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In recent years, there have been a lot of efforts in solving scheduling problems by 
using the techniques of artificial intelligence (AI). Through development of a 
variety of AI-based scheduling systems, it became well known that eliciting 
effective problem-solving knowledge from human experts is a difficult task, and 
human schedulers typically lack the knowledge of solving large and complicated 
scheduling problems in, the sophisticated manner. In this paper, our case-based 
approach, implemented in the system called CABINS, is presented for capturing a 
human expert’s preferential criteria about schedule quality and control knowledge 
to speed up problem solving. By iterative schedule repair, CABINS improves the 
quality of sub-optimal schedules, and during the process CABINS utilizes past 
repair experiences for (1) repair tactic selection and (2) repair result evaluation. It 
is empirically demonstrated that CABINS can optimize a schedule along 
objectives captured in its case base and improve the efficiency of optimization 
process while preserving the quality of a resultant schedule. 

Key words: job shop scheduling, case-based learning, optimization, preferential 
knbwledge, search control knowledge. 

1 INTRODUCTION 

Scheduling is a task to assign a set of jobs to a set of 
resources with finite capacity over time. The goal of 
scheduling is to produce schedules that respect all 
constraints and optimize a set of objectives. Scheduling 
problems have been formulated as a type of combina- 
torial optimization problems and tackled by several 
mathematical approaches such as dynamic program- 
ming, branch and bound methods and integer 
programming.’ 

In recent years, the advancement of artificial intelli- 
gence technologies has initiated the development of 
knowledge-based scheduling systems. But, development 
of knowledge-based systems usually requires a knowl- 
edge engineer to inquire of domain experts about their 
knowledge and skills on the domain and encode them in 
a computationally operational form (e.g. if-then rules). 
This step is regarded as a major bottleneck in the system 
development process, since it is an arduous job for 
knowledge engineers without background knowledge of 
the domain to ask the right questions of domain experts 
and understand their answers correctly. Many systems 
and methodologies are proposed to assist knowledge 
engineers in knowledge acquisition and actually used for 
the development of some knowledge-based scheduling 
systems. In scheduling problems, the expertise of human 

experts itself often becomes the subject of controversy. 
Through past experiences of developing knowledge- 
based scheduling systems, it has been pointed out that a 
human scheduler does not have sufficient knowledge for 
making a good schedule efficiently.2 Therefore, to obtain 
useful knowledge for efficient problem solving, several 
machine learning techniques are applied in the domain 
of planning and scheduling.3 

In this paper, the authors first describe the difficulties 
of job shop scheduling problems and explain past 
research efforts concerning knowledge acquisition/ 
machine learning in scheduling problems. Then, they 
describe their case-based schedule revision methodol- 

ogy, implemented in the system called CABINS, for 
knowledge acquisition and optimization in the scheduling 
domain, and empirically demonstrate its effectiveness. 

2 JOB SHOP SCHEDULE OPTIMIZATION 

The job shop scheduling problem is one of the most 
difficult NP-hard combinatorial optimization prob- 
lems.’ Job shop scheduling deals with allocation of a 
limited set of resources to a number of activities 
(operations) associated with a set of jobs so as to 
respect given temporal relations (e.g. precedence rela- 
tions among activities), temporal constraints (e.g. job 
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Fig. 1. Example of tight constraint interactions. 

release and due dates) and resource capacity restrictions 
in order to optimize a set of objectives, such as minimize 
tardiness, minimize work in process inventory (WIP), 
maximize resource utilization, etc. Due to the tight 
interactions among scheduling constraints and the often 
conflicting nature of optimization criteria, it is impos- 
sible to assess with any precision the extent of schedule 
revision or the impact of a scheduling decision on the 
global satisfaction of optimization criteria. For example, 
in Fig. 1, moving forward the last activity of ORDER3 
creates downstream cascading constraint violations. 
Therefore, a repair action must be applied and its 
repair outcome must be evaluated in terms of the 
resulting effects on scheduling objectives. In addition, 
the evaluation itself of what is a ‘high quality’ schedule 
is difficult because of the need to balance conflicting 
objectives and trade-off among them. Such tradeoffs 
typically reflect user preferences, which are difficult to 
express as a simplified cost function. For example, WIP 
and weighted tardiness are not always compatible with 
each other. As shown in Fig. 2, there are situations 
where a repair action can reduce weighted tardiness, but 
WIP increases. Which is a better schedule depends on 
user preferences in the specific scheduling context where 
several factors, such as clients, past shipping records and 
load of factory and warehouse, have meaningful 
influences. 

