typically lack the knowledge of solving large and complicated
scheduling problems in, the sophisticated manner. In this paper, our case-based
approach, implemented in the system called CABINS, is presented for capturing a
human expert’s preferential criteria about schedule quality and control knowledge
to speed up problem solving. By iterative schedule repair, CABINS improves the
quality of sub-optimal schedules, and during the process CABINS utilizes past
repair experiences for (1) repair tactic selection and (2) repair result evaluation. It
is empirically demonstrated that CABINS can optimize a schedule along
objectives captured in its case base and improve the efficiency of optimization
process while preserving the quality of a resultant schedule.

Key words: job shop scheduling, case-based learning, optimization, preferential
knbwledge, search control knowledge.

1 INTRODUCTION

Scheduling is a task to assign a set of jobs to a set of
resources with finite capacity over time. The goal of
scheduling is to produce schedules that respect all
constraints and optimize a set of objectives. Scheduling
problems have been formulated as a type of combina-
torial optimization problems and tackled by several
mathematical approaches such as dynamic program-
ming, branch and bound methods and integer
programming.’

In recent years, the advancement of artificial intelli-
gence technologies has initiated the development of
knowledge-based scheduling systems. But, development
of knowledge-based systems usually requires a knowl-
edge engineer to inquire of domain experts about their
knowledge and skills on the domain and encode them in
a computationally operational form (e.g. if-then rules).
This step is regarded as a major bottleneck in the system
development process, since it is an arduous job for
knowledge engineers without background knowledge of
the domain to ask the right questions of domain experts
and understand their answers correctly. Many systems
and methodologies are proposed to assist knowledge
engineers in knowledge acquisition and actually used for
the development of some knowledge-based scheduling
systems. In scheduling problems, the expertise of human

experts itself often becomes the subject of controversy.
Through past experiences of developing knowledge-
based scheduling systems, it has been pointed out that a
human scheduler does not have sufficient knowledge for
making a good schedule efficiently.2 Therefore, to obtain
useful knowledge for efficient problem solving, several
machine learning techniques are applied in the domain
of planning and scheduling.3

In this paper, the authors first describe the difficulties
of job shop scheduling problems and explain past
research efforts concerning knowledge acquisition/
machine learning in scheduling problems. Then, they
describe their case-based schedule revision methodol-

ogy, implemented in the system called CABINS, for
knowledge acquisition and optimization in the scheduling
domain, and empirically demonstrate its effectiveness.

2 JOB SHOP SCHEDULE OPTIMIZATION

The job shop scheduling problem is one of the most
difficult NP-hard combinatorial optimization prob-
lems.’ Job shop scheduling deals with allocation of a
limited set of resources to a number of activities
(operations) associated with a set of jobs so as to
respect given temporal relations (e.g. precedence rela-
tions among activities), temporal constraints (e.g. job

21-I

278 K. Miyashita

Machine
1

Machine
2

Machine
3

c3
Resource constraint propagation

c
Precedence constraint propagation

q Order I q Order 2 Order 3

Fig. 1. Example of tight constraint interactions.

release and due dates) and resource capacity restrictions
in order to optimize a set of objectives, such as minimize
tardiness, minimize work in process inventory (WIP),
maximize resource utilization, etc. Due to the tight
interactions among scheduling constraints and the often
conflicting nature of optimization criteria, it is impos-
sible to assess with any precision the extent of schedule
revision or the impact of a scheduling decision on the
global satisfaction of optimization criteria. For example,
in Fig. 1, moving forward the last activity of ORDER3
creates downstream cascading constraint violations.
Therefore, a repair action must be applied and its
repair outcome must be evaluated in terms of the
resulting effects on scheduling objectives. In addition,
the evaluation itself of what is a ‘high quality’ schedule
is difficult because of the need to balance conflicting
objectives and trade-off among them. Such tradeoffs
typically reflect user preferences, which are difficult to
express as a simplified cost function. For example, WIP
and weighted tardiness are not always compatible with
each other. As shown in Fig. 2, there are situations
where a repair action can reduce weighted tardiness, but
WIP increases. Which is a better schedule depends on
user preferences in the specific scheduling context where
several factors, such as clients, past shipping records and
load of factory and warehouse, have meaningful
influences.

3 KNOWLEDGE ACQUISITION IN SCHEDULING

Recently a growing number of research activities have
been done on acquiring and learning useful knowledge
for solving a complex scheduling problem. The goal and
methodology of the research can be classified into the
following categories:

Knowledge sharing and reuse. Problem solving for
a specific task is extracted and stored in the
components in a way that its reusability is
independent of the application domains. Develop-
ment of a knowledge-based system is done by
retrieving and assembling appropriate components
(e.g. SPARK? CAKE,’ MULTIS6).
Human-computer cooperative scheduling. When a

Release date Due date Due date
(A. B) (A) (B)

Schedule
I

Schedule
2

-I
WIPoforderA Tardiness of order A

SWAP A and B
I

WIP of order B
-I

Fig. 2. Example of conflicting objectives.

human expert disapproves a schedule produced by
the scheduling system, s/he repairs the schedule
and explains the reason for dissatisfaction and
validation of a repair. Later, a knowledge engineer
analyses user’s explanations, and uses them to
enhance and improve the content of knowledge
bases in the scheduling system (e.g. WATPASS7
Scheplan’).
Adaptive dispatching. In FMS environment, a very
flexible way of manufacturing control is possible.
Induction based learning techniques are applied to
create rules for dynamically selecting an appro-
priate dispatching rule according to the status of
manufacturing environment (e.g. PDS9 GDCA”).
Control knowledge acquisition. Control knowledge
can be exploited to improve efficiency of solving a
scheduling problem. This type of knowledge is
captured by interviewing with an expert when a
detail problem-solving method in the domain is
understood or applying the EBL method when
sufficient amount of domain theory is available
(e.g. SALT,” PEBL12).
Problem description acquisition. By using a generic
model of scheduling problems as a template for an
interview with a human scheduler, a knowledge
engineer can easily acquire and formulate knowl-
edge about constraints and physical environment
of a scheduling problem without missing the points
(e.g. PFF13).

In spite of the past research efforts, acquisition of
control knowledge in scheduling problems is still
difficult, because ill-causality of the scheduling problem
hinders understanding of problem solving methods and
domain theory of the scheduling problem. And there has
been no research concerning the acquisition of user’s
preferential knowledge on tradeoffs among conflicting
objectives in the schedule. We advocated a unified
framework of knowledge acquisition and problem
solving in the schedule problem and implemented the
system called CABINSi which optimizes a schedule by
iterative repair using case-based reasoning (CBR)”
methodology. In the succeeding sections, we explain
how CABINS acquires user’s preferential and control
knowledge from past experience cases, and how

Knowledge acquisition for schedule optimization 279

CABINS exploits that knowledge effectively for schedule not at all obvious, neither can they be discovered since a
optimization. causal model for scheduling cannot be assumed.

4 CBR FOR SCHEDULE Ol’TIMIZATION

Because of the characteristics of the scheduling domain
and the interest in capturing context dependent user
preferences and situation sensitive search control
knowledge, CBR appears to be a natural method for
knowledge acquisition. However, applying CBR to
schedule improvement, a numerical optimization prob-
lem, is very challenging. In general, CBR has been used
for ill-structured symbolic problems, such as planning,16-‘8
legal reasoning,‘9Y z” argumentation,2’ conceptual design,**
medical diagnosis23 where the primary concern has been
plausibility or correctness of resulting artifacts (plan,
argument, design) and computational efficiency of the
problem solving process rather than artifact quality.

The challenges in applying CBR to schedule optimi-
zation were to determine what constitutes a case in the
domain of schedule optimization and what the case
indices should be. The intuitive answer would be to
consider a whole schedule as a case.24*25 This solution is
attractive since, if the right information could be
transferred from one scheduling scenario to another,
or with little adaptation, a new problem would be solved
with relative ease. In the traditional planning problem,
the plan operators capture some form of domain
causality in their preconditions and effects. Saving a
plan and the derivational trace of how the plan was
generated, captures pretty much the planning process
and can be easily utilized to solve future similar
problems.16-‘8 However, it is not true in the scheduling
problem. Because of the high degree of nonlinearity of
scheduling constraints and objectives, a very small
difference between an input problem specification and
the problems in the case base can in general result in
large variations in the results both in terms of the
amount of modifications needed and the quality of a
resulting schedule. A second difficulty with respect to
having a whole schedule as a case came in the form of
what indices to choose. Indexing a case in terms of the
goals that must be achieved and the problems that must
be avoidedI is a good guideline and has served many
CBR systems well. However, in the scheduling domain,
the goals to be achieved (the optimization criteria)
cannot be explicitly stated, since they reflect context-
dependent user preferences and tradeoffs. Even if the
optimization objectives were explicit, because of the
nonlinearities of the problem, retrieving a schedule in
which the achieved objectives were the same as the
desired ones in the current problem would give little or
no help in adapting the retrieved schedule to the current
problem specifications. Moreover, because of unpredict-
able ripple effects of constraint propagation and tight
constraint interactions, the problems to be avoided are

Since it is impossible to judge a priori the effects of a
scheduling decision on the optimization objectives, a
scheduling decision must be applied to a schedule and its
outcome must be evaluated in terms of the resulting
effects on scheduling objectives. Thus, having a single
scheduling decision as a case seemed to provide
advantages in terms of focus and traceability of the
problem solving process. Focus and traceability mean
that a user’s evaluation of the results of a single
scheduling decision can be captured in a case, and, if
the result was unacceptable, another scheduling decision
to the same ‘scheduling entity’ can be applied until either
all available scheduling decisions are exhausted or an
acceptable result is obtained. For the above reasons, it
became clear that it was better to have a case for a single
scheduling entity on which a scheduling decision was
applied. Since the result of a scheduling decision needed
to be evaluated with regard to the optimization
preferences for a schedule as a whole, it is clear that
constructive methods which incrementally augment a
partial schedule at every scheduling decision point
would be unsuitable for the purpose. Moreover,
contextual information, which can only be provided by
having a complete schedule, is very useful in applying
CBR. Therefore, the revision-based method was chosen
as the underlying optimization methodology in
CABINS.