3 KNOWLEDGE ACQUISITION IN SCHEDULING 

Recently a growing number of research activities have 
been done on acquiring and learning useful knowledge 
for solving a complex scheduling problem. The goal and 
methodology of the research can be classified into the 
following categories: 

Knowledge sharing and reuse. Problem solving for 
a specific task is extracted and stored in the 
components in a way that its reusability is 
independent of the application domains. Develop- 
ment of a knowledge-based system is done by 
retrieving and assembling appropriate components 
(e.g. SPARK? CAKE,’ MULTIS6). 
Human-computer cooperative scheduling. When a 
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Fig. 2. Example of conflicting objectives. 

human expert disapproves a schedule produced by 
the scheduling system, s/he repairs the schedule 
and explains the reason for dissatisfaction and 
validation of a repair. Later, a knowledge engineer 
analyses user’s explanations, and uses them to 
enhance and improve the content of knowledge 
bases in the scheduling system (e.g. WATPASS7 
Scheplan’). 
Adaptive dispatching. In FMS environment, a very 
flexible way of manufacturing control is possible. 
Induction based learning techniques are applied to 
create rules for dynamically selecting an appro- 
priate dispatching rule according to the status of 
manufacturing environment (e.g. PDS9 GDCA”). 
Control knowledge acquisition. Control knowledge 
can be exploited to improve efficiency of solving a 
scheduling problem. This type of knowledge is 
captured by interviewing with an expert when a 
detail problem-solving method in the domain is 
understood or applying the EBL method when 
sufficient amount of domain theory is available 
(e.g. SALT,” PEBL12). 
Problem description acquisition. By using a generic 
model of scheduling problems as a template for an 
interview with a human scheduler, a knowledge 
engineer can easily acquire and formulate knowl- 
edge about constraints and physical environment 
of a scheduling problem without missing the points 
(e.g. PFF13). 

In spite of the past research efforts, acquisition of 
control knowledge in scheduling problems is still 
difficult, because ill-causality of the scheduling problem 
hinders understanding of problem solving methods and 
domain theory of the scheduling problem. And there has 
been no research concerning the acquisition of user’s 
preferential knowledge on tradeoffs among conflicting 
objectives in the schedule. We advocated a unified 
framework of knowledge acquisition and problem 
solving in the schedule problem and implemented the 
system called CABINSi which optimizes a schedule by 
iterative repair using case-based reasoning (CBR)” 
methodology. In the succeeding sections, we explain 
how CABINS acquires user’s preferential and control 
knowledge from past experience cases, and how 
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CABINS exploits that knowledge effectively for schedule not at all obvious, neither can they be discovered since a 
optimization. causal model for scheduling cannot be assumed. 

4 CBR FOR SCHEDULE Ol’TIMIZATION 

Because of the characteristics of the scheduling domain 
and the interest in capturing context dependent user 
preferences and situation sensitive search control 
knowledge, CBR appears to be a natural method for 
knowledge acquisition. However, applying CBR to 
schedule improvement, a numerical optimization prob- 
lem, is very challenging. In general, CBR has been used 
for ill-structured symbolic problems, such as planning,16-‘8 
legal reasoning,‘9Y z” argumentation,2’ conceptual design,** 
medical diagnosis23 where the primary concern has been 
plausibility or correctness of resulting artifacts (plan, 
argument, design) and computational efficiency of the 
problem solving process rather than artifact quality. 

The challenges in applying CBR to schedule optimi- 
zation were to determine what constitutes a case in the 
domain of schedule optimization and what the case 
indices should be. The intuitive answer would be to 
consider a whole schedule as a case.24*25 This solution is 
attractive since, if the right information could be 
transferred from one scheduling scenario to another, 
or with little adaptation, a new problem would be solved 
with relative ease. In the traditional planning problem, 
the plan operators capture some form of domain 
causality in their preconditions and effects. Saving a 
plan and the derivational trace of how the plan was 
generated, captures pretty much the planning process 
and can be easily utilized to solve future similar 
problems.16-‘8 However, it is not true in the scheduling 
problem. Because of the high degree of nonlinearity of 
scheduling constraints and objectives, a very small 
difference between an input problem specification and 
the problems in the case base can in general result in 
large variations in the results both in terms of the 
amount of modifications needed and the quality of a 
resulting schedule. A second difficulty with respect to 
having a whole schedule as a case came in the form of 
what indices to choose. Indexing a case in terms of the 
goals that must be achieved and the problems that must 
be avoidedI is a good guideline and has served many 
CBR systems well. However, in the scheduling domain, 
the goals to be achieved (the optimization criteria) 
cannot be explicitly stated, since they reflect context- 
dependent user preferences and tradeoffs. Even if the 
optimization objectives were explicit, because of the 
nonlinearities of the problem, retrieving a schedule in 
which the achieved objectives were the same as the 
desired ones in the current problem would give little or 
no help in adapting the retrieved schedule to the current 
problem specifications. Moreover, because of unpredict- 
able ripple effects of constraint propagation and tight 
constraint interactions, the problems to be avoided are 