Hence in CABINS, a case describes the application of
a schedule revision decision on a single scheduling entity.
Operationalization of a schedule revision decision is
done by means of a schedule repair action. Each
application of a schedule repair action results in a new
schedule. The search space of CABINS is the space of
complete schedules that incorporate acceptable user
optimization tradeoffs. Hence the predictive case fea-
tures that are suitable for case indexing should be those
that capture good tradeoffs. Although schedule optimi-
zation is ill-structured, we make the hypothesis that
there are regularities of the domain that can be
captured, albeit in an approximate manner, in these
features. In CABINS, indices are divided into two
categories. The first category consists of the descriptive
features. Since the results of schedule revision associated
with a single scheduling entity pertain to the whole
schedule, it is impossible to make a precise prediction of
repair effects in advance of revisions. Descriptive
features that express characteristics of a scheduling
entity operate as contextual information for selection of
a particular repair action and allow CABINS to
estimate the effects of each repair action in advance.

The schedule resulting from a repair action applica-
tion must be evaluated in terms of user-defined trade-
offs. The user cannot predict the effects of modification
actions on schedule correctness or quality since a
modification could result in worsening schedule quality

280 K. Miyashita

Cabins

Selection Evaliation

0 Selected
0

Rejected 0 Candidate
solution solution solution

Fig. 3. Search space and search control in CABINS.

or introducing constraint violations. Nevertheless, the
user can perform consistent evaluation of the results of
schedule revisions. This evaluation is recorded in the
case as part of the case’s repair history. The repair
history constitutes the second category of case features.
Thus, the case base incorporates a distribution of
examples that collectively capture repair performance
tradeoffs under diverse scheduling circumstances.

CABINS searches for an ‘optimal’ schedule over the
space of complete schedules. Figure 3 shows the schematic
diagram of the search space and search control in the
CABINS system. CABINS revises the current solution
iteratively to improve the solution quality. For each step
of the search, CABINS selects a solution among the
neighbours of the current solution. The neighbourhood
size for the current solution (i.e. the number of potential
solutions for each revision) is equal to Number_of_
Repair-Actions x Number of - - Repair-Objects. In a sched-
uling problem, Repair-Actions are several heuristics that
modify the assignments of resources to activities in the
schedule and Repair-Objects are typically the activities in
the schedule. The number of revision cycles required to
obtain a final solution cannot in general be predicted in
advance because of tight constraint interactions in the
scheduling problem. Hence the search space for a large
scheduling problem can be intractably big. To reduce the
required research efforts, CABINS has the following
mechanisms of search control using CBR: a repair control
model provides the search control through case-based
selection of the next repair action to be applied, and a user
preference model provides the search control through case-
based evaluation of the result of the application of a
selected repair action. The descriptive features are the
indices that are used to retrieve a case that suggests the
next repair action to be applied. The features associated
with the repair history are used to retrieve cases that
suggest evaluations of a repair outcome.

Preferential knowledge

Debug P- Control knowledge
- Selection of defects

I- - Selection of repair tactics

Fig. 4. GTD process.

5 SCHEDULE OPTIMIZATION BY CABINS

CABINS optimizes a given schedule by iterative repair
based upon a GTD (generate-test-debug) process
(Fig. 4). CABINS differs from other GTD-based
scheduling methodologies in that it doesn’t use a fixed
objective function for optimization. CABINS optimizes
a schedule by iterative repair until a further repair is
unnecessary or impossible. Repair methods are selected
by the control knowledge and a result of the repair is
evaluated by user’s preferential knowledge. Both types
of knowledge are acquired through interaction with a
human scheduler and stored as cases in the case base of
CABINS. First, CABINS gathers user’s judgements on
repairing schedules of the training problems in the case
base. Once a sufficient number of cases are accumulated,
CABINS can automatically repair a schedule by reusing
user’s judgements in the past similar cases (see Fig. 5).

5.1 Case representation

Within a job, repair is performed on one activity, the
focal-activity at a time. In CABINS, a case describes
the application of a particular modification to a
focal-activity. Each case is indexed in terms of surface
features relating to the flexibility of temporal and
capacity constraints surrounding the focal-activity,
the repair tactic used, repair effects and the repair
outcome.

Sub-ootimal solution 1

+
1 R<slevaluations

Optimized solution 1
Fig. 5. CABINS architecture.

Knowledge acquisition for schedule optimization 281

Local feature

“‘““Y
Salience

7EshiA lFpin Salience
Predictive alt shift

Value F? alience
Predktid~eswap gain

Salience
Predi~dctlesllt swap gll@

Sahence

Repair history

IhtiC Value Salience

Outcome Value Salience

Efrect
me Value Salience

1

Fig. 6. Case representation.

Figure 6 shows the information content of a case. The
global features reflect an abstract characterization of
potential repair flexibility for the whole schedule. High
‘resource utilization average’, for example, often indi-
cates a tight schedule without much repair flexibility.

Associated with the focal-activity are local features
that we have identified and which potentially are
predictive of the effectiveness of applying a particular
repair tactic. For example, ‘predictive shift gain’ predicts
how much overall gain will be achieved by moving the
current focal-activity earlier in its time horizon. In
particular, it predicts the likely reduction of the
focal-activity’s waiting time when moved to the left
within the repair time horizon. Because of the ill-
structuredness of job shop scheduling, local and global
features are heuristic approximations that reflect prob-
lem space characteristics.

The repair history records the sequence of applica-
tions of successive repair actions, the repair outcome
and the effects. The repair history is used as a record of
evidences that show the existence of a certain causal
structure in a problem implicitly. A repair outcome is
the evaluation assigned to the set of effects of a repair
action and takes values in the set [‘acceptable’,
infeasible’, unacceptable’]. Typically the outcome
reflects tradeoffs among different objectives. The out-
come of a repair tactic application is ‘infeasible’, if the
application of repair heuristic results in an infeasible
schedule, i.e. a schedule that violates domain con-
straints. If the application of a repair tactic results in a
feasible schedule, the result is judged as either acceptable
or unacceptable with respect to the repair objectives by a

domain expert. An outcome is ‘acceptable’ if the user
accepts the tradeoffs involved in the set of effects for the
current application of a repair action. Otherwise, it is
‘unacceptable’. The effect value describes the impact of
the application of a repair action on the scheduling
objective designated in the effect type. The effect salience
is assigned when the outcome is ‘unacceptable’, and it
indicates the significance of the effect to the repair
outcome.

5.2 Case acquisition

To gather enough cases, sample scheduling problems are
solved by a scheduler. CABINS identifies jobs that must
be repaired in the initial sub-optimal schedule. Those
jobs are sorted according to the significance of defect,
and repaired manually by a user according to this
sorting. For example, if the user’s optimization criterion
is to minimize job tardiness, the most tardy job is
repaired first. The user selects a repair tactic to be
applied. Tactic application consists of two parts: (a)
identify the activities, resources and time intervals that
will be involved in the repair, (b) execute the repair and
re-schedule the activities identified in (a).

After tactic selection and application, the repair
effects are calculated and shown to be the user who is
asked to evaluate the outcome of the repair. If the user
evaluates the repair outcome as ‘acceptable’, CABINS
proceeds to repair another focal-activity and the process
is repeated. If the user evaluates the repair outcome as
‘unacceptable’, s/he is asked to supply an explanation in
terms of rating the salience of favourable and unfavour-
able effects. Then, the repair is undone and the user is
asked to select another repair tactic for the same
focal_activity. The process continues until an acceptable
outcome for the current focal-activity is reached, or
failure is declared. Failure is declared when there are no
more tactics to be applied to the current focal-activity.
The sequence of applications of successive repair
actions, the effects, the repair outcome, and the user’s
explanation for failed application of a repair tactic are
recorded in the repair history of the case.

As cases are acquired in the course of actual problem
solving by a user, CABINS can elicit user’s context-
dependent knowledge without requiring excessive burdens
from the user.

5.3 Case application

Once enough cases have been gathered, CABINS repairs
sub-optimal schedules without user’s interaction. Fol-
lowing the procedure shown in Fig. 7, CABINS repairs
the schedules by (1) invoking CBR with global and local
features as indices to decide the most appropriate repair
tactic to be used for each focal-activity, (2) applying the
selected repair tactic, (3) invoking CBR using the repair

282 K. Miyashita

Decide repair point

I

Repair effects
i

Evaluate repaired result

+Y

Select next repair strategy

I

Fig. 7. Case application

effect features (type, value and salience) as indices to
evaluate the repair result, (4) in case of failure, invoking
CBR with global and local problem features and history

of failed repair tactics as indices to decide which repair
tactic to use next. Experiments in using different
indexing schema in case of failure are described in
section 8.

In CABINS concept are defined extensionally by a
collection of cases. As a case retrieval mechanism,
CABINS uses a variation of k-nearest neighbour
method where not the frequency but the sum of
similarity of k-nearest neighbours is used as a selection
criterion. The similarity between the ith case and the
current problem is calculated as follows:

SL; x

where SL; is the salience of thejth feature of the ith case
in the case base, and its value has been heuristically
defined by the user; CF; is the value of thejth feature of
the ith case, PFi is the value of the jth feature in the
current problem, E-Dj is a standard deviation of thejth
feature value of all cases in the case base. Feature values
are normalized by division by a standard deviation of
the feature value so that features of equal salience have
equal weight in the similarity function.

Resource I

Resource 2

Resource 3

Resource 4

Resource 5

6 AN EXAMPLE

We briefly illustrate the repair process with the very
simple example schedule to be repaired shown in Fig. 8.
The example has ten jobs (J,, . , Jlo) and each job has
five activities with linear precedence constraints (e.g. 0;

BEFORE O;, . . . ,Oi BEFORE 0;). Resources RI and
RZ, R3 and R5 are substitutable; resource R4 is a

bottleneck. Suppose that the job under repair is Js. This
job has a weight of 2, a due date of 1250 and the

scheduled end-time of its last activity is 1390. Hence it
has a weighted tardiness of 2 x (1390 - 1250) = 280.
Suppose the current focal-activity is 0:. CBR is invoked

with global features (weighted tardiness = 280, resource
utilization average = 0.544, resource utilization devia-

tion = 0.032) plus the set of local features as indices and
selects swap as a repair tactic. One can see from the
figure that this is a good choice since the focal-activity is

scheduled on machine R4, which doesn’t have any
substitutable machine and any idle time in the repair
time horizon (time between the end of 0; and the end of