Since it is impossible to judge a priori the effects of a 
scheduling decision on the optimization objectives, a 
scheduling decision must be applied to a schedule and its 
outcome must be evaluated in terms of the resulting 
effects on scheduling objectives. Thus, having a single 
scheduling decision as a case seemed to provide 
advantages in terms of focus and traceability of the 
problem solving process. Focus and traceability mean 
that a user’s evaluation of the results of a single 
scheduling decision can be captured in a case, and, if 
the result was unacceptable, another scheduling decision 
to the same ‘scheduling entity’ can be applied until either 
all available scheduling decisions are exhausted or an 
acceptable result is obtained. For the above reasons, it 
became clear that it was better to have a case for a single 
scheduling entity on which a scheduling decision was 
applied. Since the result of a scheduling decision needed 
to be evaluated with regard to the optimization 
preferences for a schedule as a whole, it is clear that 
constructive methods which incrementally augment a 
partial schedule at every scheduling decision point 
would be unsuitable for the purpose. Moreover, 
contextual information, which can only be provided by 
having a complete schedule, is very useful in applying 
CBR. Therefore, the revision-based method was chosen 
as the underlying optimization methodology in 
CABINS. 

Hence in CABINS, a case describes the application of 
a schedule revision decision on a single scheduling entity. 
Operationalization of a schedule revision decision is 
done by means of a schedule repair action. Each 
application of a schedule repair action results in a new 
schedule. The search space of CABINS is the space of 
complete schedules that incorporate acceptable user 
optimization tradeoffs. Hence the predictive case fea- 
tures that are suitable for case indexing should be those 
that capture good tradeoffs. Although schedule optimi- 
zation is ill-structured, we make the hypothesis that 
there are regularities of the domain that can be 
captured, albeit in an approximate manner, in these 
features. In CABINS, indices are divided into two 
categories. The first category consists of the descriptive 
features. Since the results of schedule revision associated 
with a single scheduling entity pertain to the whole 
schedule, it is impossible to make a precise prediction of 
repair effects in advance of revisions. Descriptive 
features that express characteristics of a scheduling 
entity operate as contextual information for selection of 
a particular repair action and allow CABINS to 
estimate the effects of each repair action in advance. 

The schedule resulting from a repair action applica- 
tion must be evaluated in terms of user-defined trade- 
offs. The user cannot predict the effects of modification 
actions on schedule correctness or quality since a 
modification could result in worsening schedule quality 
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Fig. 3. Search space and search control in CABINS. 

or introducing constraint violations. Nevertheless, the 
user can perform consistent evaluation of the results of 
schedule revisions. This evaluation is recorded in the 
case as part of the case’s repair history. The repair 
history constitutes the second category of case features. 
Thus, the case base incorporates a distribution of 
examples that collectively capture repair performance 
tradeoffs under diverse scheduling circumstances. 

CABINS searches for an ‘optimal’ schedule over the 
space of complete schedules. Figure 3 shows the schematic 
diagram of the search space and search control in the 
CABINS system. CABINS revises the current solution 
iteratively to improve the solution quality. For each step 
of the search, CABINS selects a solution among the 
neighbours of the current solution. The neighbourhood 
size for the current solution (i.e. the number of potential 
solutions for each revision) is equal to Number_of_ 
Repair-Actions x Number of - - Repair-Objects. In a sched- 
uling problem, Repair-Actions are several heuristics that 
modify the assignments of resources to activities in the 
schedule and Repair-Objects are typically the activities in 
the schedule. The number of revision cycles required to 
obtain a final solution cannot in general be predicted in 
advance because of tight constraint interactions in the 
scheduling problem. Hence the search space for a large 
scheduling problem can be intractably big. To reduce the 
required research efforts, CABINS has the following 
mechanisms of search control using CBR: a repair control 
model provides the search control through case-based 
selection of the next repair action to be applied, and a user 
preference model provides the search control through case- 
based evaluation of the result of the application of a 
selected repair action. The descriptive features are the 
indices that are used to retrieve a case that suggests the 
next repair action to be applied. The features associated 
with the repair history are used to retrieve cases that 
suggest evaluations of a repair outcome. 