0%
The swap repair tactic roughly calculates the effects of

swapping the current focal-activity with each activity
within the current focal_activity’s time horizon and
selects the activity that gives the biggest net gain (note

that swapping an activity that is scheduled earlier with
one that is scheduled later will now delay the earlier
activity). In the example, suppose that activity 0: is
selected as the activity to be swapped with the current
focal-activity 0:. The effect of applying the swap tactic
is that 0; and 0: are unscheduled on R4 and 0: is re-
scheduled to start at time 1090 (the start time of activity
0: prior to the swap) and 0: is moved to start at time
1180 (the start time of activity 0: prior to the swap).
Because the new assignments of two activities overlap
each other, constraint propagation is invoked and the
assignment of 0: is further delayed. Due to the delay of

activity Oi, now there is the ripple effect of a precedence
constraint violation between activity 0: and its successor
activity 0: on resource R2 (in general, many activities
could be affected and must be rescheduled). Constraint

propagation discovers this constraint conflict and shifts
activity 0: further to the right on resource RZ. Since

0 100 200 300 400 500 600 700 800 900 loo0 1100 1200 1300 1400

Fig. 8. Original schedule results.

Knowledge acquisition for schedule optimization 283

Resource 1

Resource. 2

Resource 3

Resource 4

Resource 5

Fig. 9. Schedule results after repair on 0:.

job J4 has weight 3, its weighted tardiness is now
3 x (1370 - 1320) = 150. The repaired schedule result
is shown in Fig. 9.

CABINS calculates both local effects (i.e. effects on
the repair target, Js) and global effects (i.e. effects on the
whole schedule) for result evaluation. In this example,
‘local_weighted_tardiness’ is estimated as + 180 time
units and ‘local_inprocess_inventory’ is estimated as
+120 units, both being improved by the change of 0:.
And ‘global_weighted_tardiness’ is +30 units (i.e. 180-
150) and ‘global_inprocess_inventory’ is -750 units
(as the waiting time in J4 increases by 950 units). CBR
is invoked using these effect values as indices to
determine whether this repair outcome is acceptable or
not. If there are more significant ‘SUCCEEDED’ cases
than ‘FAILED’ cases in the retrieved k-nearest neigh-
bours, the repair is considered reflecting the tradeoffs of
user’s preference (in this example, little weight on
‘globaljnprocessjnventory) and the outcome is con-
sidered as acceptable. Otherwise, the outcome is
considered as unacceptable, thus showing that loss in
‘global_inprocess_inventory’ is more critical than possi-
ble gain in weighted tardiness according to the user’s
preferences.

7 ACQUIRING PREFERENTIAL KNOWLEDGE

We hypothesize that CABINS can acquire user’s
preferential knowledge by accumulating cases of user’s
judgement on schedule repair results. To validate our
hypothesis, we did experiments to see whether CABINS
can optimize schedule quality along various optimization
criteria which CABINS does not know explicitly. We
compared CABINS with a set of well-regarded dispatch
heuristics, widely used in manufacturing job shop
scheduling, and with a constraint-based scheduler. The
dispatch rules selected for the comparison are the earliest
due date (EDD) rule, the weighted shortest processing
time (WSPT) rule and the WSPT with job time urgency
factor (R&M) rule. The constraint-based scheduler (CBS)
uses backtrack search with sophisticated variable and
value ordering heuristics.26 These schedulers are known
to achieve near optimal performance with respect to job

tardiness and work-in-process-inventory (WIP) under
various scheduling conditions.

To cover different scheduling conditions, six groups of
10 problems each were randomly generated using three
different values in due date and release date parameter
distribution (static, moderate, dynamic), and two values
of bottleneck configuration (one bottleneck, two bottle-
necks). Each problem has five resources and 10 jobs of
five operations each. Each job has a linear process
routing specifying a sequence where each job must visit
bottleneck resources after a fixed number of activities, so
as to increase resource contention and make the
problem tighter. The slack was adjusted as a function
of the range and bottleneck parameters to keep demand
for bottleneck resources close to 100% over the major
part of each problem. Durations for activities in each
job were also randomly generated.

To assess CABINS performance accurately, we
applied a two cross-validation method. Each problem
set in each class was divided in half. In one a half initial
schedule was generated using a constraint-based sche-
duler and then repaired heuristically to gather cases.
These cases were used to repair the other half of the
problem set. We repeated the above process by inter-
changing the sample- and the test-set. Our results are the
average of the two sets of results. In the experiments,
CABINS used two types of case base, one of which was
trained under the optimization criteria of minimizing
weighted tardiness and the other was trained to
minimize combination of weighted tardiness and WIP.

7.1 Experimental results

The results in Fig. 10 show a comparison of the resultant
schedule quality by the above scheduling methods and
CABINS. The optimization criteria used in the experi-
ments were weighted tardiness (left graph) and the
combined objective of minimizing weighted tardiness
and WIP (right graph). In the graphs, CABINS
and CABINS@VT + WIP) represent CABINS with a
case base trained to optimize weighted tardiness and
CABINS with a case base trained to optimize the
combination of weighted tardiness respectively. From
the graphs, it’ is shown that CABINS with correctly

284 K. Miyashita

IKwlP’ 2oca L
0 Cabins
+ Cabins

1800
‘$,

q EDD
x WSPT

5 1600 * 0 A RandM * CBS (GV)

I I I I I I I
I 2 3 4 5 6

Problem set

-0

&*.-~

loo0 I I I I I I
I 2 3 4 5 6

Problem ser

Fig. 10. Comparison of schedule quality.

trained case base outperformed all the other methods
(including CABINS with wrong case base) across both
one and two bottleneck problems in all experiments.
From these experiments, we see that CABINS can
acquire user’s scheduling objectives and optimize
schedules along acquired objectives.

8 ACQUIRING CONTROL KNOWLEDGE

Our hypothesis is that CBR enables CABINS to (1)
learn a control model of repair action selection from
cases that are created from superficial rules, (2) improve
its competence both in repair quality and efficiency by
utilizing failure information recorded in the cases. To
analyse the correctness of our hypothesis, we classified
cases into two types, one of which is a success case where
a repair was done successfully and the other of which is
a failure case which failed to repair a schedule, and
experimentally implemented the following three repair
strategies (see Fig. 11):

l One-shot repair. CABINS selects a repair tactic by
retrieving the most similar case from success cases,
applies it to a focal-activity and proceeds to repair

Lindred-exhaustive repair

Fii. 11. Three repair methods in CABINS.

4oal-
0 Cabins (WT+WIP)
+ Cabins (WT)

3500 - 0 EDD
E

*\

3
x WSPT
A Rand M

+ 3ooo-
?A,

B

$j 2500

j;,:

‘*‘&,.g+?,:,

* CBS (GV)

.

the next focal-activity regardless of repair out-
come.
Exhaustive repair. CABINS selects a repair tactic
and applies it to repair a focal-activity. If the
repair outcome is deemed either unacceptable or
infeasible, another tactic is selected from success
cases to repair the same focal-activity, using as
indices global and local case features, the failed
tactic, and the indication of the failed outcome.
This CBR invocation retrieves similar past failures
of the tactic that were successfully repaired and the
tactic that was successful in repairing a schedule.
For example, when a repair result is judged as
unacceptable by a user after application of left-shift
tactic because the user doesn’t like side effects
caused by the tactic, another case that has the most
similar global and local features is retrieved from
the success cases which have the failure record of
left shift tactic because of user’s unacceptance in
rep&r history of the case. And a tactic that finally
succeeded in repair of the selected case is used for
another repair trial of the current problem. The
intuition here is that a similar outcome of the same
tactic implies a similarity of causal structure
between the past and current cases. Therefore, the
repair tactic which succeeded in the cases that have
similar failed tactic applications can potentially be
successful in the current problem.
Limited exhaustive repair. CABINS gives up
further repair when it determines that it would be
a waste of time. To decide whether to give up
further repair, failure and success cases are checked
to determine case similarity. If the most similar
case is a failure, CABINS gives up repair of the
current focal-activity, and switches its attention to
another focal-activity. Since, in difficult problems,
such as schedule repair, failures usually outnumber
successes, if both case types are weighted equally,
overly pessimistic results could be produced (i.e.
CBR suggests giving up too often). To avoid this,

Knowledge acquisition for schedule optimization

we bias (negatively) usage of failure cases by
placing a threshold on the similarity value and
currently its value is heuristically fixed as 0.75.
Failure experiences whose similarity to the current
problem is below this threshold are ignored in
similarity calculations. Since the similarity metric
selects the tactic which maximizes the sum of the
most similar k cases, this biases tactic selection in
favour of success cases which are moderately
similar to the current problem.

To verify our hypothesis, we did experiments with six
types of scheduling problems, the same as the experi-
ments in the previous section. In the experiments,
reported here, we used a metric, minimizing weighted
tardiness, as an objective function to evaluate the
performance of CABINS. Of course, CABINS does
not know this metric but has to guess it from the
contents of the case base. And we built a rule-based
reasoner (RBR) that goes through a trial-and-error
repair process to optimize a schedule in terms of
weighted tardiness based on the tactic selection rules
acquired from a human scheduler. Since the RBR was
constructed not to select the same tactic again after
tactic failure, it could go through all the tactics before
giving up repairing an activity. For each repair, the
repair effects are calculated and the repair outcome is
correctly determined by comparing the change in the
objective function. Since RBR knows an exact objective
function (in real world job shop scheduling problems,
which is very complex and is available only in a user’s
mine) for evaluation, RBR can work as an emulator of a
human scheduler, who cannot repair a schedule in the
most efficient way but can make consistent evaluation
on repair results. Therefore, we used RBR not only for
generating the case base for CABINS but also for
making a comparison baseline for the CABINS experi-
ment results to see whether CABINS can learn effective
control rules from the cases made by an inefficient
teacher. Thus, CABINS has been trained with about 100
cases by RBR.

400
1 2 3 4 5 6

Problem set

285

8.1 Experimental results

The graphs of Fig. 12 show comparative results with
respect to schedule quality improvement (weighted
tardiness) and repair efficiency (in CPU seconds)
among limited exhaustive repair, exhaustive repair,
one-shot repair and rule-based repair, which is an
emulation of repair by a human scheduler. The results
show that one-shot repair is the worst in quality but best
in efficiency. Exhaustive repair outperformed one-shot
repair and rule-based repair in quality. But, the
efficiency of exhaustive repair was worse than that of
one-shot repair or rule-based repair.