Preferential knowledge 

Debug P- Control knowledge 
- Selection of defects 

I- - Selection of repair tactics 

Fig. 4. GTD process. 

5 SCHEDULE OPTIMIZATION BY CABINS 

CABINS optimizes a given schedule by iterative repair 
based upon a GTD (generate-test-debug) process 
(Fig. 4). CABINS differs from other GTD-based 
scheduling methodologies in that it doesn’t use a fixed 
objective function for optimization. CABINS optimizes 
a schedule by iterative repair until a further repair is 
unnecessary or impossible. Repair methods are selected 
by the control knowledge and a result of the repair is 
evaluated by user’s preferential knowledge. Both types 
of knowledge are acquired through interaction with a 
human scheduler and stored as cases in the case base of 
CABINS. First, CABINS gathers user’s judgements on 
repairing schedules of the training problems in the case 
base. Once a sufficient number of cases are accumulated, 
CABINS can automatically repair a schedule by reusing 
user’s judgements in the past similar cases (see Fig. 5). 

5.1 Case representation 

Within a job, repair is performed on one activity, the 
focal-activity at a time. In CABINS, a case describes 
the application of a particular modification to a 
focal-activity. Each case is indexed in terms of surface 
features relating to the flexibility of temporal and 
capacity constraints surrounding the focal-activity, 
the repair tactic used, repair effects and the repair 
outcome. 

Sub-ootimal solution 1 

+ 
1 R&ltslevaluations 

Optimized solution 1 
Fig. 5. CABINS architecture. 
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Figure 6 shows the information content of a case. The 
global features reflect an abstract characterization of 
potential repair flexibility for the whole schedule. High 
‘resource utilization average’, for example, often indi- 
cates a tight schedule without much repair flexibility. 

Associated with the focal-activity are local features 
that we have identified and which potentially are 
predictive of the effectiveness of applying a particular 
repair tactic. For example, ‘predictive shift gain’ predicts 
how much overall gain will be achieved by moving the 
current focal-activity earlier in its time horizon. In 
particular, it predicts the likely reduction of the 
focal-activity’s waiting time when moved to the left 
within the repair time horizon. Because of the ill- 
structuredness of job shop scheduling, local and global 
features are heuristic approximations that reflect prob- 
lem space characteristics. 

The repair history records the sequence of applica- 
tions of successive repair actions, the repair outcome 
and the effects. The repair history is used as a record of 
evidences that show the existence of a certain causal 
structure in a problem implicitly. A repair outcome is 
the evaluation assigned to the set of effects of a repair 
action and takes values in the set [‘acceptable’, 
infeasible’, unacceptable’]. Typically the outcome 
reflects tradeoffs among different objectives. The out- 
come of a repair tactic application is ‘infeasible’, if the 
application of repair heuristic results in an infeasible 
schedule, i.e. a schedule that violates domain con- 
straints. If the application of a repair tactic results in a 
feasible schedule, the result is judged as either acceptable 
or unacceptable with respect to the repair objectives by a 

domain expert. An outcome is ‘acceptable’ if the user 
accepts the tradeoffs involved in the set of effects for the 
current application of a repair action. Otherwise, it is 
‘unacceptable’. The effect value describes the impact of 
the application of a repair action on the scheduling 
objective designated in the effect type. The effect salience 
is assigned when the outcome is ‘unacceptable’, and it 
indicates the significance of the effect to the repair 
outcome. 

5.2 Case acquisition 

To gather enough cases, sample scheduling problems are 
solved by a scheduler. CABINS identifies jobs that must 
be repaired in the initial sub-optimal schedule. Those 
jobs are sorted according to the significance of defect, 
and repaired manually by a user according to this 
sorting. For example, if the user’s optimization criterion 
is to minimize job tardiness, the most tardy job is 
repaired first. The user selects a repair tactic to be 
applied. Tactic application consists of two parts: (a) 
identify the activities, resources and time intervals that 
will be involved in the repair, (b) execute the repair and 
re-schedule the activities identified in (a). 

After tactic selection and application, the repair 
effects are calculated and shown to be the user who is 
asked to evaluate the outcome of the repair. If the user 
evaluates the repair outcome as ‘acceptable’, CABINS 
proceeds to repair another focal-activity and the process 
is repeated. If the user evaluates the repair outcome as 
‘unacceptable’, s/he is asked to supply an explanation in 
terms of rating the salience of favourable and unfavour- 
able effects. Then, the repair is undone and the user is 
asked to select another repair tactic for the same 
focal_activity. The process continues until an acceptable 
outcome for the current focal-activity is reached, or 
failure is declared. Failure is declared when there are no 
more tactics to be applied to the current focal-activity. 
The sequence of applications of successive repair 
actions, the effects, the repair outcome, and the user’s 
explanation for failed application of a repair tactic are 
recorded in the repair history of the case. 