The quality of repairs by limited exhaustive repair is
only slightly worse than that by exhaustive repair, but is
still comparable with that of rule-based repair. The
efficiency of limited exhaustive repair is much higher
than both rule-based repair and exhaustive repair.
Although the efficiency of limited exhaustive repair is
comparable with that of one-shot repair, the quality of
repairs by limited exhaustive repair is much better than
that of one-shot repair. One potential reason for these
effects is that the effects of schedule repair are pretty
unpredictable because of ill-causality of scheduling
problems and there is a good chance that another
application of repair tactic may make the’ problem,
which once seemed difficult, easier by changing the
existing schedule fundamentally so that we can go back
to the problem afterwards and repair it without wasting
much effort.

9 SCALING-UP A CASE BASE

The graphs in Fig. 13 show a comparison of CABINS’
performance with different sized case bases. The results
were obtained based on CABINS with WT + WIP type
of case bases. From the viewpoint of knowledge
acquisition, an interesting question is when knowledge
acquisition can be terminated because sufficient knowl-
edge has been acquired to enable high quality perfor-

0 Rule-based repair
+ One-shot nzpair
0 Exhaustive repair
x Limited-exhaustive repair

Problem set

Fig. 12. Comparison of schedule quality and efficiency.

2400
0 Cabins w/~CKI cases

2200 + Cabins w/ 1000 cases -
q Cabins w/ 1500 cases
x Cabins w/2000 cases

IOCKI I I I I I I
I 2 3 4 5 6

Problem set

286 K. Miyashita

Case-base size

Fig. 13. Effect of case base sizes on quality and efficiency.

mance of a knowledge based system. For case-based
knowledge acquisition, this question becomes how many
cases would be enough for knowledge capture and reuse
and for guaranteeing overall satisfactory performance.
Unfortunately, it is very difficult to answer this question
in general due to the ill-structuredness of the scheduling
problem and the approximate nature of CBR (since no
causal model is available). We believe, however, that
there exists some appropriate size of the case base
which will give us relatively satisfactory results in
terms of schedule quality without excessive overhead
for case acquisition or case retrieval from the case
base.

Our experimental results (Fig. 13) support this
hypothesis as follows: (1) The larger the number of
cases, the better the schedule quality. However, the
marginal payoff from the increase in case base size
decreases. This can be explained partially by the fact
that some number of cases (say, 1000) captures well the
characteristics of the problem space, and an additional
1000 new cases may give much redundant information.
When the size of a case base is relatively small, every
time new cases are acquired, we may get information
about a different part of the problem space which results
in higher quality improvement. (2) In terms of efficiency
of the system, we observe from the graphs that the case
base with 1000 cases might be the optimal choice.
Intuitive explanation of the results is that CABINS with
less cases cannot search the repair solution space
efficiently because of its poor control knowledge and
CABINS with more cases spoils the search efficiency
because of the increased case retrieval time (i.e.
CABINS suffers from a utility problemz7).

Actually, both in terms of CPU time and quality
improvement, the case base with 1000 cases obviously
outperforms the case base with 500 cases. Moreover,
case bases with more cases than 1000 do not seem to
provide a payoff proportional to the case base size
increase. In Veloso’s research,28 the issue of the tradeoff
between optimal case retrieval time interval and search

efficiency is discussed in planning domain. However, the
assumptions on which their theoretical analysis was
based seem not to hold in an ill-structured domain, such
as scheduling. How to theoretically predict the optimal
size of case base is still an open research problem and we
are currently investigating it.29

10 CONCLUDING REMARKS

In this paper, we advocated a unified. framework for
knowledge acquisition and iterative revision for sche-
dule optimization. The approach utilizes CBR-based
mechanisms for recording user preferences, repair tactics
and explanations, and constraint-based scheduling for
application of the selected repair tactics. The approach
is predicated on (a) the existence of a set of schedule
repair tactics, each of which operates with respect to a
particular local view of the problem and offers selective
advantages for improving schedule quality, (b) on
capturing user scheduling preferences and judgements,
(c) on retrieving and reusing these preferences to
dynamically change scheduling utilities during revision.
Our experimental results show that the approach (1) was
able to capture and effectively utilize user scheduling
preferences that were not present in the scheduling
mode, (2) outperformed other scheduling methods along
multiple evaluation criteria. We also examined various
ways of exploiting past repair experiences for control
knowledge acquisition. Our experiment results show
that our methodology can improve its own performance
by: (1) using failure experience as a contextural index
of the problem, (2) trading off the use of success and
failure cases depending on the context in which a
repair tactic is applied. This use of CBR in the space
of failures is a domain independent method of
acquiring control knowledge that allows the problem
solver to improve its efficiency while preserving quality
of results in the domain without strong domain
knowledge.

Knowledge acquisition for schedule optimization 287

ACKNOWLEDGEMENT

The author is indebted to Professor Katia Sycara at the

Robotics Institute of Carnegie Mellon University for
fruitful discussions and valuable advice.

REFERENCES

1. French, S., Sequencing and Scheduling: An Introduction to
the Mathematics of the Job-Shop. Ellis Horwood, London,
1982.

2. Kempf, K., LePape, C., Smith, S. F. & Fox, B. R., Issues
in the design of AI-based schedulers: Workshop report. AZ
Magazine, 1991, 11, 37-46.