As cases are acquired in the course of actual problem 
solving by a user, CABINS can elicit user’s context- 
dependent knowledge without requiring excessive burdens 
from the user. 

5.3 Case application 

Once enough cases have been gathered, CABINS repairs 
sub-optimal schedules without user’s interaction. Fol- 
lowing the procedure shown in Fig. 7, CABINS repairs 
the schedules by (1) invoking CBR with global and local 
features as indices to decide the most appropriate repair 
tactic to be used for each focal-activity, (2) applying the 
selected repair tactic, (3) invoking CBR using the repair 
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effect features (type, value and salience) as indices to 
evaluate the repair result, (4) in case of failure, invoking 
CBR with global and local problem features and history 

of failed repair tactics as indices to decide which repair 
tactic to use next. Experiments in using different 
indexing schema in case of failure are described in 
section 8. 

In CABINS concept are defined extensionally by a 
collection of cases. As a case retrieval mechanism, 
CABINS uses a variation of k-nearest neighbour 
method where not the frequency but the sum of 
similarity of k-nearest neighbours is used as a selection 
criterion. The similarity between the ith case and the 
current problem is calculated as follows: 

SL; x 

where SL; is the salience of thejth feature of the ith case 
in the case base, and its value has been heuristically 
defined by the user; CF; is the value of thejth feature of 
the ith case, PFi is the value of the jth feature in the 
current problem, E-Dj is a standard deviation of thejth 
feature value of all cases in the case base. Feature values 
are normalized by division by a standard deviation of 
the feature value so that features of equal salience have 
equal weight in the similarity function. 

Resource I 

Resource 2 

Resource 3 

Resource 4 

Resource 5 

6 AN EXAMPLE 

We briefly illustrate the repair process with the very 
simple example schedule to be repaired shown in Fig. 8. 
The example has ten jobs (J,, . , Jlo) and each job has 
five activities with linear precedence constraints (e.g. 0; 

BEFORE O;, . . . ,Oi BEFORE 0;). Resources RI and 
RZ, R3 and R5 are substitutable; resource R4 is a 

bottleneck. Suppose that the job under repair is Js. This 
job has a weight of 2, a due date of 1250 and the 

scheduled end-time of its last activity is 1390. Hence it 
has a weighted tardiness of 2 x (1390 - 1250) = 280. 
Suppose the current focal-activity is 0:. CBR is invoked 

with global features (weighted tardiness = 280, resource 
utilization average = 0.544, resource utilization devia- 

tion = 0.032) plus the set of local features as indices and 
selects swap as a repair tactic. One can see from the 
figure that this is a good choice since the focal-activity is 

scheduled on machine R4, which doesn’t have any 
substitutable machine and any idle time in the repair 
time horizon (time between the end of 0; and the end of 

0% 
The swap repair tactic roughly calculates the effects of 

swapping the current focal-activity with each activity 
within the current focal_activity’s time horizon and 
selects the activity that gives the biggest net gain (note 

that swapping an activity that is scheduled earlier with 
one that is scheduled later will now delay the earlier 
activity). In the example, suppose that activity 0: is 
selected as the activity to be swapped with the current 
focal-activity 0:. The effect of applying the swap tactic 
is that 0; and 0: are unscheduled on R4 and 0: is re- 
scheduled to start at time 1090 (the start time of activity 
0: prior to the swap) and 0: is moved to start at time 
1180 (the start time of activity 0: prior to the swap). 
Because the new assignments of two activities overlap 
each other, constraint propagation is invoked and the 
assignment of 0: is further delayed. Due to the delay of 

activity Oi, now there is the ripple effect of a precedence 
constraint violation between activity 0: and its successor 
activity 0: on resource R2 (in general, many activities 
could be affected and must be rescheduled). Constraint 

propagation discovers this constraint conflict and shifts 
activity 0: further to the right on resource RZ. Since 

0 100 200 300 400 500 600 700 800 900 loo0 1100 1200 1300 1400 

Fig. 8. Original schedule results. 



Knowledge acquisition for schedule optimization 283 

Resource 1 

Resource. 2 

Resource 3 

Resource 4 

Resource 5 

Fig. 9. Schedule results after repair on 0:. 

job J4 has weight 3, its weighted tardiness is now 
3 x (1370 - 1320) = 150. The repaired schedule result 
is shown in Fig. 9. 