3. Minton, S., Machine Learning Methodr for Planning and
Scheduling. Morgan Kaufmann Publishers, San Mateo,
CA, 1993.

4. Klinker, G., Bhola, C., Dallemagne, G., Marques, D. &
McDermott, J., Usable and reusable programming
constructs. Knowledge Acquisition, 1991, 3, 117-35.

5. Hori, M., Nakamura, Y. & Hama, T., Methodology for
configuring scheduling engines with task-specific
components. Proceedings of the Second Japanese Knowl-
edge Acquisition for Knowledge-Based Systems Workshop,
1992, Kobe, Japan, pp. 215-29.

6. Mizoguchi, R., Tijerino, Y. & Ikeda, M., Task ontology
and its use in a task analysis - Two-level mediating
representation in MULTIS -. Proceedings of the Second
Japanese Knowledge Acquisition for Knowledge-Based
Systems Workshop, Kobe, Japan, 1992, pp. 185-98.

7. Mckay, K., Buzacott, J. & Safayeni, F., The scheduler’s
knowledge of uncertainty: The missing link. Proceedings of
ZFIP Working Conference on Knowledge Based Production
Management Systems, 1988, Galway, Ireland.

8. Numao, M. & Morishita, S., A scheduling environment for
steel-making process. Proceedings of the Ffth Conference
on AZ Applications, 1989.

9. Shaw, M. J., A pattern-directed approach to flexible
manufacturing: A framework for intelligent scheduling,
learning and control. International Journal of Flexible
Manufacturing Systems, 1989, 2, 121-44.

10. Chaturvedi, A. R., FMS scheduling and control: Learning
to achieve multiple goals. Expert Systems With Applica-
tions, 1993, 6, 267-86.

11. Stout, J., Caplain, G., Marcus, S. & McDermott, J.,
Toward automating recognition of differing problem-
solving demands, International Journal of Man-Machine
Studies, 1988, 29, 599-611.

12. Zweben, M., Davis, E., Brian, D., Drascher, E., Deale, M.
& Eskey, M., Learning to improve constraint-
based scheduling. Artificial Intelligence, 1992, 58,
271-96.

13.

14.

Liu, B., Problem acquisition in scheduling domain. Expert
Systems with Applications, 1993, 6, 257-65.
Miyashita, K. & Sycara, K., Adaptive case-based control
of schedule revision. In Intelligent Scheduling, ed. M.
Zweben & M. Fox. Morgan Kaufmann, San Mateo, CA,
1994.

15.

16.

17.

18.

19.

20.

21.

22.

Kolodner, J., Simpson, R. & Sycara, K., A process of case-
based reasoning in problem solving. Proceedings of the
Ninth International Joint Conference on Artificial Zntelli-
gence, 1985, Los Angeles, CA, pp. 284-90.
Hammond K. J., Case-Based Planning: Viewing Planning
as a Memory Task. Academic Press, New York, 1989.
Kambhampati, S. & Hendler, J. A., A validation-
structure-based theory of plan modification and reuse.
Artificial Intelligence, 1922, 55, 193-258.
Veloso, M. M., Learning by analogical reasoning in
general problem solving, PhD thesis, Carnegie Mellon
University, 1992.
Ashley, K. D., Modeling legal argument: reasoning with
cases and hypotheticals. PhD thesis, University of Massa-
chusetts, Amherst, MA, 1987.
Rissland, E. L. & Ashley, K. D., Credit assignment and the
problem of competing factors in case-based reasoning.
Proceedings of the Case-Based Reasoning Workshop,
Clearwater, FL, 1988, pp. 327-44.
Sycara, K., Argumentation: Planning other agents’ plans.
Proceedings of the Eleventh International Joint Conference
on Arttjicial Intelligence, Detroit, MI, 1989.
Sycara, K., Guttal, R., Koning, J., Narasimhan, S. &
Navinchandra, D., CADET: A case-based synthesis tool
for engineering design. International Journal of Expert
Systems, 1991, 4.

23. Koton, P., Reasoning about evidence in causal
explanations. Proceedings of the Case-Based Reasoning
Workshop, Clearwater, FL, 1988, pp. 260-70.

24. Koton, P., SMARTplan: A case-based resource allocation
and scheduling system. Proceedings of the Case-Based
Reasoning Workshop, Pensacola, FL, 1989, pp. 285-94.

25. Mark, W. S., Case-based reasoning for autoclave
management. Proceedings of the Case-Based Reasoning
Workshop, Pensacola, FL, 1989, pp. 176680.

26. Sadeh, N., Look-ahead techniques for micro-opportunistic
job shop scheduling. PhD thesis, Carnegie Mellon
University, 1991.

27. Minton, S., Learning Effective Search Control Knowledge:
An Explanation-based Approach. Kluwer Academic Pub-
lishers, Boston, MA, 1988.

28. Veloso, M.M. & Carbonell, J. G. Toward scaling up
machine learning: A case study with derivational analogy
in PRODIGY. In Machine Learning Methods for
Planning, ed. S. Minton, Morgan Kaufmann, San Mateo,
CA, 1993.

29. Miyashita, K., Case-based knowledge acquisition for
solving ill-structured optimization problems. PhD thesis,
Osaka University, 1994.