CABINS calculates both local effects (i.e. effects on 
the repair target, Js) and global effects (i.e. effects on the 
whole schedule) for result evaluation. In this example, 
‘local_weighted_tardiness’ is estimated as + 180 time 
units and ‘local_inprocess_inventory’ is estimated as 
+120 units, both being improved by the change of 0:. 
And ‘global_weighted_tardiness’ is +30 units (i.e. 180- 
150) and ‘global_inprocess_inventory’ is -750 units 
(as the waiting time in J4 increases by 950 units). CBR 
is invoked using these effect values as indices to 
determine whether this repair outcome is acceptable or 
not. If there are more significant ‘SUCCEEDED’ cases 
than ‘FAILED’ cases in the retrieved k-nearest neigh- 
bours, the repair is considered reflecting the tradeoffs of 
user’s preference (in this example, little weight on 
‘globaljnprocessjnventory) and the outcome is con- 
sidered as acceptable. Otherwise, the outcome is 
considered as unacceptable, thus showing that loss in 
‘global_inprocess_inventory’ is more critical than possi- 
ble gain in weighted tardiness according to the user’s 
preferences. 

7 ACQUIRING PREFERENTIAL KNOWLEDGE 

We hypothesize that CABINS can acquire user’s 
preferential knowledge by accumulating cases of user’s 
judgement on schedule repair results. To validate our 
hypothesis, we did experiments to see whether CABINS 
can optimize schedule quality along various optimization 
criteria which CABINS does not know explicitly. We 
compared CABINS with a set of well-regarded dispatch 
heuristics, widely used in manufacturing job shop 
scheduling, and with a constraint-based scheduler. The 
dispatch rules selected for the comparison are the earliest 
due date (EDD) rule, the weighted shortest processing 
time (WSPT) rule and the WSPT with job time urgency 
factor (R&M) rule. The constraint-based scheduler (CBS) 
uses backtrack search with sophisticated variable and 
value ordering heuristics.26 These schedulers are known 
to achieve near optimal performance with respect to job 

tardiness and work-in-process-inventory (WIP) under 
various scheduling conditions. 

To cover different scheduling conditions, six groups of 
10 problems each were randomly generated using three 
different values in due date and release date parameter 
distribution (static, moderate, dynamic), and two values 
of bottleneck configuration (one bottleneck, two bottle- 
necks). Each problem has five resources and 10 jobs of 
five operations each. Each job has a linear process 
routing specifying a sequence where each job must visit 
bottleneck resources after a fixed number of activities, so 
as to increase resource contention and make the 
problem tighter. The slack was adjusted as a function 
of the range and bottleneck parameters to keep demand 
for bottleneck resources close to 100% over the major 
part of each problem. Durations for activities in each 
job were also randomly generated. 

To assess CABINS performance accurately, we 
applied a two cross-validation method. Each problem 
set in each class was divided in half. In one a half initial 
schedule was generated using a constraint-based sche- 
duler and then repaired heuristically to gather cases. 
These cases were used to repair the other half of the 
problem set. We repeated the above process by inter- 
changing the sample- and the test-set. Our results are the 
average of the two sets of results. In the experiments, 
CABINS used two types of case base, one of which was 
trained under the optimization criteria of minimizing 
weighted tardiness and the other was trained to 
minimize combination of weighted tardiness and WIP. 

7.1 Experimental results 

The results in Fig. 10 show a comparison of the resultant 
schedule quality by the above scheduling methods and 
CABINS. The optimization criteria used in the experi- 
ments were weighted tardiness (left graph) and the 
combined objective of minimizing weighted tardiness 
and WIP (right graph). In the graphs, CABINS 
and CABINS@VT + WIP) represent CABINS with a 
case base trained to optimize weighted tardiness and 
CABINS with a case base trained to optimize the 
combination of weighted tardiness respectively. From 
the graphs, it’ is shown that CABINS with correctly 
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Fig. 10. Comparison of schedule quality. 

trained case base outperformed all the other methods 
(including CABINS with wrong case base) across both 
one and two bottleneck problems in all experiments. 
From these experiments, we see that CABINS can 
acquire user’s scheduling objectives and optimize 
schedules along acquired objectives. 

8 ACQUIRING CONTROL KNOWLEDGE 

Our hypothesis is that CBR enables CABINS to (1) 
learn a control model of repair action selection from 
cases that are created from superficial rules, (2) improve 
its competence both in repair quality and efficiency by 
utilizing failure information recorded in the cases. To 
analyse the correctness of our hypothesis, we classified 
cases into two types, one of which is a success case where 
a repair was done successfully and the other of which is 
a failure case which failed to repair a schedule, and 
experimentally implemented the following three repair 
strategies (see Fig. 11): 

l One-shot repair. CABINS selects a repair tactic by 
retrieving the most similar case from success cases, 
applies it to a focal-activity and proceeds to repair 

Lindred-exhaustive repair 

Fii. 11. Three repair methods in CABINS. 
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the next focal-activity regardless of repair out- 
come. 
Exhaustive repair. CABINS selects a repair tactic 
and applies it to repair a focal-activity. If the 
repair outcome is deemed either unacceptable or 
infeasible, another tactic is selected from success 
cases to repair the same focal-activity, using as 
indices global and local case features, the failed 
tactic, and the indication of the failed outcome. 
This CBR invocation retrieves similar past failures 
of the tactic that were successfully repaired and the 
tactic that was successful in repairing a schedule. 
For example, when a repair result is judged as 
unacceptable by a user after application of left-shift 
tactic because the user doesn’t like side effects 
caused by the tactic, another case that has the most 
similar global and local features is retrieved from 
the success cases which have the failure record of 
left shift tactic because of user’s unacceptance in 
rep&r history of the case. And a tactic that finally 
succeeded in repair of the selected case is used for 
another repair trial of the current problem. The 
intuition here is that a similar outcome of the same 
tactic implies a similarity of causal structure 
between the past and current cases. Therefore, the 
repair tactic which succeeded in the cases that have 
similar failed tactic applications can potentially be 
successful in the current problem. 
Limited exhaustive repair. CABINS gives up 
further repair when it determines that it would be 
a waste of time. To decide whether to give up 
further repair, failure and success cases are checked 
to determine case similarity. If the most similar 
case is a failure, CABINS gives up repair of the 
current focal-activity, and switches its attention to 
another focal-activity. Since, in difficult problems, 
such as schedule repair, failures usually outnumber 
successes, if both case types are weighted equally, 
overly pessimistic results could be produced (i.e. 
CBR suggests giving up too often). To avoid this, 
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we bias (negatively) usage of failure cases by 
placing a threshold on the similarity value and 
currently its value is heuristically fixed as 0.75. 
Failure experiences whose similarity to the current 
problem is below this threshold are ignored in 
similarity calculations. Since the similarity metric 
selects the tactic which maximizes the sum of the 
most similar k cases, this biases tactic selection in 
favour of success cases which are moderately 
similar to the current problem. 

To verify our hypothesis, we did experiments with six 
types of scheduling problems, the same as the experi- 
ments in the previous section. In the experiments, 
reported here, we used a metric, minimizing weighted 
tardiness, as an objective function to evaluate the 
performance of CABINS. Of course, CABINS does 
not know this metric but has to guess it from the 
contents of the case base. And we built a rule-based 
reasoner (RBR) that goes through a trial-and-error 
repair process to optimize a schedule in terms of 
weighted tardiness based on the tactic selection rules 
acquired from a human scheduler. Since the RBR was 
constructed not to select the same tactic again after 
tactic failure, it could go through all the tactics before 
giving up repairing an activity. For each repair, the 
repair effects are calculated and the repair outcome is 
correctly determined by comparing the change in the 
objective function. Since RBR knows an exact objective 
function (in real world job shop scheduling problems, 
which is very complex and is available only in a user’s 
mine) for evaluation, RBR can work as an emulator of a 
human scheduler, who cannot repair a schedule in the 
most efficient way but can make consistent evaluation 
on repair results. Therefore, we used RBR not only for 
generating the case base for CABINS but also for 
making a comparison baseline for the CABINS experi- 
ment results to see whether CABINS can learn effective 
control rules from the cases made by an inefficient 
teacher. Thus, CABINS has been trained with about 100 
cases by RBR. 
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8.1 Experimental results 

The graphs of Fig. 12 show comparative results with 
respect to schedule quality improvement (weighted 
tardiness) and repair efficiency (in CPU seconds) 
among limited exhaustive repair, exhaustive repair, 
one-shot repair and rule-based repair, which is an 
emulation of repair by a human scheduler. The results 
show that one-shot repair is the worst in quality but best 
in efficiency. Exhaustive repair outperformed one-shot 
repair and rule-based repair in quality. But, the 
efficiency of exhaustive repair was worse than that of 
one-shot repair or rule-based repair. 

The quality of repairs by limited exhaustive repair is 
only slightly worse than that by exhaustive repair, but is 
still comparable with that of rule-based repair. The 
efficiency of limited exhaustive repair is much higher 
than both rule-based repair and exhaustive repair. 
Although the efficiency of limited exhaustive repair is 
comparable with that of one-shot repair, the quality of 
repairs by limited exhaustive repair is much better than 
that of one-shot repair. One potential reason for these 
effects is that the effects of schedule repair are pretty 
unpredictable because of ill-causality of scheduling 
problems and there is a good chance that another 
application of repair tactic may make the’ problem, 
which once seemed difficult, easier by changing the 
existing schedule fundamentally so that we can go back 
to the problem afterwards and repair it without wasting 
much effort. 

9 SCALING-UP A CASE BASE 

The graphs in Fig. 13 show a comparison of CABINS’ 
performance with different sized case bases. The results 
were obtained based on CABINS with WT + WIP type 
of case bases. From the viewpoint of knowledge 
acquisition, an interesting question is when knowledge 
acquisition can be terminated because sufficient knowl- 
edge has been acquired to enable high quality perfor- 
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0 Exhaustive repair 
x Limited-exhaustive repair 
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Fig. 12. Comparison of schedule quality and efficiency. 
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Case-base size 

Fig. 13. Effect of case base sizes on quality and efficiency. 

mance of a knowledge based system. For case-based 
knowledge acquisition, this question becomes how many 
cases would be enough for knowledge capture and reuse 
and for guaranteeing overall satisfactory performance. 
Unfortunately, it is very difficult to answer this question 
in general due to the ill-structuredness of the scheduling 
problem and the approximate nature of CBR (since no 
causal model is available). We believe, however, that 
there exists some appropriate size of the case base 
which will give us relatively satisfactory results in 
terms of schedule quality without excessive overhead 
for case acquisition or case retrieval from the case 
base. 

Our experimental results (Fig. 13) support this 
hypothesis as follows: (1) The larger the number of 
cases, the better the schedule quality. However, the 
marginal payoff from the increase in case base size 
decreases. This can be explained partially by the fact 
that some number of cases (say, 1000) captures well the 
characteristics of the problem space, and an additional 
1000 new cases may give much redundant information. 
When the size of a case base is relatively small, every 
time new cases are acquired, we may get information 
about a different part of the problem space which results 
in higher quality improvement. (2) In terms of efficiency 
of the system, we observe from the graphs that the case 
base with 1000 cases might be the optimal choice. 
Intuitive explanation of the results is that CABINS with 
less cases cannot search the repair solution space 
efficiently because of its poor control knowledge and 
CABINS with more cases spoils the search efficiency 
because of the increased case retrieval time (i.e. 
CABINS suffers from a utility problemz7). 

Actually, both in terms of CPU time and quality 
improvement, the case base with 1000 cases obviously 
outperforms the case base with 500 cases. Moreover, 
case bases with more cases than 1000 do not seem to 
provide a payoff proportional to the case base size 
increase. In Veloso’s research,28 the issue of the tradeoff 
between optimal case retrieval time interval and search 

efficiency is discussed in planning domain. However, the 
assumptions on which their theoretical analysis was 
based seem not to hold in an ill-structured domain, such 
as scheduling. How to theoretically predict the optimal 
size of case base is still an open research problem and we 
are currently investigating it.29 

10 CONCLUDING REMARKS 

In this paper, we advocated a unified. framework for 
knowledge acquisition and iterative revision for sche- 
dule optimization. The approach utilizes CBR-based 
mechanisms for recording user preferences, repair tactics 
and explanations, and constraint-based scheduling for 
application of the selected repair tactics. The approach 
is predicated on (a) the existence of a set of schedule 
repair tactics, each of which operates with respect to a 
particular local view of the problem and offers selective 
advantages for improving schedule quality, (b) on 
capturing user scheduling preferences and judgements, 
(c) on retrieving and reusing these preferences to 
dynamically change scheduling utilities during revision. 
Our experimental results show that the approach (1) was 
able to capture and effectively utilize user scheduling 
preferences that were not present in the scheduling 
mode, (2) outperformed other scheduling methods along 
multiple evaluation criteria. We also examined various 
ways of exploiting past repair experiences for control 
knowledge acquisition. Our experiment results show 
that our methodology can improve its own performance 
by: (1) using failure experience as a contextural index 
of the problem, (2) trading off the use of success and 
failure cases depending on the context in which a 
repair tactic is applied. This use of CBR in the space 
of failures is a domain independent method of 
acquiring control knowledge that allows the problem 
solver to improve its efficiency while preserving quality 
of results in the domain without strong domain 
knowledge. 
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